©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.18.DPMI-248

Local Linear Approximation for Camera Image Processing

Pipelines

Haomiao Jiang, Department of Electrical Engineering, Stanford University
Qiyuan Tian, Department of Electrical Engineering, Stanford University
Joyce Farrell, Department of Electrical Engineering, Stanford University

Brian Wandell, Psychology Department, Stanford University

Abstract

Modern digital cameras include an image processing
pipeline that converts raw sensor data to a rendered RGB image.
Several key steps in the pipeline operate on spatially localized
data (demosaicking, noise reduction, color conversion). We show
how to derive a collection of local, adaptive linear filters (ker-
nels) that can be applied to each pixel and its neighborhood; the
adaptive linear calculation approximates the performance of the
modules in the conventional image processing pipeline. We also
derive a set of kernels from images rendered by expert photogra-
phers. In both cases, we evaluate the accuracy of the approxima-
tion by calculating the difference between the images rendered by
the camera pipeline with the images rendered by the local, lin-
ear approximation. The local, linear and learned (L*) kernels
approximate the camera and expert processing pipelines with a
mean S-CIELAB error of AE < 2. A value of the local and linear
architecture is that the parallel application of a large number of
linear kernels works well on modern hardware configurations and
can be implemented efficiently with respect to power.

Introduction

The image processing pipeline in a modern camera is com-
posed of serially aligned modules, including dead pixel removal,
demosaicing, sensor color conversion, denoising, illuminant cor-
rection and other components (e.g., sharpening or hue enhance-
ment). To optimize the rendered image, researchers designed and
optimized the algorithms for each module and added new mod-
ules to handle different corner cases. The majority of commercial
camera image processing pipelines consist of a collection of these
specialized modules that are optimized for one color filter array
design - Bayer pattern (one red, one blue and two green pixels in
one repeating pattern).

New capabilities in optics and CMOS sensors have make it
possible to design novel sensor architectures that promise to of-
fer features that extend the original Bayer RGB sensor design.
For example, recent years have produced a new generation of
architectures to increase spatial resolution [1], control depth of
field through light field camera designs (Lytro, Pelican Imaging,
Light.co), extend dynamic range and sensitivity by the use of
novel arrangements of color filters [2-5] and mixed pixel archi-
tectures [6]. There is a need to define an efficient process for
building image rendering pipelines that can be applied to each of
the new designs.

In 2011, Lansel et al. [7] proposed an image processing
pipeline that efficiently combines several key modules into one
computational step, and whose parameters can be optimized us-

IS&T International Symposium on Electronic Imaging 2016
Digital Photography and Mobile Imaging XII

ing automated learning methods [8-10]. This pipeline maps raw
sensor values into display values using a set of local, linear and
learned filters, and thus we refer to it as the L3 method. The ker-
nels for the L? pipeline can be optimized using simple statistical
methods. The L3 algorithm automates the design of key modules
in the imaging pipeline for a given sensor and optics. The learning
method can be applied to both Bayer and non-Bayer color filter
arrays and to systems that use a variety of optics. We illustrated
the method using both simulations [10] and real experimental data
from a five-band camera prototype [9]. Computationally, the L3
algorithm relies mainly on a large set of inner products, which can
be efficient and low power [11].

The L3 algorithm is part of a broader literature that explores
how to incorporate new optimization methods into the image pro-
cessing pipeline. For example, Stork and Robinson [12] devel-
oped a method for jointly designing the optics, sensor and image
processing pipeline for an imaging system. Their optimization fo-
cused on the design parameters of the lens and sensor. Khabashi
et al. [13] propose using simulation methods and Regression Tree
Fields to design critical portions of the image processing pipeline.
Heide et al. [14] have proposed that the image processing pipeline
should be conceived of as a single, integrated computation that
can be solved using modern optimization methods as an inverse
problem. Instead of applying different heuristics for the separate
stages of the traditional pipeline (demosaicing, denoising, color
conversion), they rely on image priors and regularizers. Heide
and colleagues [14, 15] use modern optimization methods and
convolutional sparse coding to develop image pipelines as well
as to address the more general image processing techniques, such
as inpainting. The distinctive emphasis of the L3 method is how it
couples statistical learning methods with a simple computational
architecture to create new pipelines that are efficient for use on
modern mobile devices.

