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Abstract 

We present a method for transcribing historical newsprint 
images.  To begin, for training and evaluation, we created a 
corpus of human-generated transcripts for almost 38,000 image 
snippets which contains nearly five million words.  This may be 
one of the largest corpora of transcribed historical newsprint ever 
created. Then, we developed our automatic transcription process 
by leveraging the pattern recognition and statistical components of 
the state-of-the-art speech recognition toolkit, Kaldi.  Specifically, 
we modified its language model behavior and we replaced Kaldi’s 
speech-to-features transformation components with our own 
image-to-features process.  Our replacement components include 
the use of word partials; image rotation; line segmentation which 
extends state-of-the-art methods; and customized feature 
generation.  We conduct two evaluations of our technology: (a) an 
evaluation based on random selections of newspaper snippets; and 
(b) a diachronic evaluation of newspaper snippets by time frame.  
We compare our results of these evaluations to those of the 
commercial engines ABBYY Fine Reader Version 12 and 
OmniPage 18, as well as to the freely available system, Tesseract.  
We demonstrate that our process typically yields accuracies which  
are comparable to or exceed the accuracies of these other engines.   

1. Background  
 Historical newspapers are significant sources of genealogical 
information. In recent years, genealogical organizations such as 
Ancestry, FamilySearch, and FindMyPast have gone to great 
lengths to obtain such documents.  Optical Character Recognition 
(OCR) is commonly used as a technique for transcribing 
newspapers and providing some search access to these documents.  
Yet since OCR on historical newsprint yields poorer results than 
on modern documents, most OCR-enabled transcription is only 
used in keyword-search mechanisms.   
 Keyword search can definitely help find name strings of 
interest or words that have some proximity to each other.  Yet, the 
typical genealogical patron usually seeks to identify a specific 
person.  It is not enough for a user to say “I want a document with 
‘John’ and ‘Chapman’ within 10 words of each other” for several 
reasons.  For one, there may be many people by the name of “John 
Chapman,” so refinement is required.  For another, this kind of 
search also returns things like “Robert Chapman, John Smith,..”  
and “Robert Chapman attended St. John’s Cathedral.”  It is also 
likely to miss the ancestor when referred to only as “J. Chapman.” 
 To find a particular ancestor, a patron must use queries that 
accommodate name variations and must couple name-based 
queries with search parameters related to dates and places of the 
ancestor’s vital facts and family relations.  For example, if a person 
wants to find their specific ancestor “John Chapman,” he would 
need to provide specifics about when and where John Chapman 
lived and to whom he was related.  These valuable relationship-
based kinds of searches cannot be achieved readily through the use 
of normal keyword searches.   

 
 Therefore, genealogical companies have sought volunteer or 
for-pay human labor forces that can distill out critical facts from 
the newspapers to then enable these relationship queries.   This 
data-distillation methodology is expensive and time-consuming. If 
it were possible to automatically create word transcriptions with 
reasonable accuracies, it would then become feasible to 
economically extract the desired genealogical facts and 
associations through subsequent natural language processing 
techniques.  Our efforts are motivated by this overarching goal. 
 We here present a system for transcribing historical 
documents which we believe can achieve a high performance bar 
in the near term.    Our system leverages, as its core pattern 
recognizer, the HMM version of the Kaldi speech recognition 
toolkit [1] which has yielded some of the best results in the world 
on various speech recognition tasks [2].  Other researchers have 
tried to extend Kaldi to non-speech domains such as Arabic 
handwritten recognition [3] and Chinese handwritten text 
recognition [4]. Yet to our knowledge, Kaldi has not been applied 
to machine-set printed documents – and especially not to historical 
newsprint.    
 The application of Kaldi to historical newsprint is, by itself, 
novel.  Yet we believe we have a number of other noteworthy 
elements in this effort.  For one, we have created a corpus for 
training Kaldi which contains almost five million words of human 
transcription of historical newspaper image snippets.  We are not 
aware of a larger corpus of this kind of data.  Also, our process of 
transforming images and converting snippet transcriptions into 
data that is consumable by a speech recognition engine requires 
multiple steps.  For one of these steps – line segmentation – we 
have extended recently-published work.  Also, though word 
recognition-based systems often are thwarted by out of vocabulary 
constraints, we have implemented a partial-word process which 
helps to partially overcome some of these deficiencies. 
 In this work, we lastly compare our results to those of three 
different available systems: Tesseract [5], Abbyy Fine Reader 12 
[6], and OmniPage [7].  Our evaluation is quite interesting in that it 
shows performance against two distinct data sets.  The first 
evaluation is a large, but randomly-selected collection of 
newspaper image snippets consisting of about 48K test words.  The 
second is a larger 74K-word diachronic evaluation set which 
contains typically 20 test images from each of 23 decade-like time 
frames that cover over 200 years and that were selected by 
individuals who were not involved in the system-building tasks.  
We show that, despite the fact that our system is still in its infancy 
and there are rough edges still to iron out, it can yield performance 
that is comparable to or which surpasses well-established systems.     

