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Abstract
In this paper we describe and verify a method, called SMIP,

to circumvent the trade-off between motion blur and noise, specif-
ically for scenes with predominantly two distinct linear motions
(sparse motion). This is based on employing image stabilization
hardware to track objects during exposure while capturing two
images in quick succession. The two images are combined into a
single sharp image without segmentation or local motion estima-
tion. We provide a theoretical analysis and simulations to show
that the Signal-to-Noise Ratio (SNR) increases up to 20 dB over
conventional short-exposure photography. We demonstrate that
the proposed method significantly improves the SNR compared to
existing methods. Furthermore, we evaluate a proof-of-concept
using modified off-the-shelf optical image stabilization hardware
to verify the effectiveness of our method in practice, showing a
good correspondence between the simulation and practical re-
sults.

Introduction
Photography in dim light, such as in surveillance applica-

tions, is commonly limited by the trade-offs of the exposure trian-
gle. The exposure triangle relates the three main exposure param-
eters: exposure time, lens aperture and sensitivity (ISO). Adjust-
ing one parameter implies adjusting at least one of the other two,
to maintain a proper exposure. A smaller lens aperture or shorter
exposure time decreases defocus- and motion blur, but reduces
the light throughput at the same time. On the other hand, com-
pensating with a higher ISO increases the noise level, resulting in
a grainy image. Hence, the photographer has to find a suitable
trade-off between defocus blur, motion blur and noise.

In this paper we describe and verify a method to circum-
vent the trade-off between motion blur and noise, specifically
for scenes with predominantly two distinct linear motions (sparse
motion). A typical example is a traffic surveillance camera with
vehicles passing by at high speed. Our method shifts the lens to
move the camera viewing direction during the exposure in order to
stabilize object motion. Whereas one image is captured while sta-
bilizing one velocity, the second image is stabilized for the other.
Both images are combined into an entirely sharp image without
the need for local motion estimation (motion-invariant). This ex-
plains the name Sparse Motion-Invariant Photography (SMIP).

Our work builds upon Levin et al. [1], who have introduced
Motion-Invariant Photography (MIP). MIP employs constantly
accelerating linear camera motion to uniformly blur all objects
moving within a range of velocities. Deblurring yields a blur-free
image without the need for local blur estimation. MIP allows to
increase the exposure time while preventing motion blur, thereby
easing the trade-off between motion blur and noise. However,
MIP suffers from the following practical limitations.

1. Only a single linear motion direction is stabilized. Although
Levin et al. have shown that other motion directions can be
deblurred as well, it introduces severe artefacts.

2. Ghosting artefacts arise due to the approximate motion-
invariance. A motion-independent blur is assumed, while
the actual blur function does depend on the object velocity.

3. Deblurring amplifies noise as shown by Agrawal and Raskar
[2], largely canceling the quality improvements of the longer
exposure period. Modern image sensors continue to pursue
shot-noise limited quality [3], which, together with deblur-
ring noise amplification, almost completely cancels image
quality improvements [4].

Let us first discuss prior work before detailing the difference
between the main approaches.

Prior work
Circumventing the limits of the exposure triangle has been

broadly studied. More recently, Computational Imaging (CI) is an
emerging field of research focusing on enhanced camera perfor-
mance and functionality, using a combination of modified optics
and post-processing.

Raskar et al. [5] introduced Coded Exposure (CE), which
uses a temporally modulated shutter and subsequent deblurring
to obtain sharp images of moving subjects while extending the
exposure time. CE does not pose restrictions on the direction of
motion, but does require complex image segmentation in post-
processing.

Levin et al. presented Motion-Invariant Photography. As
discussed in the introduction, MIP uses camera motion and subse-
quent deblurring, to obtain a sharp image without the need for seg-
mentation during post-processing. McCloskey et al. has demon-
strated an implementation using optical image stabilization hard-
ware [6] and suggested several improvements of both the camera
motion [8] and deblurring [7]. Furthermore, Cho et al. extended
MIP to arbitrary two-dimensional motion [9]. Although both MIP
and CE allow for extended exposure periods, Cossairt et al. [4]
showed that both techniques offer little to no image quality im-
provement, due to the combined effects of signal-dependent noise
and deblurring noise amplification.

