
Improving a deep convolutional neural network architecture for
character recognition
Bogdan-Ionuţ CIRSTEA, Laurence LIKFORMAN-SULEM, Institut Mines-Télécom / Télécom ParisTech, Université Paris-Saclay, Pa-
ris, France

Abstract
Deep architectures based on convolutional neural networks

have obtained state-of-the-art results for several recognition
tasks. These architectures rely on a cascade of convolutional
layers and activation functions. Beyond the set-up of the number
of layers and the number of neurons in each layer, the choice of
activation functions, training optimization algorithm and regula-
rization procedure are of great importance. In this work we start
from a deep convolutional architecture and we describe the effect
of recent activation functions, optimization algorithms and regu-
larization procedures when applied to the recognition of hand-
written digits from the MNIST dataset. The network achieves a
0.38 % error rate, matching and slightly improving the best known
performance of a single model trained without data augmentation
at the time the experiments were performed.

Introduction
Recently, deep learning models have obtained state of the art

results in tasks such as handwriting recognition [1] [2], speech re-
cognition [3], object recognition [4] and machine translation [5].
In contrast to classical approaches, deep learning approaches learn
features in an automatic fashion, avoiding the time-consuming
task of hand-crafting features.

In this paper, we apply a deep learning approach to the re-
cognition of isolated handwritten digits. The MNIST dataset [6] is
popular for this task and a variety of approaches have been com-
pared using it [6]. We will only focus here on those approaches
which take into account and exploit information about the spatial
structure of images and which use deep learning, while discar-
ding the permutation-invariant MNIST task (in the permutation-
invariant task, no prior information about the spatial arrangement
of the input pixels is available). Many of the most recent and most
successful proposals also use deep convolutional neural networks,
as we do [7] [8] [9] [10] [11] [12]. Other approaches use recur-
rent neural network variants, such as the Multi-dimensional long
short-term memory (MDLSTM) [13] or ReNet [14]. While these
approaches encode information about the spatial structure of the
images mainly through the architecture design, other approaches
do so mainly through data augmentation, by using image pixels
shift, scaling, or elastic distortion, in order to help the trained sys-
tems become more invariant to these transforms and to artificially
augment the training set. The most notable of these approaches is
[15], where the authors train big simple feedforward neural net-
works (also known as multilayer perceptrons - MLPs) using elas-
tic distortions. As is true for many other tasks, training ensembles
of classifiers often results in better performance than training a
single classifier [12] [15] [16].

We focus in this paper on a single classifier, with no data

augmentation. Thus recognition results can be more easily com-
pared with others, since they do not depend on the amount and the
type of augmented data.

As the number of approaches is relatively large and the
number of deep learning architectures for this task is potentially
huge, we will focus on an efficient convolutional architecture
which uses recently-proposed activation functions (Rectified Li-
near Units - ReLU and its variants Leaky ReLU and Parameteri-
zed ReLU). We then train the proposed architecture with recently
introduced initialization and optimization procedures. The initia-
lization procedure is designed to avoid reducing or magnifying
the amplitudes of the input signals to each activation function in
each layer exponentially, as well as the amplitudes of the gra-
dients during the training procedure. The optimization algorithm
is a variant of Adam [17] which is trained on mini-batches and
uses annealed learning rates. It is designed to stabilize the lear-
ning of stochastic non-stationary objective (loss) functions and to
better handle sparse and unstable (vanishing or exploding) gra-
dients [18]. We also use several regularization methods, which
allow us to build bigger CNNs without overfitting (dropout [19])
and accelerate the convergence of the optimization algorithm by
normalizing the inputs to the CNN’s different layers and impro-
ving the gradient flow through the network (batch normalization
[20]). We apply our architecture and training process to the recog-
nition of isolated handwritten digits. To the best of our knowledge,
we have obtained the best recorded performance of a single sys-
tem without data augmentation on the MNIST dataset [6] at the
time the experiments were performed.

Compared to other approaches used in the past, our system
performs all of its feature extraction in an automatic fashion, and
the feature extractors are learned. We argue that this result, in
addition to other results obtained using deep learning systems,
suggests that automatically learned features may perform better
than handcrafted ones. Using a deep learning approach can also
allow handwriting researchers to import innovations from other
fields (object recognition, speech recognition) and also potentially
contribute to the advancement of those fields, since deep learning
approaches working well in one domain can often perform well
in other domains, too.