2. Data Corpus Descriptions  
 Before providing details on the newsprint transcription 
process itself, we first describe the corpus on which we are 
building the tools.  Our collection consists of almost 38K image 
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snippets of American newspapers dating back to the 1730s and it 
represents almost five million human-transcribed words (30.5M 
characters including white space).  This collection may be one of 
the largest training sets in existence for historical newspapers.   
 Although we are primarily interested in documents of a 
genealogical nature (which include obituaries, birth/marriage/death 
notices, immigration reports, etc.), our corpus was selected to 
provide broad coverage of newspaper articles.  This is because 
even non-vital-record articles (such as advertisements, crime 
reports, or public events stories) can provide biographical 
information that is valuable to a genealogical patron.  On the flip 
side, reasonable transcription of genealogically non-beneficial 
stories can be provided to tools for filtering out such articles. 
The bulk of our collection contains images from United States 
newspapers including content from the Library of Congress’s 
Chronicling America website [8].  Chronicling America is a 
website which has attempted to preserve history through the 
digitization, automated transcription, and word-based search of 
historical newspapers.   
 The image scans for these newspapers were made by external 
organizations, so our algorithms need to respond to whatever 
quality of image we might receive.   The documents are often 
black and white TIFF images, but some of the images have used 
compression (jpg or jpeg2000) and a large number of the images 
are gray-scaled.  The image resolution is believed to usually be 300 
dpi, but given the multiplicity of sources from which this data 
came, the resolution may vary. Additionally, the language of most 
historical newspapers in the United States has been English, but 
other languages such as Spanish, Portuguese, French, Italian, and 
German (including German Gothic) also appear.  Our complete 
collection of data contains representations from all of these 
languages.  However, to fairly compare transcription engines, we 
limit the evaluation sets to consist of only English documents. 
 As mentioned, the collection is a set of newspaper snippets.  
These snippets are not whole pages of newspapers, but rather, they 
are regions of newspaper pages which ostensibly have a single 
flow of text.  More specifically, in order to avoid confusion during 
the human and computational transcription processes, we created a 
rudimentary image zoning capability which was designed to 
identify regions of the newspaper page where the text of a snippet 
can be read in only one way (for example, left-to-right and top-to-
bottom).  Exceptions to this were tables, and we asked to have 
these transcribed row-by-row.  Since our automatic image zoner 
was only rudimentary, it often proposed snippets that did not meet 
our desired criteria; so humans selected auto-zoned snippets that 
did meet the criteria.   
 The selected snippets could be readily read by humans.  Yet 
due to the automatic nature of their creation, many of the snippets 
contained truncated words, sentences, and/or paragraphs.  
Therefore, the human transcription process needed to account for 
this through the use of word fragments and the incorporation of a 
special symbol  (⌨) to represent illegible information.   Figure 1 
presents an example of how these snippets might appear.  The 
image is legible but it is dark, has streaking, vertical bars on the 
left and right sides, and has weak inking in some spots.  These 
kinds of phenomena – and others that are definitely more severe – 
are common in our collection.   So we asked transcribers to just 
transcribe the words they see and disregard most blotches, salt-
and-pepper backgrounds, stray marks, and other non-intentional 
image features.  However, they could use symbols such as █ and ▓ 
to represent regions of blackness, and they were asked to use the 
vertical bar symbol (┃) to indicate the presence of vertical lines. 

 Figure 1. Snippet example (see [9])  

 
 
 In addition to marking image phenomena, textual font issues 
could be marked as well.  Italicized words, small capitals, bold, 
script, Fraktur, and other kinds of font issues are marked by 
placing each such word or subword in an html wrapper.  More 
specifically, to render the phrase “this text is italics,” the 
transcribers would write “<i>this text is italics</i>.”  Interestingly, 
to meet demands such as texting, Unicode recently released the 
Mathematical Alphanumeric Symbols table (U+{1D400} through 
U+{1D7FF}) which represents standard text characters in bold, 
italics, script, and so forth.  We therefore map these HTML-
wrapped text regions into their corresponding Unicode equivalents. 
 From the transcripts, we randomly selected a development set 
and one of our evaluation sets.  The two sets were selected to have 
approximately 50000 words in each.  After noting that some of the 
randomly-selected evaluation files were non-English or multi-
flow, these were culled out leaving an evaluation set with 344 
documents having 47.5K words. The test set selected by this 
strategy will be referred to hereafter as the “Randomly-Selected 
Test Set.”  This set is probably most indicative of a system’s actual 
performance in practice since it should roughly represent the actual 
distribution of newspapers in a broad historical inventory. 
 We are also interested in understanding how systems perform 
with newspapers across time, despite the frequency of occurrence.  
Thus, we created a second set of evaluation data to study this 
temporal aspect.  This test set was selected by individuals who 
were not associated with the engineering aspects of the project.  
They mined newspaper pages that spread across over two-hundred 
years and they specifically selected multiple image snippets from 
each of 23 contiguous decade-like time bands. More specifically, 
they identified 10 snippets from pre-1800s, 10 snippets from 1800-
1809, and then 20 for every subsequent decade until the 2010s. 
This set contains 74.4K words (where the number of words per 
time frame is indicated later in Table 3). This evaluation set we 
refer to as the “Diachronic Evaluation Set.” 
 Our training data consists of the remaining 35K documents.  
We only use as image training a subset of the data upon which we 
have verified our preprocessing stages are functioning 
appropriately.  Likewise, we use any of the images’ transcripts for 
language training as long as the resultant model fits into memory.  
At the time of writing, we are using about 8K images and 23K 
transcripts for training.  As our systems continue to mature, we 
expect to leverage all of the available training data. 
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3. Overview and Rationale  
 Our process for doing the actual newsprint transcription is 
accomplished by repurposing an existing speech-to-text toolkit, 
Kaldi [1].   Though this may seem unusual, automation to process 
speech and automation to process images have a number of 
similarities. To ensure that all readers have a common 
understanding of how speech-to-text recognizers work and why the 
use of such could be beneficial for the recognition of newsprint, we 
here provide an overview.    

3.1 Speech Recognition Overview and KALDI 
 
Figure 2.  Speech-to-Text Training/Recognition Flow 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 The basic workings of a speech-to-text trainer (blue) and 
recognizer (green) are depicted in Figure 2.  The externally- 
provided inputs to a speech recognition trainer (shown in brown) 
are (1) a collection of pre-diarized audio (i.e., audio where the 
regions of human speech have already been identified); (2) a 
collection of texts where each utterance of the diarized speech has 
a corresponding human-provided transcript; (3) a list of “phones” 
or units that are the individual sounds that form the basis of the 
words in the language; and (4) a dictionary which maps words in 
the language to their constituent phonetic representations.   
 During training, the textual input data is typically converted 
into statistical n-gram word counts and probabilities. In terms of 
acoustic processing, the training and recognition phases both begin 
by transforming audio files into numerical feature vectors upon 
which they each do subsequent statistical computations.   In 
training, the information from these feature vectors passes through 
multiple layers of analysis to yield a model that represents the 
acoustic portions of the data.  During recognition, comparisons are 
made to these feature vectors, in concert with the linguistic 
probabilities, to hypothesize a putative transcript for newly-
presented audio files. 
 In Figure 2, the thick boxes are key components that are 
included in the speech recognition toolkit, Kaldi.  The toolkit not 
only provides core system-building functionality, but it includes 
start-to-finish recipes for how to build speech recognizers for key 
types of audio (broadcast news, telephony, etc.). The builders of 
Kaldi have tried to incorporate the current best practices for each 
stage of statistical analysis.  For this key reason, we, like others, 

have sought to use Kaldi for applications outside of speech 
recognition. We leverage Kaldi’s “CallHome” recipe as our 
system’s flow. 