Defocus blur can be removed as well, for which several CI
techniques have been proposed. They use coded apertures [10],
aspherical optics [11], focus stacks [12, 13] or focal sweeping
[14, 15]. Defocus deblurring is closely related to motion deblur-
ring. For example, coded aperture- and coded exposure photogra-
phy both use optical coding to make the blur function invertible.
Moreover, focal sweeping and motion-invariant photography both
rely on making the blur function independent of depth and motion,
respectively.
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Figure 1: Camera motion (a) and point spread function (b)

Consider the aforementioned trade-offs, the proposed SMIP
reduces noise amplification during deblurring, which significantly
improves the image quality. Furthermore, the blur function is
identical for both velocities which prevents ghosting artefacts.
However, our proposed method does trade-off flexibility for the
improved performance when compared to MIP. Whereas MIP
handles a continuous range of one-dimensional object velocities,
SMIP can only cope with 2 distinct velocities in a scene. Both
velocities need to be known in advance, but motion estimation is
a mature technology.

Sparse motion-invariant photography
The key assumption for SMIP is that objects in the field-

of-view of a camera move at a constant linear two-dimensional
velocity, either v1 or v2 with v2 > v1. Their relative positions
are given by x1(t) = v1t and x2(t) = v2t, respectively, where t
denotes time. The camera system is equipped with a mechanism
to shift the field-of-view and stabilizes one velocity at a time. Two
images I1 and I2 are captured in quick succession with sampling
period T . The camera shutter opens at a duty cycle D, hence the
exposure time for each image is te = D · T . In practice, D < 1
due to camera overhead. Image I1 is stabilized for v1, while I2 is
stabilized for v2.

Motion model
We define the two-dimensional camera field-of-view motion

trajectory xc(t), as illustrated in Figure 1a, by:

xc(t) =

{
v1t if t < 0,
v2t if t > 0.

(1)

As a result, the motion trajectory of v1, as seen by the camera,
equals x1,c(t) = x1(t)−xc(t), which is specified by:

x1,c(t) =

{
0 if t < 0,
(v1−v2)t if t > 0.

(2)

Similarly, we derive the trajectory of v2 as seen by the camera,
by:

x2,c(t) =

{
(v2−v1)t if t < 0,
0 if t > 0.

(3)

From the above, we observe two aspects:

• The two motion trajectories as seen by the camera are re-
versed in time such that x2,c(t) = x1,c(−t). This implies
that objects moving at v1 and v2 are blurred identically.

• Both x1,c(t) and x2,c(t) are one-dimensional motion trajec-
tories along the vector v1−v2, resulting in one-dimensional
motion blur.

Point spread function
The Point Spread Function (PSF) describes the projection of

a point source on the image sensor. Under the condition that the
appearance of an object remains unchanged during the exposure,
the PSF is defined by the amount of time spent on a pixel posi-
tion. If the camera is tracking an object, the PSF becomes a delta
impulse function, while the PSF of objects moving at the other
velocity becomes a one-dimensional box filter.

Recalling that the motion trajectories x1,c(t) and x1,c(t), as
seen by the camera, move along the vector v1−v2, we denote the
one-dimensional PSF projected on this vector as φ(x). In practice,
the actual PSF is simply a rotated version of the horizontal φ(x)
function.

For ease of notation, we define ∆v = ‖v2− v1‖. Let φi, j(x)
denote the PSF of objects with velocity vi in image I j. Recalling
that x1,c(t) = x2,c(t), then φ1,1(x) = φ2,2(x) and φ1,2(x) = φ2,1(x),
so that the following holds:

φ1,1(x) = φ2,2(x) = teδ (x), (4)

and similarly we find that:

φ1,2(x) = φ2,1(x) =

{
1

∆v if ∆v(1−D) T
2 ≤ x≤ ∆v(3−D) T

2 ,

0 otherwise.

(5)

Adding both images I = I1 + I2 yields an image in which v1 is
blurred by PSF φ1(x) and v2 by φ2(x), where:

φ(x) = φ1,1(x)+φ1,2(x) = φ2,1(x)+φ2,2(x). (6)

A digital image sensor samples light intensity on a grid of
square pixels, therefore we use the discrete PSF h[n], defined by
integrating PSF φ(x) over one pixel surface, finally leading to:

h[n] =


te if n = 0
1

∆v if ∆v(1−D) T
2 ≤ n≤ ∆v(3−D) T

2 ,

0 otherwise.