We present in Section Architecture the proposed architec-
ture based on a cascade of convolutional layers. We then describe
in Section Optimization the optimization steps used for mini-
mizing the loss function in order to train the system based on
the previously mentioned architecture. Regularization approaches
such as dropout and batch normalization are presented in Section
Regularization. We apply this approach to the recognition of the
MNIST digit dataset in Section Experiments and present our re-
sults with the proposed architecture.

©2016 Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2016
Document Recognition and Retrieval XXIII DRR-060.1

Architecture
In this section, we describe the main architectural choices we

have made and their motivation, as well as the neuron activation
functions we have used.

Architectural choices
A convolutional neural networks (CNN) is a neural network

architecture which incorporates knowledge about the invariances
of 2D shapes by using local connections patterns and tied weights
[21].

In CNNs, neurons are organized in planes, with each unit
in a plane sharing a set of weights and performing the exact same
operation on different parts of the image. Each such plane is called
a feature (activation) map. Each unit (neuron) in a feature map
is connected to a certain area of its input ; this area is called a
receptive field and the trained weights are called convolutional
filters.

Input size Convolutional Layer 1
1 x 28 x 28 conv : 3 x 3 full, stride 1,

32 feature maps
32 x 30 x 30 batch normalization
32 x 30 x 30 PReLU
32 x 30 x 30 2 x 2 max pooling,

stride 2
32 x 15 x 15 0.5 dropout

Convolutional Layer 2
32 x 15 x 15 conv : 3 x 3, stride 1, 64

feature maps
64 x 15 x 15 batch normalization
64 x 15 x 15 PReLU
64 x 15 x 15 2 x 2 max pooling,

stride 2
64 x 7 x 7 0.5 dropout

Convolutional Layer 3
64 x 7 x 7 conv : 3 x 3, stride 1,

128 feature maps
128 x 7 x 7 batch normalization
128 x 7 x 7 PReLU
128 x 7 x 7 2 x 2 max pooling,

stride 2
128 x 3 x 3 flatten
128 x 3 x 3 0.5 dropout

Fully Connected
Layer

128 x 3 x 3 fully connected layer
matrix multiplication

625 batch normalization
625 PReLU
625 0.5 dropout

Softmax Layer
10 softmax

Table 1. Proposed CNN architecture

The convolutional architecture we use follows many of the
guidelines from [22], which has obtained the best single-model
performance in the ILSVRC 2014 object classification competi-
tion [23]. Each of the convolutional layers has filters of size 3x3,

with stride 1 (the stride is the distance between the centers of the
receptive fields of neighboring neurons in an activation map). The
small window size allows us to capture fine details ; note also that
3x3 is the minimum filter size so that concepts such as left, right,
bottom, up can still be captured. ’Full’ mode convolution is only
performed in the first layer. It adds surrounding zero-valued pixels
to the image, so that we can apply the convolutional filters on the
points at the border of the input image (before padding). Thus
input images of size 28x28 are zero-padded to reach size 30x30
(this is necessary because we use 3x3 convolution filters) and the
resulting output images are also of size 30x30.

The subsampling layers are always 2x2 max-pooling with
stride 2, which results in subsampling both image height and
width by 2. 2x2 max-pooling with stride 2 is a very popular poo-
ling method, because it is fast, it quickly reduces the size of the
hidden layers (benefiting computational efficiency) and it pro-
motes some invariance with respect to translations and elastic dis-
tortions [9].

When choosing the number of neurons in the convolutional
layers, we are once more inspired by the guidelines outlined in
[22] : we double the number of neurons between each consecu-
tive layer, from 32 in the first convolutional layer to 64 then 128
in the last one. The intuition behind this way of building the ar-
chitecture is that we are trying to compensate for some of the in-
formation loss resulting from the subsampling performed by the
max-pooling layers by using more units (activation maps) in the
upper hidden layers. As a result of both the max-pooling subsam-
pling and succeeding convolution operations, units in the higher
layers have a bigger implicit receptive field with regard to the in-
put image. A 3x3 receptive field on a subsampled image corres-
ponds to a bigger receptive field applied to the unmodified input
image.

Activation functions
Activation functions have been an important part of the suc-

cess of supervised deep learning. One of the most successful acti-
vation functions is the Rectified linear unit (ReLU) [24] :

ReLU(x) =

{
x, if x > 0.
0, otherwise.

(1)

Leaky rectified linear unit (LReLU) [25] have been found to
either match or surpass ReLU performance [25] [26] :

LReLU(x) =

{
x, if x > 0.
ax, otherwise.