3.2. Why use Kaldi for Printed Images? 
 We previously indicated that Kaldi, to the best of our 
knowledge, has not been applied to the recognition of printed 
images, and it is certain to be the case that the HMM version of 
Kaldi has not been applied to historical newsprint.  This noticeable 
omission may largely be due to the assumption that the recognition 
of printed images is straightforward and that character-by-
character OCR can yield high performance for well-printed 
documents. Moreover, character-based recognition has the 
advantage that as long as the images upon which it is to run stay 
within a specified language, there will be no out-of-vocabulary 
concerns (i.e., there will be no words that the recognizer is not able 
to produce).   
 Unfortunately, historical newsprint often fails to meet these 
basic constraints.  Scanned historical newspapers are not 
guaranteed to be clear, well-printed, well-aligned on the page, or 
well-scanned.  Figure 1 from earlier, for example, contains the 
words “some time” which are easily read as words when viewed in 
context.  Yet when processed as individual characters, these 
regions could easily be mis-transcribed as “somo timo.”  For many 
of the pre-1900 image snippets in our set, there are regions of text 
which almost cannot be transcribed without some understanding of 
word usage.  This suggests that recognition at a word level, 
particularly through a robust system which handles noise and huge 
variations of symbol sets, could be advantageous.  (It should be 
mentioned, though, that nothing precludes us from using Kaldi to 
do character-by-character recognition.) 
 There is another value to us in the use of Kaldi. Our eventual 
goal (beyond the focus of this paper) is to build a system for 
transcription of historical images which is agnostic to whether or 
not the image was originally printed, handwritten, or a mix of both. 
For genealogical purposes, this has huge benefit in that a 
recognizer could conceivably run and distill out all the relevant 
textual information independent of the kind of text in the image on 
which it is being run. Since we are using the elements of the 
Mathematical Alphanumeric Symbols (MAS), it becomes almost 
seamless to transcribe mixed initiative documents because one can 
use regular alphabets for printed documents and use the script 
characters of the table to transcribe handwritten  words. 
 A last and perhaps best reason for the use of KALDI is that it 
is a well-created toolkit.  Its developers have created recipes which 
allow one to use various recipes for processing from raw speech all 
the way to recognition.  The toolkit also readily leverages whatever 
parallel process the user might be able to access.  The toolkit 
likewise benefits from continued development – such as the recent 
incorporation of neural network functionality which augments its 
original hidden Markov modeling.  Kaldi performs forced 
alignment as a normal process, so there is no need to give the 
system any more than transcribed lines of text and corresponding 
image fragments and Kaldi will determine how the individual 
symbols span across those fragments. 
 To transform Kaldi into a newsprint recognizer, we only need 
to swap out a few components identified in Figure 2 with our own 
customizations while at the same time adding in the core elements 
that are required of any system.  In particular, we need to supply 
images in lieu of audio along with their transcripts; we need to use 
printed phenomena like punctuation, letters, numbers, etc. as 
substitutes for phonemes; and we need to supply our own signal 
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featurization and text preprocessing.  The “heavy lifting” which is 
in the pattern recognition and statistical analysis can then be 
offloaded to Kaldi.  After the models are built, one need only 
featurize a new incoming image and feed these features and the 
models into Kaldi and the output will be newsprint transcription. 

4. Transforming Kaldi for Newsprint  
 Each component of the transformation process warrants some 
detail – particularly given that some of these steps provide 
novelties over the existing state-of-the art.  We already described 
the data transcription process, so we present here the details of the 
“phoneme” set, multi-step featurization process, and vocabulary 
development.  At all points in our transformation processes, we 
have elected to use general-purpose techniques that are designed to 
work on the image regardless of whether the image is printed or 
handwritten. 

4.1 Phonemes to Print Phenomena 
 In speech recognition, the basic unit would be a “phone” or a 
“phoneme.”  For printed documents, our phonemes can be any 
symbol we wish to use.  Our “phoneme set” contains all the 
alphanumeric characters as regular characters, usual punctuation 
marks, and the various noise symbols indicated previously.  We 
also include accented characters to cover the language space of the 
historical US newspapers; long s (or ſ) and its italic equivalent (ʃ) 
which are observed frequently in historic newspapers; and a 
number of characters representing various oft-used fractions.  Also, 
as mentioned before, our system incorporates italicized alphabetic 
characters, bold characters, Fraktur (German gothic) alphabetic 
characters, and small capitals; and it can optionally incorporate 
script and other MAS character sets.    
 In addition to the characters themselves, we have allowed 
other characters which are augmented with special symbols 
representing left or right bindings.  We use these to reduce the size 
of the recognizer’s dictionary while still being able to properly 
compose words after recognition as will become clearer later on 
(see Section 4.4.2).  For the moment we will just say that the 
phoneme “2↠” means the right-bound numeral two, “↞2” is a 
left-bound numeral two, and “↞2↠” means a two that is bound 
on both the left and right.  The binding means that the symbol 
cannot occur in isolation so it must consume the space 
character in the direction in which it is pointing.  So if the 
recognizer eventually reports symbols together such as “2↠ 
↞7,” the final result will be interpreted as “27.”    
 Finally, as a normal part of Kaldi, phone sets are augmented 
to account for word position.  More specifically, a phone X can be 
augmented with an attachment indicating whether it occurred at 
word beginning (_B), ending (_E), in the middle (_I), or as an 
independent character (_S).  Our system allows for all of these 
variations (except for low-frequency phenomena, which are only 
allowed to be generated in the “_S” mode). 