(7)

Finally, using the inverse filter hi[n], as will be introduced in
the next section, the sharp image Is is computed from I1 and I2 by
convolution:

Is = (I1 + I2)∗hi. (8)

Multi-image versus single image
Since only the sum of the two images I1 and I2 is used dur-

ing post-processing, it is also possible to capture a single image
while stabilizing v1 during the first half of the exposure and v2
during the second half. The advantages are zero camera overhead
(D=1), no accumulation of read noise and smaller data storage.
A practical issue is that mechanical motion actuators have a finite
bandwidth and cannot execute the abrupt change of velocity. Ac-
tuator position feedback [8] is necessary to obtain the exact PSF
for deblurring. Our hardware lacks position feedback, therefore
we resort to the multi-image approach.

Noise
In this section we derive a model for the noise level in the

final image Is. Image noise is introduced by the image sensor and
is further amplified during deconvolution. Both factors are taken
into account in the following analysis.
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Camera noise model
Image sensors suffer from various types of noise [3]. We

model image sensor noise as a combination of the following inde-
pendent noise sources.

1. Read noise: The combined effects of signal-independent
noise sources are modelled by a spatially-independent Gaus-
sian distribution with variance σ2

r .
2. Shot noise: Shot noise results from the random nature of

photons arriving on the detector. Let J denote the average
scene illumination level, measured in photon interactions
per second per pixel. If the average number of photons per
detector Jte is significantly larger than unity, shot noise is
approximated by a Gaussian distribution with variance equal
to the signal level Jte.

3. Fixed pattern noise: Fixed pattern noise (FPN), or Photo Re-
sponse Non-Uniformity (PRNU), refers to temporally con-
stant noise caused by spatially non-uniform pixel sensitivity.
The noise variance due to FPN is given by σ2

FPN = P2
NJ2t2

e ,
where PN denotes the FPN quality factor.

Furthermore, pixels accumulate charge even in the absence of
interacting photons. The so-called dark current is mainly ther-
mally generated [3] and results in both fixed-pattern noise and
shot-noise. We define the dark current rate DR in electrons per
second, depending on the sensor temperature, which we assume
to be constant. Consequently, the noise model includes two addi-
tional components to account for dark current:

4. Dark current shot noise: The dark current shot noise vari-
ance is equal to the number of accumulated electrons, so
that σ2

D SHOT = teDR.
5. Dark current FPN: The dark current rate slightly varies be-

tween pixels, with the non-uniformity characterized by the
dark current FPN quality factor DN . Hence, the noise vari-
ance is given by σ2

D FPN = t2
e D2

RD2
N .

Adding the listed noise components yields the noise variance
for an approximately uniform, low-contrast image, which equals

σ
2
η = σ

2
r +(J+DR) te +

(
P2

NJ2 +D2
RD2

N

)
t2
e . (9)

It should be notes that an ideal camera is shot-noise limited,
i.e. photon shot-noise is the only noise source that cannot be re-
duced by technological advances.

Noise amplification
Image deblurring by deconvolution amplifies noise, espe-

cially if the PSF h[n] severely attenuates or removes certain signal
components. In this section we analyze the noise amplification
for inverting h[n].

Convolution and deconvolution in the spatial domain are
equal to multiplication and division in the frequency domain, re-
spectively. The Discrete Time Fourier Transform (DTFT) of h[n]
is equal to H (e jΩ), given by:

H (e jΩ) =
∞

∑
n=−∞

h[n]e− jΩn, (10)

H (e jΩ) = te +
sin(∆vDT Ω/2)
∆v · sin(Ω/2)

e− jΩ∆vT , (11)
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Figure 2: Point Spread Function h[n], inverse filter hi[n] and cor-
responding Discrete Time Fourier Transforms
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Figure 3: Deconvolution Noise Factor versus shutter duty cylce.

where−π ≤Ω≤ π . We note that ‖H (e jΩ)‖> 0 for finite values
of T and ∆v. Therefore, the inverse filter hi[n] exists and is defined
by:

hi[n] =
1

2π

∫
π

−π

H −1(e jΩ)e jΩndΩ. (12)

Figures 2a to 2d illustrate h[n], H (e jΩ), hi[n] and H −1(e jΩ) for
T =2.5 s, ∆v=4 pixels per second and D=0.4. Although the inverse
filter hi[n] has an infinite length, its response approaches zero as
n approaches infinity and the filter can be truncated to a finite
length.