Here we identify two new applications of the L pipeline.
First, we show that the L3 pipeline can learn to approximate other
highly optimized image processing pipelines. We demonstrate
this by comparing the L pipeline with the rendering from a very
high quality digital camera. Second, we show that the method
can learn a pipeline that is created as the personal preferences of
individual users. We demonstrate this by arranging for the L3
pipeline to learn the transformations applied by a highly skilled
photographer.

Proposed Method: Local Linear and Learned
In our previous work, we used image systems simulation to
design a pipeline for novel camera architectures [9, 10]. We cre-

DPMI-248.1



ated synthetic scenes and camera simulations to create sensor re-
sponses and the ideal rendered images. We used these matched
pairs to define sensor response classes where the transformation
from the sensor response to the desired rendered image could be
well-approximated by an affine transformation. The L3 parame-
ters define the classes, C;, and the transformations from the sensor
data to the rendered output for each class, 7;.

We use the same L3 principles to design an algorithm that
learns the linear filters for each class from an existing pipeline.
This application does not require camera simulations; instead,
we can directly learn the L3 parameters using the sensor output
and corresponding rendered images. The rendered images can be
those produced by the camera vendor, or they can be images gen-
erated by the user.

The proposed method consists of two independent modules:
1) learning local linear kernels from raw image and correspond-
ing rendered RGB image 2) rendering new raw images into de-
sired RGB output. The learning phase is conducted once for one
camera model, and the kernels are stored for future rendering.
The rendering process is efficient as it involves loading the class
definitions and kernels and applying them to generate the output
images.

Kernel Learning
In general, our task is to find for each class a P x 3 linear
transformation (kernel), 7; such that

argming, Z L(y;,X;T;)
JeCi

Here, X, y; are the jh example data set from the RAW sen-
sor data and the rendered RGB image values for class i. The func-
tion L specifies the loss function (visual error). In commercial
imaging applications, the visual difference measure in CIE AE,
can be a good choice for the loss function. In image processing
applications, the transformation from sensor to rendered data is
globally non-linear. But, as we show here the global transforma-
tion can be well approximated as an affine transform for appropri-
ately defined classes C;.

When the classes C; are determined, the transforms can be
solved for each class independently. The problem can be ex-
pressed in the form of ordinary least-squares. To avoid noise
magnification in low light situations, we use ridge regression and
regularize the kernel coefficients. That is

T; = argmin|[§ — X 7|3+ A[| T3]3

Here, A is the regularization parameter, and y is the output in
the target color space as a N x 3 matrix. The sensor data in each
local patch is re-organized as rows in X. There are P columns,
corresponding to the number of pixels in the sensor patch. The
closed-form solution for this problem is given as

T=XT"X+A1)"'xTy

The computation of 7; can be further optimized by using sin-
gular vector decomposition (SVD) of X. That is, if we decompose
X = UDVT, we have

=V xdiag [ 20— | Uy
D3+

IS&T International Symposium on Electronic Imaging 2016
Digital Photography and Mobile Imaging XII

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.18.DPMI-248

The regularization parameter (A) is chosen to minimize the
generalized cross-validation (GCV) error [16]. We performed
these calculations using several different target color spaces, in-
cluding both the CIELAB and sRGB representations.

Patch Classification

To solve the transforms 7;, the C; classes must be defined.
The essential requirement for choosing classes is that the sensor
data in the class can be accurately transformed to the response
space. This can always be achieved by increasing the number of
classes (i.e., shrinking the size of the class). In our experience,
it is possible to achieve good local linearity by defining classes
according to their mean response level, contrast, and saturation.
Mean channel response estimates the illuminance at the sensor
and codes the noise. Contrast measures the local spatial variation,
reflecting flat/texture property of the scene. Finally, saturation
type checks for the case in which some of the channels no longer
provide useful information. It is particularly important to separate
classes with channel saturation.