4.2 Substitution for Diarization 
 Speech that feeds into a speech recognizer must be diarized, 
either through a human or an automatic process.  Diarization has 
the role of indicating the start and end times where a speech 
utterance actually occurs in the audio signal.  Since images are 
two-dimensional, the image analog of diarization would be to 
indicate the regions of the image where individual rows in the text 
exists, as well as any rotation, skew, and odd warping information 
about those rows.  Since we are processing snippets of newspapers, 

which are scanned flat, perspective distortion issues are not a 
major concern.  We expect, likewise, that localized warping issues 
will have to be accounted for by the “acoustic” models (in 
particular, the Gaussian mixture models and hidden Markov 
models that Kaldi will produce).  This means we must provide 
capability primarily for rotation and line segmentation. 

4.2.1. Rotation 
 We use common techniques to tackle image rotation.  In 
general, rotation of image snippets, if any, is only modest due to 
the likelihood that the newspaper pages at digitization time were 
carefully laid out to be oriented properly.  That said, there are 
single-flow subimages in newspapers which flow differently than 
the page as a whole.  For example, words can be rotated 90 degrees 
and read from top-to-bottom, left-to-right.  Hence, in our rotation 
analysis, we constrain rotation to be within 2.5 degrees of the main 
cardinal directions.  In practice, this is adequate although there are 
a number of snippets from amidst the entire collection which 
actually read at a 45 degree angle; so we will opt to mistranscribe 
those rather than risking the chance of over-rotating other images. 
 To compute the angle of rotation, we compute the Hough 
transform of the image [10] with half-degree increments from 
which we identify the N largest transform values (where we choose 
N=20).  We compute the weighted average of the angles associated 
with those top N values and use those values as the weights.  Then 
the angle from amongst the N maxima which is closest to the 
weighted average is selected as the rotation angle. 

4.2.2. Line Segmentation: Baselines 
 For line segmentation, we extend the work of Arvanitopoulos 
and Süsstrunk [11] which they presented for seam carving of 
historical gray scale images.  Since their technique was designed to 
work with handwritten documents, this seems appropriately 
general for a system designed to run on newsprint and, eventually, 
on handwriting or mixed initiative documents. 
 The first goal of their algorithm is to identify the image’s 
medial seams. One could think of these as drawing a connected arc 
through each line of text which passes through the centers of mass 
of the rows as closely as possible.  Another way of thinking of 
them is as finding the peaks of “activity” or “energy” mountain 
ranges where energy is the amount of blackness in the image. Once 
medial seams are identified, the Arvanitopoulos-Süsstrunk (or “A-
V”) system uses a dynamic program to walk backward between 
paired “activity mountain ranges” trying to stay in the areas of 
lowest blackness (an “activity valley”).  These activity valleys they 
call separating seams. 
 Their medial-seam finding process treats an image as a set of 
V vertical strips.  They compute a Sobel filter on the image to 
create character halos.  Then they compute each vertical strip’s 
profile which is the amount of blackness in each row of the strip.  
Each strip’s profile is smoothed, and the maxima are then 
identified.  Medial seams are computed piecewise by connecting 
the row possessing each maximum, m, in the particular strip to the 
maximum in the subsequent strips whose row value is closest to m.   
 After the medial seams are identified, Arvanitopoulos and 
Süsstrunk compute the separating seam pixel by pixel by cutting a 
path between two medial seams.  This process uses a dynamic 
program to attempt to identify a path with least energy-transition 
costs.  We refer the interested reader to their paper for the specific 
details beyond what has been described here.   Figure 3, though, 
shows their matlab code optimized for and applied directly to the  
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Figure 3.  A-V System code applied to Figure 1’s image. 

 

image snippet from Figure 1.   As can be seen,  their algorithm –
though designed for handwritten documents – clearly has potential 
application to newsprint as well.   Yet there are a number of 
limitations to their algorithm which we need to overcome for use 
with newsprint documents. For example, note that in Figure 3, the 
first and last lines did not get separated – a common phenomenon.   
In fact, their approach has challenges in the following situations 
which potentially yield the errors listed in parentheses below: 
a) textual lines have limited content at the beginning, middle or 

end of the line (no seam); 
b) lines use multiple fonts (extra medial seams); 
c) document uses both large and small fonts (extra medial 

seams) 
d) the image only contains single big characters (myriad extra 

seams);  
e) the image is framed in some manner (extra medial seams);  
f) there are lots of stray marks on the page (extra medial seams 

and/or separating seam process crosses medial bounds);  
g) though not an error, their separating seams are highly jagged 

which adversely affects featurization which will be discussed 
in section 4.3; and 

h) blurry images, bleed through, and dark images (extra or not 
enough seams). 

4.2.3. Line Segmentation: Extensions 
 We have not remedied all of the various situations that occur 
in their algorithm, but our techniques have removed significant 
amounts of error and some jaggedness.  We attempt here to 
identify our modifications: 
 Linear projections:  Perhaps one of the most commonplace 
errors of the A-V system is failure to cut seams for textual 
components that do not span much of the page (see “(a)” above).  
This can occur at the end of a paragraph, some isolated words in a 
centered document, or words such as page or author information 
on the right side of the page.  In these situations, the vertical strips 
that must be profiled in order to find medial seams are largely 
empty.  To remedy this, we perform interpolated linear projections 
from the regions that do have content into the regions that do not.  
This allows for medial seams which span the entire image.   
 Connected components: We noted that connected components 
in the image can be used interchangeably as a surrogate for energy 
profiles.  Yet these can also strengthen segmentation.  When two 