(2)

with a the scaling factor (real value). In [25] the authors sug-
gest choosing a small a value, such as 1/100. The authors of [26],
on the other hand, have obtained better empirical results using
large a values, such as 1/5.5.

[26] argues for the use of Randomized leaky Rectified Linear
Units (RReLU) to further improve the performance of LReLU,
based on empirical evidence :

RReLU(x) =

{
x, if x > 0.
1
a x, otherwise with a∼U(l,u).

(3)

©2016 Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2016
Document Recognition and Retrieval XXIII DRR-060.2

Here, during training, a is sampled from a uniform distribu-
tion, with parameters l and u (the authors suggest setting l = 3,
u = 8, based on empirical evidence). At validation / test time, the
value of a is fixed, with value l+u

2 (5.5 for the example above).
Notice that l and u are hyper-parameters here (their gradients are
not used to modify their values during training).

Parametrized Rectified Linear Units (PReLU) [27] is ano-
ther rectified activation function, with the same equation as for
LReLU. The difference, though, is that a is learned using its gra-
dient. A different a can be chosen for each neuron or the a values
can be ’tied’ so that several neurons share a same value. This helps
reduce the number of trainable parameters and, thus, can prevent
overfitting. We have obtained the best results by allowing each
neuron to have its own a value in the convolutional part of the
network. For the fully connected layers, we could use a single a
value for each fully connected layer or distinct a parameters for
each neuron in each fully connected layer ; in our best-performing
system, separate a values are used for each neuron.

Optimization
In this section we describe the loss function we optimize, as

well as the optimization algorithm which modifies our system’s
trainable parameters in order to minimize it.

Loss function
The loss function we minimize is the average negative log-

likelihood of the conditional distribution of the correct label given
the input log(p(y|x)) across training examples (x,y) from data-
set S. This is equivalent to maximizing the multinomial logistic
regression objective. We have also used weight decay (L2 regu-
larization), the corresponding term in the equation below being
α ∗ ||w||2. Further details about the optimal value for the α hyper-
parameter are provided in the Weight decay subsection.

The equation of the loss function is thus :

O(S) = ∑
(x,y)∈S

[− log(p(y|x)+α ∗ ||w||2] (4)

Mini-batch stochastic gradient descent(SGD)
Gradient descent is a general method for optimizing diffe-

rentiable functions using the gradients of the loss function with
regard to the function’s parameters ; it can be efficiently applied
to neural networks using the backpropagation algorithm [28].

When training with backpropagation using the training data-
set, one can either use all the training samples for each parameter
update (full batch gradient descent) or a single sample (stochastic
gradient descent - SGD). A compromise between the two is mini-
batch SGD, which consists in performing parameter updates after
seeing a fixed number of training samples. The samples in each
mini-batch are chosen in a stochastic manner (by e.g. shuffling
the dataset).

One motivation for using mini-batches is that, as the mini-
batch size increases, the estimate of the gradient improves. Fur-
thermore, computation over mini-batches can be much more ef-
ficient than over single samples, especially when using modern
computational architectures and even more so for GPUs than for
CPUs.

Initialization
Initialization is important because bad initialization can

lead to instability in the gradients (vanishing or exploding gra-
dients) and consequently poor model performance after training.
In contrast, good initialization can accelerate convergence speed.

We have obtained the best results using the initialization me-
thod described in [27]. For simplicity, we initialize the PReLU a
parameters with zero values (right after this initialization, PRe-
LUs behave just like ReLUs). We initialize the batch normaliza-
tion γ parameters to 1, and the β parameters to 0 (see Batch nor-
malization). The neuron weight matrices are initialized using va-
lues drawn from Gaussian distributions with mean 0 and standard
deviation

√
2
ni

, where ni is the number of inputs to the neuron,
following the procedure in [27], and the biases are initialized to 0.

This procedure helps avoid both the exponential vanishing
and exploding of gradients, as well as of inputs to each layer du-
ring the feedforward phase. We refer you to [27] for the full ma-
thematical treatment.

Adam variant

Algorithm 1 Adam (variant)
Legend :
t = timestep
θt = neural network parameter values at timestep t
lr = learning rate
decay = learning rate decay
init = initial learning rate value
ε = hyper-parameter to make the algorithm numerically stable

Algorithm :
lr = init
while θt not converged do :

gt = gradient of loss function with regard to θt
mt = moving average of gt
vt = moving average of g2

t
θt = θt−1− lr ∗ mt√

vt+ε

lr = lr ∗decay

Adam [17] is an optimization algorithm which has been de-
veloped for improving the performance of stochastic gradient des-
cent (SGD) on stochastic non-stationary loss functions and sparse
gradients.