Image Rendering

The L3 rendering process is shown in Fig 1. Each pixel in the
sensor image is classified using the same criteria as in the training
module. We then apply the appropriate linear transformation, 7;,
to the data in the P pixels in the patch surrounding the pixel. This
linear transform computes the rendered pixel value. Hence, the
rendered values are a weighted sum of the sensor pixel and its
neighbors. The kernel coefficients differ between classes.

RAW image
Kernels
R B
# E m Rendered
Weighted summation values
Class

Center pixel color: red Learned

Intensity: high =» e

Contrast: flat

linear

transforms

Figure 1. Overview of the L* processing pipeline. Class specific linear
transforms are precomputed and stored in a table. Each captured sensor
pixel is classified into one of many possible classes, and the appropriate
linear transform is applied to the pixel and its neighborhood to render the
data

This rendering process can be parallelized pixel-wise and
performed relatively quickly. By using hundreds of processing
units simultaneously, the rendering speed can be substantially ac-
celerated (by orders of magnitude) compared to serial CPU com-
puting. Fast rendering is important for applications that utilize un-
conventional CFAs, such as rendering high dynamic range videos
captured in a single shot using novel CFAs.

DPMI-248.2



Results and Discussion
Learning the kernels of an existing camera

We show how to learn and evaluate the kernels, 7;, of any
camera that provides both Raw and rendered image data. Specif-
ically, we solve for a set of L3 kernels that approximate the ren-
dering pipeline implemented by a camera vendor.

In one experiment, we use an image dataset from a Nikon
D200 camera. The set includes 22 corresponding sensor and
JPEG images of a variety of natural images. To perform the anal-
ysis, we first found the proper spatial alignment between the raw
sensor data and the target output. The local linear kernels were
estimated using data from 11 randomly selected images and then
tested on the other half. Figure 2 (left) shows two rendered im-
ages, one produced by the camera image processing pipeline (top)
and the other produced by an L? image processing pipeline (bot-
tom). The L? pipeline used 200 classes and 5 x 5 kernels (P = 25).

We assessed the accuracy of the color and spatial reproduc-
tion by calculating the S-CIELAB visual difference between the
rendered images. To calculate the S-CIELAB errors we assumed
the images are rendered and viewed on an LCD monitor that we
calibrated. The AE,;, error image (right) is typical of all the ones
in our set: the mean S-CIELAB AE, value is 1.59, indicating that
the general visual difference is very small for human observers.
Thus, L3 parameters can be found that approximates most loca-
tions in the image for this Nikon D200 camera.

Display model:
Apple LCD
96 dpi
White (Y,x,y)
(118 cdim? 0.31,0.34)
Standard observer
Viewing distance: 1m

S-CIELAB AE

0

Comparison between camera RGB (upper left) and > RGB

Figure 2.
rendered with local linear filters (lower left). The image at the lower right
shows the S-CIELAB AE,, values for each pixel. The histogram of errors is
shown on the upper right. The mean error is 1.59, the peak error is near 8,
and the standard deviation of the AE,;, values is 0.9. These errors are typical

for the 11 images in the independent test set.

There are some regions of the image where the camera
pipeline and L pipeline differ. In this image the locations with
the largest visual differences are the blue sky and the bush in the
lower left. The approximation becomes more precise as we in-
clude more training images and more classes.

Selecting classes

When there is enough training data, the accuracy of the
L3 kernels can be improved by adding more classes. However,
adding more classes increases the total size of stored kernels.
Also, there is room for innovation in the class definitions, and
different choices can have various impacts.

IS&T International Symposium on Electronic Imaging 2016
Digital Photography and Mobile Imaging XII

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.18.DPMI-248

34

3.2

2.8

26

S-CIELAB AE

2.4

22

5 10 15 20 25 30 35 40 45 50
Number of luminance levels

Figure 3. The selection of classes can have a large impact on the quality of
rendered images. This graph shows images rendered with a small, medium,
and large number of response level classes. In all cases the response lev-
els are separated logarithmically. The flower (zoomed view) changes sub-
stantially as the number of levels increases, and the mean rendering error
declines significantly as the number of classes increases from 4 to 15.