or more medial seams pass frequently through the same sets of 
connected components, we know that only one seam is needed.  
We use the top-most of such medial seams to identify the 
separating seam that should be above the medial; and we use the 
bottom-most one to help identify the separating seam below the 
line of text.  This process helps with cases (b) through (e). 
 Image Bleaching: although the A-V approach was designed to 
work without binarization, bleed through and other darkness 
artifacts do have impact on the algorithm.  We first apply 
conservative histogram normalization to the images to bleach the 
image [12].  This process helps with case (h), but it also helps 
establish better connected components. 
 Energy thresholding: some spurious medial seams are 
produced in regions of low activity.  This can be alleviated to some 
degree by setting a minimum threshold for the specification of a 
profile maximum.  This can also help with (b)-(d) as well as with 
(f) and, to some degree with (e).  Additionally, we compute the 
statistical spread of data along each medial seam and throw out 
those that have high variance but low distributional activity. 
  Balancing between seams: situation (g), where separating 
seams are jagged as in Figure 3, is not necessarily an error.  Yet for 
the purposes of our featurization, we would like somewhat 
smoother curves.  To accommodate this, we add an element into 
the energy cost issue of the separating seam dynamic program.  To 
be concrete, suppose we are trying to draw a separating seam from 
the right side of the page to the left and suppose we are at pixel 
(x,y).  The A-V algorithm asks,  “Do we expend less energy to 
move from (x,y) to (x-1,y-1), to (x-1,y), or to (x-1,y+1).”  In many 
cases, the cost would be equivalent regardless of which place we 
would step – and this yields the signature jaggedness.  We add a 
cost to each which increases as those points are further from the 
midpoint of the medial seams on either side of the separating line 
we are trying to draw.   
 These various enhancements are shown in Figure 4. Figure 4 
is our processed version of the image from Figure 1.  As can be 
seen in Figure 4, the enhancements yield much smoother lines 
which tend to be fairly well-centered between the medial seams.  
We also see the outcome of the bleaching (which was not required 
for the segmentation, but which helps featurization).  Though this 
image was selected randomly and happened to have interesting line 
segmentation properties, the positive outcomes shown here do 
occur as general improvements throughout our data sets.   
 
Figure 4.   Our line segmentation applied to Figure 1. 
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 Even so, there still remain line segmentation issues that we 
have not fully resolved. The key offenders include situations of (a) 
multiple fonts coupled with centered verbiage intermixed with 
horizontal lines; (b) text which is very blurry; and (c) text which is 
very close together.  These kinds of phenomena do occur in our 
test set and result in lesser accuracies than if the line segmentation 
were done perfectly. 

4.3 Image Featurization 
 In order for Kaldi to function, we need to convert these 
images into vectors of numerical values – feature vectors.  To do 
this, we make use of both the medial seams (MS[i]) and the 
separating seams (SS[j]) provided in the line segmentation step.  
Our feature vectors contain 41 dimensions whose contents we will 
here describe.   
 For simplicity, we will first say that SS[0] is the top of the 
image and SS[N] is the bottom of the image.  Also, we declare 
B[k] to be the kth band (for k=1,...,N) which is an image swath that 
is bounded below by SS[k-1] and below by SS[k].  If the image 
width is 2W, then for B[k] we will be creating W feature vectors.  
Figure 5 shows the B[1] image swath of Figure 4B. 
 
Figure 5.   The B[1] swath from Figure 4B. 

 
 
 We seek to trim the band so that its edges are smoother and 
upper and lower white space has been removed.  Specifically, for 
each band, we compute its total density, or the amount of 
blackness in the band.  We also compute the density along the 
medial seam that passes through the band (D[0]), the density of 
elements one pixel above (D[-1]) and below the seam (D[1]), two 
pixels above (D[-2]) and below the seam (D[2]), and so on until we 
have reached the top and bottom of the band.  Suppose D[u] is the 
density at the uppermost pixel distance from the medial seam and 
D[l] is the density at the lowermost pixel distance.   We select the 
lesser of D[u] and D[l] and throw away all points that correspond 
to that particular distance from the medial seam; we reset the 
uppermost and lowermost points accordingly; and we repeat.  This 
pruning process continues until the density of the remaining band 
is 99.9% of the original band.  This is depicted in Figure 6, where 
the lines above and below the characters indicating putative 
trimming boundaries.    
 
Figure 6.   The swath from Figure 5 with trimming regions. 

 
 We compute the features from this remaining band.  We 
create a sliding, rectangle-like window that we pass over the band 
which has width of three pixels and a height that is determined by 
the band’s upper and lower bounds at the given columns.  We step 
the window forward in two-pixel increments. 

 At each stop of the sliding window, we partition the window 
vertically into 12 equally-spaced cells, and compute the maximum 
density across all cells.  Then, as some of the features, we compute 
the per-cell ratio of density to maximum density, the derivative of 
this quantity, and the double derivative as well.  The practice of 
creating feature vectors by using base values coupled with first and 
second derivatives comes directly from speech recognition 
techniques.  The above information, then, constitutes 36 of the 41 
dimensions of our feature vectors. 
 We derive the other five features using descriptions in the 
literature.  Chherawala, et al [13] identify a number of different 
kinds of features (citing the work of others) that one might use for 
Arabic handwriting recognition using neural networks and they 
report the performance of these by classes (distributional, 
concavity, etc.).  We identified five features from among those 
which we felt could be applied to a hidden Markov model based 
system.  One of these is the distance between the uppermost and 
lowermost black pixels in each window.  The next two are the 
points at which the uppermost and lowermost black pixels occur.  
The last two should be beam height invariant: (1) the rate of 
alternation of black to white pixels within the window, and (2) the 
average density of the window.  The composite of these features 
is shown in Figure 7. 
 