We adopt the Deconvolution Noise Factor (DNF) [2] of hi[n]
as the factor by which the signal-to-noise ratio is decreased due to
deconvolution, specified by:

DNF(hi[n]) =

√
∑

∞
n=−∞‖hi[n]‖2

∑
∞
n=−∞ hi[n]

. (13)

We evaluate the DNF of hi[n] as a function of the shutter duty cy-
cle D and the product ∆vT in Figure 3. The DNF is approximately
equal to 6 dB (DNF=2) for D ≈ 1, but is larger for smaller duty
cycles. Furthermore, we observe that the DNF becomes smaller
when (∆vT ) increases.

Signal to Noise Ratio
We use the Signal-to-Noise Ratio (SNR) to evaluate the im-

age quality of the sharp image Is. Recalling that the signal level is
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equal to Ite, the SNR in images I1 and I2 equals 20log10
(
Ite/ση

)
.

Adding I1 and I2 increases the SNR by a factor
√

2. On the other
hand, deblurring decreases the SNR with the DNF, resulting in:

SNR = 20log10

( √
2

DNF
Ite
ση

)
. (14)

Simulation
We compare the performance of SMIP with that of MIP [1]

and Impulse Photography (IP). The parameters of the noise model
are calibrated on an surveillance NOX-20 camera 1 at room tem-
perature using the Photon Transfer Curve method [3].

Three lighting scenarios with average light intensity J = 104,
J = 105 and J = 106 photon interactions per second per pixel are
evaluated. With an aperture of F/5.6, quantum efficiency of 0.45,
average reflectivity of 0.5 and a pixel pitch of 6.4 µm, this cor-
responds to 105 lux, 1050 lux and 10,500 lux, respectively. An
object moves vertically with a constant speed of 1000 pixels per
second. We compare the following three image capturing meth-
ods:

1. Impulse Photography limits the exposure time such that mo-
tion blur is at most 1 pixel (te ≤ 1 ms). Any object moving
at a speed of up to 1000 pixels per second in an arbitrary
direction is captured without motion blur.

2. MIP moves the field-of-view with a constant acceleration.
The velocity ranges from 0 to 1000 pixels per second, ex-
ploiting the asymmetric velocity prior, as proposed by Mc-
Closkey [8]. Any object moving at a speed between 0 and
1000 pixels along a one-dimensional motion trajectory can
be deblurred during post-processing.

3. SMIP Captures two images, one without camera motion and
the other with the field-of-view moving at 1000 pixels per
second. Only objects moving at either 0 or 1000 pixels per
second can be deblurred during post-processing.

Figures 4a to 4c depict the SNR as a function of exposure
time. Whereas IP cannot extend te beyond 1 ms, both MIP and
SMIP can increase te to improve the SNR. MIP is beneficial at
moderate te, but offers little advantage at long exposures. On the
other hand, SMIP is the worst performer at short to moderate ex-
posure times, but improves significantly at long exposures. This
is due to relatively low duty cycles at short exposure times, as
illustrated in Figure 3.

Figures 5a to 5h are examples of a simulated scenario with
a moving vehicle and a static background. The SNR of the im-
ages 5b, 5d and 5g are indicated as open dots in Figure 4a. The
minor deviations of the SNR are due to the fact that the images
are not low-contrast. Note that the license plate is clearly read-
able in Figure 5g, whereas Figures 5b and 5d are too noisy. On
the other hand, erroneous motion estimation causes severe arte-
facts as shown in Figure 5h. Neither IP nor MIP suffer from these
artefacts.

Furthermore, boundaries between the object area and the
background introduce artefacts in Figure 5g. The road centerline
near the license plate appears sharp in Figure 5e and is occluded
by the sharp image of the vehicle in Figure 5f. The resulting im-
age Is in Figure 5g is a superposition of two sharp images at the

1Commercially available from Ampleye ltd.
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Figure 6: Simulated versus measured SNR on uniform test targets.

motion boundary. Consequently, the inverse filter hi[n] does not
match the true PSF. The boundary artefact becomes more pro-
nounced at longer camera overhead times.

Experiments
We modify the image stabilization hardware inside a stan-

dard DSLR lens (EF-S 18-55 mm) equipped with image stabiliza-
tion, to shift the field-of-view and verify our theoretical findings.
As described in [16], a microcontroller connects to the image sta-
bilization circuitry to control the lens shift. The lens is mounted
on a NOX-20 video camera with a frame rate of 25 Hz. Note
that our camera features a global shutter, which is essential to
prevent rolling-shutter distortions. A digital output of the cam-
era to the microcontroller is configured to be high if the shutter is
opened. The microcontroller waits 35 ms after the shutter opens,
prior to initiating the lens motion, leaving 5 ms to account for the
response time of the lens. The lens quickly returns to its initial
position once the shutter is closed again. We reserve 10 ms for
the lens to return to its initial position, limiting the exposure time
to te ≤30 ms.