An important decision is to select the classes based on the
sensor response levels. The noise characteristics of the pixel re-
sponses differ significantly at low and high sensor irradiance lev-
els. The kernel solutions differ substantially as the sensor re-
sponse level changes, and the rate of change is fastest at low sen-
sor response levels. When the number of classes based on levels
is small (4-5), the image is rendered incorrectly and there is fre-
quently color banding(Figure 3). These effects gradually disap-
pear as the number of classes based on response levels increases.
In our experience, 15-20 luminance levels per channel is suffi-
cient to reach a high quality rendering. Figure 3 quantifies this
effect, showing that as the number of classes increases beyond
15, for this image the rendering does not significantly improve.
We also find that it is efficient to use a logarithmic spacing of the
luminance levels, so that there are many more levels at the low
response levels than the high response levels.

For the Nikon D200 data, increasing the patch size does not
improve performance. The mean S-CIELAB AE;, value is 1.4611
when using 5 x 5 patches, and the mean AE,, value is 1.4482
using 7 x 7 patches. Note that 7 x 7 almost doubles the computing
complexity so that a small patch (5 x 5) is preferred.

We expect that the specific parameter values may differ for
different optics and sensor combinations.

Learning individual preferences

We train and test on 26 pairs of raw camera images and
RGB images created by our colleague David Cardinal (expert,
http://www.cardinalphoto.com/), with each image rendered using
his personal preferences (camera settings and post-capture render-
ing). The images shown in Figure 4 were captured with a Nikon
D600 camera. The collection of images includes several types of
cameras and the content spans different types of natural scenes,
human portraits, and scenic vistas.

Each of the individual images can be well-approximated by
the L3 method. Figure 4 shows a typical example of the experts
rendered RGB, the rendered RGB image with local linear filters,
and the visual difference for each pixel. The mean S-CIELAB
AE,;, value for this image is 1.458, and peak error is about 7,

DPMI-248.3



3 0
S-CIELAB AE

Figure 4. Left: images rendered from the raw sensor data by an expert
photography. Middle: Rendering using local linear filters that approximate
the rendering by the expert for this image. Right: The S-CIELAB AE,;, value
for each pixel in the image.

and the overall quality is similar to what we achieved for standard
pipeline approximation for Bayer pattern.

As we analyzed the collection of images, from different cam-
eras and different types of scenes, the cross-image validation does
not always accurately capture the rendering. The experts choice
of rendering varies significantly as the scene types change, with
some types of scenes giving rise to more choices for sharpening
and others for a softer focus. Hence, there is no single set of ker-
nels that summarizes the expert. Summarizing the performance
of an expert would require capturing a number of different styles
and then deciding which style would be best for an individual im-
age. In this case, the value of the method is the ability to store
and operate on the linear kernels to obtain different effects. Used
in this way, the L3 method would have to be designed to learn to
approximate an individual users preference in different contexts,
say for outdoor scenes, indoor, portraits, and so forth.

Conclusion

The L3 rendering pipeline is valuable in part because it is
simple and compatible with the limited energy budget on low
power devices. In some of these applications, it may be desirable
to substitute complex image processing algorithms by a simple
algorithm based on data classification and a table of local linear
transformations. The simplicity arises from the reliance on ta-
bles of kernels that are learned in advance and the use of efficient
and local linear transforms. The locality of the method, which is
a form of kernel regression, does not require optimization algo-
rithms or searches which can require extensive computation [14].

Simplicity is valuable, but the method must also be able
to produce high quality renderings. Here, we demonstrate that
the simple L method can closely approximate image processing
pipeline of a high quality Nikon D200 camera with a Bayer CFA
(Figure 2). In this case the L3 kernels that are estimated for spe-
cific camera settings generalize across images. Our analysis of
the cross-validation error shows that the L3 the kernels that are
learned from examples of raw data and rendered images can be
reused, though there are important considerations concerning the
design of the classes and the ability to generalize (Figure 3).