Figure 7.   Pictographic representation of feature vectors 

 
 
 There are two additional components that we have noted 
which have been beneficial to the featurization process.  One of 
these is the use of projection techniques.  We use principal 
component analysis on the main 36 features to project them into a 
20-dimensional subspace.  Though this provides only very small 
gains in performance, it does result in much smaller feature vectors 
and storage costs.   
 The second of these has proven to be extremely helpful: 
automatic resizing at evaluation time.  The optimal row width is 
about 36 pixels (+/-5 pixels) from top to bottom.  When the width 
is narrow than that, recognition tends to fail.  Consequently, we 
have implemented an automatic resizing of the image which 
multiplies the original image by whatever magnification is required 
to get the image to have 36-pixel widths.  In addition to providing 
more information for the feature vectors to leverage, this rescaling 
makes the line segmentation much smoother and more accurate. 

4.4 Special Handling of Linguistic Data 
 As a typical component in speech recognition, one needs to 
create a lexicon with the words of the language and their one or 
more corresponding pronunciations.  For example, in a speech 
recognizer, one might find the dictionary entry for “hat” as:           
                                    hat       h-æ-t  . 
For images, the dictionaries can be significantly easier to create 
because there is usually a one-to-one correspondence between the 
word and it pronunciation.  That is, for images, we could use:  
                                    hat      h-a-t   . 
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4.4.1 Space Handling 
 In addition to handling words of the language, we also need to 
account for spacing.  A simple way to compensate for spacing 
might be to put spaces directly into the transcript, but this has 
negative impact on the language model.  That is, the probability of 
“hat” will be much higher if we know the previous words had been 
“cat in the” than it would have if we had merely seen the three 
preceding symbols of “<space> the <space>”.  This suggests that 
we want to incorporate the spaces directly into the word 
pronunciations. 
 Kaldi supports the idea of probabilistic dictionary entries.  So 
we assume that each word will typically be followed with a 
“<space>” phoneme if it occurs in a chain of words.  We then 
compute the probability that a given word like “hat” appears in this 
chain in the middle of a line (hat <space>), how often it will start 
the line (<space> hat <space>), and the frequencies of non-spaced 
situations.  Our lexicon will then have four representations of most 
words, which increases the complexity of the model but allows 
spacing to be handled in a fairly straightforward way.  For “hat,” 
our word lexicon reports: 
   hat 0.771225 h a t  <space> 
   hat 0.146796  h a t 
   hat 0.069837 <space> h a t <space> 
   hat 0.012141 <space> hat 
Our core lexicon, which is based only on transcripts for which we 
are also using the images, consists of 88K unique terms.  Yet the 
probabilistic spacing elements increase the number of variations to 
264K.   
 It should be noted, though, that we can opt to transform our 
transcripts into characters only and use a character-based system in 
addition to a word-based system.  A character-based system 
alleviates concerns about space, since space can be represented 
directly as a symbol to recognize.  On the other hand, this 
significantly weakens the language model since much of the 
context is lost when one only considers n-grams of characters 
instead of words.   

4.4.2. Bound Word Fragments 
 The 88K unique terms in the word lexicon seems like a 
significant number.  For speech recognition of telephony or other 
controlled-vocabulary scenarios, this may be adequate.  Yet given 
that we are trying to apply our algorithm to historical newsprint 
across centuries, 88K is a fairly small number.  A word-based 
recognizer with this size of lexicon is likely to end up with a 
significant out-of-vocabulary (OOV) problem.  This is especially 
true as it relates to personal names – which are the kind of 
information we are most interesting it identifying. 
 One way to increase the vocabulary is to leverage a look-aside 
corpus.  In our case, we are fortunate to have tens of thousands of 
transcripts which have not been included because we were not yet 
confident that our preprocessing of the corresponding images was 
optimal.  We could incorporate all the terms from these auxiliary 
transcripts.  Though larger, this might still be too small of a set.   
 If we think about the remaining collection of text, we will 
note that many of the words occur exactly once – and, frankly, they 
may never occur again.  So it does not make sense to add all of 
these words to the lexicon.  Yet we need to be able to hypothesize 
such words when they arise.  So we add all words that occur twice 
or more, and then we handle the singletons in a special way.   
 We compute the prefixes and suffixes of the singleton set.  
For each singleton, we add its longest non-singleton prefix to the 
dictionary augmented with the right-bounding marker, ↠, which 

was referenced earlier.  We then replace the prefix in the word 
with a left-bounding marker, ↞.  We can continue to decompose 
the word by pulling off suffixes as well as ↞-starting prefixes and 
↠-ending suffixes.  This process makes it so that subcomponents 
of singletons are added in ways that we might hope can later stitch 
together sub-pieces to form a word we had never before seen. 
 For example, since our collection is a historical one, 
“Barack,” the given name of the current president of the United 
States, does not occur in the lexicon.  However, “Bar↠” does 
appear in the word-partial lexicon as does “↞ack”  : 
   Bar↠ 0.035258 <space> B a r↠ 
   Bar↠ 0.964742 B a r↠ 
   ↞ack 0.910181 ↞a c k <space> 
   ↞ack 0.089819 ↞a c k 
With these word partials, if the system hypothesizes the term 
“Bar↠” as opposed to simply “Bar,”  it is saying that there should 
be no space after the ↠.  So “Bar↠ X” will be rendered as BarX; 
or, in the case above, Bar↠ ↞ack will be converted into “Barack.”  
Our final extended dictionary contains 467.1K terms of which 
168.8K are unique.  Of these, 140.8K are bounded prefixes, 28.8K 
are bounded suffixes, and 12.9K are bounded infixes. 

5. Experimental Results  
 The main question now is: does this mechanism for historical 
newsprint recognition actually provide a beneficial functionality?  
In particular, as sub-questions, can recognition be performed this 
way?  How does the recognizer compare to commercial and other 
open-sourced OCR systems when applied to the same historical 
data sets?   