In the case of training convolutional neural networks, the
stochasticity comes from mini-batch training and batch norma-
lization, from dropout, as well as from the inherent noise in the
function to be learned (which takes as inputs images and out-
puts labels). Adam is also claimed [17] to allow for less hyper-
parameter tuning. When using simpler optimization procedures
such as SGD, different learning rates have to be chosen for dif-
ferent CNN layers, leading to more hyper-parameters which need
to be set ; [17] claims that this is not necessary when using Adam.
On the other hand, the algorithm introduces a few additional
hyper-parameters (ε and a few other parameters described in de-
tail in [17]). We briefly describe the algorithm as we have used it
in Adam (variant). A detailed description of Adam is beyond the
scope of this paper ; we refer the reader to the relevant publication
[17].

©2016 Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2016
Document Recognition and Retrieval XXIII DRR-060.3

One aspect we have found empirically is that the learning
schedule (the way the learning rate is adjusted during the opti-
mization procedure) is critical in determining both the speed of
learning (the number of epochs required), as well as the final per-
formance (as measured by the validation accuracy). In spite of the
fact that the authors of [17] claim that this optimization method
is quite robust to step size, we have found that adapting the lear-
ning rate during learning still helps. We thus propose a variant of
Adam which consists in using annealing (multiplying the learning
rate by a constant after each epoch of training). This corresponds
to the last equation in Adam (variant).

The value of the learning rates obtained using the annealed
learning rate procedure are quite high (see subsection Methodo-
logy). This is in line with other empirical observations for choo-
sing the learning rate when using dropout and batch normalization
[19] [20]. When using dropout, each sub-sampled architecture is
trained for only one step, but all the possible sub-sampled archi-
tectures share parameters, so each update must have a large effect
for the training procedure to behave as if it is training an ensemble
rather than a single model [10]. Using higher learning rates during
the optimization procedure corresponds to the updates having lar-
ger effects.

An intuitive explanation for why annealing the learning rate
works well is that, as the learning rate decays, the optimization
takes shorter steps, doing less exploration, so that it eventually
settles into a local minimum [19].

Regularization
Regularization is an important component of many success-

ful machine learning systems. Deep learning systems routinely
use several different regularization methods, such as dropout [19],
L2 regularization (weight decay) and early stopping. Besides
these now somewhat standard regularizers, we have also used
batch normalization, a method which has been proposed only re-
cently but has been very successful in training deep convolutional
neural networks [20].

Dropout
Dropout [19] is a regularization method which allows for

much bigger networks to be trained without overfitting. The basic
idea is to randomly drop neurons from the neural network during
training with probability p sampled from a Bernoulli distribution.
The result of this procedure is that this training approximates trai-
ning an ensemble of much thinner neural networks. During valida-
tion or testing, an approximation of using the ensemble of thinned
networks can be obtained by scaling the activations by the same
probability p.

Batch normalization
Batch normalization [20] is a regularization method which

allows for much faster training of neural networks because it al-
lows for slightly higher learning rates and converges in fewer
epochs. Batch normalization addresses the so-called problem of
internal covariate shift [20], which can be defined as the chan-
ging (shifting) of the input distribution when training a classifier.
A deep neural network can be seen as a composition of stacked
classifiers, each taking as input the output of previous layers. Du-
ring training, as we modify the parameters of the lower layers, the
distribution of the input to the higher layers changes. Batch nor-

Algorithm 2 Dropout
Legend :
l = layer index
xl = input of layer l
yl = output of layer l
p = dropout probability
Equations without dropout during training :
yl =W l ∗ xl +bl

xl+1 = f (yl)
Equations with dropout during training :
rl

p∼Bernoulli(p)
x̃l = rl · xl

yl =W l ∗ x̃l +bl

xl+1 = f (yl)
Equations without dropout during validation / test :
yl =W l ∗ xl +bl

xl+1 = f (yl)
Equations with dropout during validation / test :
yl = p∗ (W l ∗ xl +bl)
xl+1 = f (yl)