We first verify our noise model by capturing and deblurring
pairs of SMIP images of uniform test targets, and measure the
noise level with te=30 ms and T =40 ms (25 Hz). An object mov-
ing at an equivalent speed of 180 pixels per second is tracked
during the exposure. Figure 6 plots the measured SNR versus
the simulated SNR. There is no significant difference between the
measured- and simulated noise levels, giving confidence to the
described noise model.

We then set up the camera to capture video of traffic driving
perpendicular to the camera at a distance of 110 m. The focal dis-
tance of the lens is set to 55 mm. A laptop decodes and stores the
video stream, computes the optical flow, derives the vehicle speed
in pixels per second and sends it to the microcontroller. The lens
velocity is alternated between background- and vehicle speed, re-
sulting in a video sequence alternating between images having
(1) a sharp background with a blurred vehicle, and (2) a blurred
background with a sharp vehicle. Figure 7 depicts a challenging
example with a partial occlusion due to a vehicle passing behind
a tree. Whereas conventional deblurring with a static camera re-
quires careful segmentation, SMIP allows deblurring with a single
deblurring filter. The deblurred image is shown in Figure 7c. The
slight ghosting artefacts near the back of the van are similar to
those observed during simulations. On the other hand, the occlu-
sions from tree branches are handled without visible artefacts.
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Figure 4: Simulated SNR versus exposure time for IP, MIP [1, 8] and SMIP. The ideal SMIP case with D =1 is included for reference.

(a) Noise-free reference (b) IP (c) MIP photograph (d) MIP photograph deblurred

(e) SMIP photograph 1 (f) SMIP photograph 2 (g) SMIP added and deblurred (h) SMIP with erroneous motion prior

Figure 5: Simulations comparing (b) IP (SNR=3.2 dB), (d) MIP (SNR=12.6 dB) and (g) SMIP (SNR=20.5 dB). The exposure is normal-
ized for comparison. Light intensity J = 104 photon interactions per second per pixel (105 lux), te=30 ms and T =40 ms (D=0.75). The
vehicle moves at an equivalent speed of 1000 pixels per second. Figure 5h illustrates the effects of an object velocity of 500 pixels per
second, while a velocity of 1000 pixels per second is assumed. (Best viewed electronically)

(a) I1 camera tracking the vehicle. (b) I2 camera tracking the background. (c) I1 + I2 deblurred

Figure 7: Images of vehicle moving at an equivalent speed of 1063 pixels per second (54 km/h) with te=30 ms and T =40 ms (D=0.75).
(Best viewed electronically)
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Conclusion and future work
We have demonstrated that lens motion and prior knowledge

about the motion in a scene allows for significant image quality
improvement. We have proposed to capture two images in quick
succession, the first while stabilizing for one velocity, while the
second stabilizes for the other velocity. Next, both images are
added and deblurred to produce a sharp image without the need
for segmentation and local blur estimation.

We have shown that Sparse Motion-Invariant Photography
(SMIP) offers a significant increase of the SNR compared to exist-
ing techniques, even when taking into account signal-dependent
noise sources. Furthermore, we have demonstrated that the in-
creased SNR results in an improved perceptual image quality,
despite artefacts near the boundaries of motion areas. A disad-
vantage is that our method is not robust to motion estimation
errors. Accurate motion estimation is necessary to prevent se-
vere artefacts. Finally, we have shown that our solution works as
expected in practice, using modified optical image stabilization
hardware as an actuator. The measured SNR is in agreement with
the simulation model. This simulation model was calibrated on
a real camera, taking into account various realistic noise sources,
which were properly modeled. The mathematical model and cor-
responding deblurring process are relatively simple and robust.
The final image is deblurred without significant distortion.

Various topics remain for future research. First, we expect
that SMIP can be applied to scenes with more than two distinct
velocities, by capturing more images and coarse object segmen-
tation. Second, with respect to robustness and deal with practi-
cal scenarios, handling saturated pixels and pulsed light sources
pose interesting challenges to the algorithm. Also, the detection
of erroneous motion estimation and its associated handling will
make the algorithm more robust in practical situations. Third, as
discussed earlier, a single-image approach is possible if motion
position feedback or accurate calibration is available. The single-
image approach is beneficial for cameras with a low frame rate.
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