5.1 Existing Available Systems 
 If this system were the only one of its kind, then even modest 
performance would be useful.  Yet since OCR functionality has 
existed for decades, it only makes sense to compare its 
performance to that of other existing systems.  There are a number 
of available commercial systems, but Abbyy Fine Reader [6] and 
Nuance’s OmniPage [7] are strong players in the commercial 
arena.  In the open source community, Tesseract [5] is a 
frequently-used system which is trainable but also comes equipped 
with its own well-worked models of English.  We have acquired 
copies of each of these three systems and we use them to compare 
their performance to our system.   In particular, we use Abbyy 12, 
Build 12.0.101.467; OmniPage 18.0; and Tesseract 3.02.  Of 
course, it should be made clear that these systems were designed 
for general OCR, so they could potentially be at a disadvantage in 
a head-to-head evaluation restricted specifically to historical 
newsprint.  On the other hand, this increases the value of building a 
customized system for historical documents such as ours. 
 There are other available systems, but we do not use them in 
this evaluation.  Ocular [14], for example, is a newly-released 
system which was designed to address issues of historical 
newspapers and shows promise for our domain.  Its creators 
applied it to two small historical document collections – one 
collection having 10 images and the other having 20 images.  We 
have downloaded a copy of this system’s source code, but time 
constraints have not yet afforded us the opportunity to compile and 
test its performance.   
 Additionally, Schwartz, et al [15] presented the idea of 
converting a speech-to-text engine into OCR as far back as 1996 
when they used the BBN BYBLOS speech recognition to do OCR 
of Chinese documents.  They had a number of system iterations 
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and were successful in porting their system to Arabic, English, 
Pashto, Hindi, and Japanese [16].  In their cases, if our 
understanding is correct, they ported their speech recognition 
system to do character-based recognition specifically.  We do not 
have access to their system, so we cannot test the performance of 
their English system on our historical texts. 

5.2. Evaluation Setup 
 To score word recognition, we need define what a “word” is.  
For some researchers, a word might be whatever is between white 
space.  Yet we are interested in feeding the output of this system 
into a natural language processing (NLP) system, so we would like 
to make sure the system identifies NLP-style tokens.  In NLP, most 
punctuation will be treated as tokens in its own right (with some 
exceptions being common abbreviations like Mr., Mrs., multiple 
dashes, etc.), so we follow suit here.  We therefore transform a 
sequence like “John Smith, 30, died” into the token sequence ‘John 
Smith ↞,  30 ↞, died’  and we do this both for the evaluation data 
and for all system outputs.   
 In addition, we convert long punctuation repeats into a “three-
or-more repeats” token.  For instance, we transform ______..._ into 
___+ and we do the same for sequence of periods, dashes, or equal 
signs.  If vertical bars (representing black page borders) are in the 
transcript, we strip these out for evaluation.  If the transcript uses 
italics, etc., we convert these symbols into their base letters in 
order to fairly evaluate the various systems.  Lastly, we treat long S 
symbols (common in 18th century newspapers) as just “s.” 
 To score systems, rather than doing so line by line (which 
would be our preference to see per-line performance) we instead 
concatenate all lines together into one long line per document.  The 
rationale for this is that systems may have produced fewer or more 
lines of text than the original transcribers.  Although it is possible 
to modify the system results so they perfectly align with the 
original transcripts, that process is expensive.  The concatenative 
approach is an alternative for removing misalignment concerns. 
 There are also some optimizations to scoring which we make 
to all automatic systems with the goal of improving their individual 
accuracy numbers.  For example, we allow the system to convert 
regions where a system proposes individual or paired characters 
(such as “W OR D S”) into a concatenated token “WORDS.”  
Also, the systems sometimes produce symbols as output which do 
not exist or are rare in the test set, so we eliminate these when they 
are generated.  The result of these changes is small (usually less 
than 1/2 %), but we wanted to do our best to make sure that 
systems are evaluated as fairly as possible. 

5.3. Evaluation #1: Random Selection Based 
 In Section 2, we described the data sets upon which we could 
evaluate the various algorithms.  Recall that the first was a set that 
was selected randomly from the non-training images of our corpus.  
It consists of 344 images and 47.5K words, so it is a substantial set 
and demonstrates the power of these systems. The second test set 
was described as a diachronic test covering over 200 years.  In this 
section, we will first talk about performance on the random set. 
 In Table 1 below, we report the system performances as 
applied to the Random Evaluation set.   In the table, we first 
indicate each of the external systems along with their word 
accuracies (100% minus word error rate) and their character 
accuracies (100% minus character error rate).  Lastly in the table, 
we show our system’s performance, which we refer to as Athilos 
(for “Automatic Transcription of Historical Images Leveraging 
Open-sourced Speech-to-text.”). 

Table 1: System performances on Random Evaluation set 
System Word Accuracy Character Accuracy 
Abbyy 12 75.14% 90.50% 
OmniPage 18 73.53% 89.76% 
Tesseract 3.02 24.04% 73.33% 
Athilos (our system) 83.04% 92.08% 

 
 The Abbyy system has been developed since at least the 
1990s (see [17]), and OmniPage had its foundations in the late 
1980s (see [18]), so these systems have had many years for 
improvement. Yet the primary focus for these commercial systems 
has likely been to provide exceptional accuracy for the modern 
business place.  Table 1 suggests, though, that they both provide 
admirable quality even for non-modern documents.  Tesseract, 
which is a common staple in the research community, did not 
perform as well as the other systems; but it is a trainable system 
which likely would achieve higher accuracy if it were trained as 
opposed to being run out-of-the-box. Our system has word and 
character accuracies that exceed the performance of the other 
systems on this particular historical newsprint test set, which 
suggests that it might be able to play a beneficial role in automatic 
transcription when it comes to more historical texts.   

5.4. Evaluation #2: Diachronic Evaluation Set 
 We can also score the various systems diachronically to see 
how they might perform on the US newspapers across time.  We 
see the results of the diachronic evaluation in Table 2.  
 