We also find that L3 can reproduce the transformation from
raw sensor data to rendered RGB for individual pictures produced
by a photographic expert (Figure 4). In this case, however, there
is no clear way to generalize between different types of images
and contexts (portraits, outdoor scenes, indoor scenes). We are
exploring whether it is possible to find automatic ways to group
images into categories and then apply the same kernels within
these broader categories.

IS&T International Symposium on Electronic Imaging 2016
Digital Photography and Mobile Imaging XII

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.18.DPMI-248

References

[1] M. A. Martnez, E. M. Valero, J. Hernndez-Andrs, J. Romero, and G.
Langfelder, "Combining transverse field detectors and color filter ar-
rays to improve multispectral imaging systems,” Applied optics, vol.
53, pp. C14-C24, 2014.

[2] I Sato, K. Ooi, K. Saito, Y. Takemura, and T. Shinohara, ”Color im-
age pick-up apparatus,” ed: Google Patents, 1983.

[3] E. B. Gindele and A. C. Gallagher, ”Sparsely sampled image sens-
ing device with color and luminance photosites,” ed: Google Patents,
2002.

[4] G. Luo, A novel color filter array with 75% transparent elements,”
in Electronic Imaging 2007, 2007, pp. 65020T-65020T-8.

[5S] M. Parmar and B. A. Wandell, "Interleaved imaging: an imaging sys-
tem design inspired by rod-cone vision,” in IS&T/SPIE Electronic
Imaging, 2009, pp. 725008-725008-8.

[6] F. Yasuma, T. Mitsunaga, D. Iso, and S. K. Nayar, “Generalized
assorted pixel camera: post capture control of resolution, dynamic
range, and spectrum,” Image Processing, IEEE Transactions on, vol.
19, pp. 2241-2253, 2010.

[7] S. Lansel and B. Wandell, ”Local linear learned image processing
pipeline,” in Imaging Systems and Applications, 2011, p. IMC3.

[8] S. P. Lansel and B. A. Wandell, "Learning of image processing
pipeline for digital imaging devices,” ed: Google Patents, 2014.

[9] Q. Tian, H. Blasinski, S. P. Lansel, H. Jiang, M. Fukunishi, J. E. Far-
rell, et al., "Automatically designing an image processing pipeline
for a five-band camera prototype using the local, linear, learned
(L?) method,” in IS&T/SPIE Electronic Imaging, 2015, pp. 940403-
940403-6.

[10] Q. Tian, S. Lansel, J. E. Farrell, and B. A. Wandell, ” Automating
the design of image processing pipelines for novel color filter arrays:
Local, Linear, Learned (L3 ,”in IS&T/SPIE Electronic Imaging, 2014,
pp- 90230K-90230K-8.

[11] H. Jiang and Q. Tian. (2015). Accelerating a learning-based im-
age processing pipeline for digital cameras. Available: http://on-
demand.gputechconf.com/gtc/2015/video/S5251.html%5D.

[12] D. G. Stork and M. D. Robinson, “Theoretical foundations for joint
digital-optical analysis of electro-optical imaging systems,” Applied
Optics, vol. 47, pp. B64-B75, 2008.

[13] D. Khashabi, S. Nowozin, J. Jancsary, and A. W. Fitzgibbon, "Joint
Demosaicing and Denoising via Learned Nonparametric Random
Fields,” Image Processing, IEEE Transactions on, vol. 23, pp. 4968-
4981, 2014.

[14] F. Heide, M. Steinberger, Y.-T. Tsai, M. Rouf, D. Paj, #261, et
al., "FlexISP: a flexible camera image processing framework,” ACM
Trans. Graph., vol. 33, pp. 1-13, 2014.

[15] F. Heide, W. Heidrich, and G. Wetzstein, “Fast and Flexible Convo-
lutional Sparse Coding,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2015, pp. 5135-5143.

[16] G. H. Golub, M. Heath, and G. Wahba, “Generalized cross-
validation as a method for choosing a good ridge parameter,” Tech-
nometrics, vol. 21, pp. 215-223, 1979.

[17] X. Zhang and B. A. Wandell, A spatial extension of CIELAB for
digital color-image reproduction,” Journal of the Society for Informa-
tion Display, vol. 5, pp. 61-3, 1997.

DPMI-248.4