Table 2: System performances on Diachronic Evaluation Set 

System Word Accuracy Character Accuracy 
Abbyy 12 71.09% 88.94% 
OmniPage 18 66.68% 83.59% 
Tesseract 3.02 18.09% 66.41% 

 Athilos (our system) 76.24% 87.54% 
 
 As mentioned, the image snippets for this diachronic set were 
chosen by individuals who were not associated with the 
engineering efforts.  Consequently, some of the articles could be 
particularly challenging or the image resolution or quality may be 
different from what we have seen in the bulk collection.  The 4-7% 
absolute drop in word accuracy for each system when applied to 
this set is suggestive of some limited quality differences.  Still, 
Athilos provides the optimal word accuracy under this condition.  
Character accuracies also degrade significantly for all systems.  In 
this case, though, Abbyy 12 degrades the least – resulting in it 
becoming the best performer for character accuracy. 
 We can explore this set deeper to get an improved sense of 
what is happening for each system on this collection.  Recall that 
the diachronic test set contains 20 images in all but the first two 
time frames (on the other two time frames each have 10 snippets), 
so there may be scarcity issues resulting in a system perform 
surprisingly well in one decades and especially poor in another.  
Yet this analysis still reveals rough trends in performance across 
time.  Table 3 illustrates each time frame, the number of words for 
each time frame, and the word-level accuracies of each system per 
time band.   
 There are a number of observations that we can make.  We 
note that our system, Athilos, performs comparably if not better 
than the other systems from the earliest time bands until about the 
third quarter of the 20th century.  Yet in the last quarter of the 20th 
century and beyond, Abbyy 12 and Omni 18 begin to really shine. 
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Table 3: System Word Accuracies by Diachronic Time Frame 

 # 
words 

Abbyy 
12 

Omni 
Page 18 

Tesseract 
3.02 

Athilos 
(ours) 

1700-99 858 57.99 56.11 -3.25 66.67 
1800-09 1550 49.20 46.51 -10.94 64.38 
1810-19 3271 55.89 49.06 -29.18 67.63 
1820-29 5468 76.64 74.31 2.78 78.27 
1830-39 3830 55.31 55.34 9.00 76.07 
1840-49 4544 68.13 60.28 12.84 76.07 
1850-59 3948 57.66 59.57 -3.50 72.56 
1860-69 3437 64.38 60.23 0.90 75.34 
1870-79 4910 77.27 78.98 30.63 77.03 
1880-89 1739 58.42 61.89 6.61 74.53 
1890-99 4086 64.11 47.07 -11.81 77.99 
1900-09 2705 63.89 52.86 -0.52 77.32 
1910-19 3396 72.99 74.96 27.59 72.65 
1920-29 4281 69.26 72.19 8.49 83.70 
1930-39 3726 79.11 77.30 40.50 79.89 
1940-49 2914 66.94 57.32 16.05 67.42 
1950-59 3430 73.89 63.64 29.41 78.86 
1960-69 3031 73.90 72.97 45.66 70.48 
1970-79 3283 71.22 64.48 32.10 74.74 
1980-89 2089 89.93 86.57 71.23 81.70 
1990-99 3835 91.79 78.67 58.03 78.98 
2000-09 1732 85.24 84.79 52.53 83.18 
2010+ 2328 90.83 91.93 83.05 86.90 

 
Tesseract’s word accuracy also performs well for documents 
created in the last 5 years.  In all cases, though, we see that the 
accuracy levels are currently fairly low for attempting to do the 
kinds of natural language processing (NLP) techniques we 
described earlier.  It is our hope, though, that by adding in the 
remaining training data we have available, by improving our 
featurization which is still very much in its infancy, and possibly 
through system combination, we will be able in a short time to 
produce sufficiently high accuracies through Athilos to allow 
follow-on text processing. 

5.5. Statements on Out of Vocabulary 
 We mentioned in Section 4 that out of vocabulary (OOV) 
issues would be of concern for a word-based recognizer.  It turns 
out that the random test set has 2738 of 13630 unique tokens that 
Athilos has never seen.  Allowing for word reuse, 2929 of the 
59828 tokens were never seen or 4.90% of the data.  Better said, 
using Athilos’ full-term dictionary alone, one could not hope to get 
better than 95.1% word accuracy.  Worse still, there is a general 
observation that every OOV influences the choices of word that is 
hypothesized to the right and left of it, yielding 1.5 to 2 additional 
errors per OOV [19].  If we assume the 1.5 factor, the OOV’s 
would likely limit our maximum accuracy to be 87.75% -- a 
number which would be too low for NLP use. 
 The look-aside corpus reduces the out-of-vocabulary to 1511 
unique words or 1597 by frequency, which is 2.67% of the data.  
This is a significant improvement, but it still means that the likely 
maximum performance for the Athilos would be 93.38%.   
 Fortunately, the partial words are able to cover the vast 
majority of the remaining words.  Of the remaining OOVs, 174 of 

them are covered by a pair of partial words that are in the lexicon.  
An additional 306 are covered by the composition of three partial 
words in the lexicon; and 375 more are covered by four partials.  
Assuming the system could properly hypothesize a sequence of 
two, three, and four word partials, that would mean that 656 words 
would be missing – which is 696 OOVs by frequency, or 1.2%.  
This means that the likely maximum for Athilos could be as high 
as 97.1%.  Such a level of performance, if achievable, would 
definitely lend itself to NLP and to the automatic extraction of 
genealogical relationships that were described at the beginning of 
this paper. 

6. Comments and Synopsis  
We have demonstrated that by leveraging the state-of-the-art 
speech recognition toolkit, Kaldi, and incorporating our own image 
transcriptions and customized image preprocessing steps (some 
which extend the works of recent publications), we are able to 
create a word-based tool for transcribing historical newsprint.  We 
have demonstrated that our system performs comparably or better 
than commercial OCR engines that have been in development for 
decades; yet we have been able to assemble our system in a matter 
of months.  We still have a ways to go before one could leverage 
our system to perform downstream NLP, but we are hopeful that 
with our additional data and system tuning we can attain these high 
performance levels.  We also believe that if other researchers 
follow the processes we describe here, including the leveraging of 
Kaldi, they, too, should be able to assemble high-quality newsprint 
transcription systems. 
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