Algorithm 3 Batch normalization
Legend :
n = number of examples in the mini-batch
i = index of the example in the mini-batch
µ = mean value of the examples in the mini-batch
σ2 = variance of the examples in the mini-batch
ε = hyper-parameter to make the algorithm numerically stable
β ,γ = learned parameters to restore the layer’s representational
power
Algorithm :
µ = 1

n ∑
n
i=1 xi

σ2 = 1
n ∑

n
i=1 (xi−µ)2

x̃i =
xi−µ√
σ 2+ε

BNγ,β (xi) = γ · x̃i +β

©2016 Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2016
Document Recognition and Retrieval XXIII DRR-060.4

malization works by standardizing the inputs between each layer
of a neural network (to mean 0 and variance 1) during training,
while also adding a few trainable parameters so that the origi-
nal inputs can be recovered and the trained system does not lose
any representational power. In doing so, it also improves the gra-
dient flow through the network, by reducing the dependence of
gradients on the scale of the parameters or of their initial values
[20].

We apply batch normalization to every training mini-batch
and we shuffle the training set, as recommended in [20]. Trai-
ning with batch normalization leads to each example being seen
in conjunction with other examples in the mini-batch, so that the
training procedure no longer produces deterministic values for a
given training example. This can be seen as having a regularizing
effect similar to using dropout. Applied naively, batch normaliza-
tion only adds two extra parameters (γ and β) for each neuron,
so the risk of over-fitting as a result of an increase in the number
of parameters is low. As a result of adding the batch normaliza-
tion β parameters, the neuron bias parameters are no longer ne-
cessary, so we no longer use them in the layers in which we use
batch normalization ; therefore, the effective number of parame-
ters only increases by 1 per neuron. When using the validation
set, we no longer split it into mini-batches, but use it in its en-
tirety. This has the advantage of removing the randomization in-
troduced by batch normalization (when using mini-batches) when
estimating the system’s accuracy on the validation set. The same
procedure is applied when testing the system’s final performance
(on the test set).

Weight decay
We have tried L2 regularization (also called weight decay

when applied to neural network weights), but found that it did not
improve our results ; therefore, the α hyper-parameter was set to
0. An explanation of why we don’t need L2 regularization could
be that dropout has actually been found to be an improved form
of L2 regularization [29] and also leads to sparser hidden unit
activities, similarly to the effect of L1 regularization. Another hint
comes from the fact that in [20] it has been found empirically
that the L2 regularization can be diminished when using batch
normalization.

Early stopping
We have used early stopping when performing optimiza-

tion : we run the optimization algorithm for a maximum 300
epochs (maximum 300 passes through the entire dataset using
mini-batches) and stop after 30 epochs without improvement on
the validation set. Another method we have tried, but which has
worked worse empirically, was to go through a fixed set of lear-
ning rates (e.g 0.1, 0.01, 0.001) in decreasing order, by decreasing
the learning rate when the validation accuracy doesn’t improve af-
ter a given number of epochs (e.g. 30). Note that we do not retrain
the model using both the training and validation samples.

Experiments
Dataset

MNIST [6] contains 28x28 images of isolated handwritten
digits, the task being to correctly classify these images. The data
is split in 3 sets : a training set of 50000 images, a validation set
of 10000 images and a test set of 10000 examples.

Preprocessing
As is standard in the literature ([7], [11]), the only preproces-

sing we perform is scaling the inputs to [0, 1] values. We have also
tried standardizing the inputs using global contrast normalization,
but haven’t seen improved results.

Methodology
Our experiments start from the architecture proposed in [30],

using the theano framework [31] [32]. During the experiments,
we have kept the deep CNN architecture relatively unchanged but
have modified activation functions, optimization algorithms and
regularization methods. The specific architecture, as well as the
activation functions and specific optimization and regularization
procedures are presented in Table 1 1.

We have also experimented with using an architecture variant
in which a second fully connected layer of the same size (625 neu-
rons) was added, while keeping the rest of the initial architecture
the same ; however, we have not observed improved results.

For the optimization procedure, we have used Adam, kee-
ping all its hyper-parameters to their default values in [17], except
for the learning rate, which was annealed during training. We ob-
tain our best system using an initial learning rate of 0.005 and a
learning rate decay of 0.98.

As regularization, in the best system we have used dropout
[19] with probability of removing a neuron p = 0.5, in both the
convolutional and the fully connected layers (we don’t apply dro-
pout to the input images). Though one might expect that overfit-
ting is not a problem for convolutional layers, since they have few
parameters (as a result of the local connection patterns and the
tied weights), dropout can still help by providing noisy inputs to
the higher fully connected layers, preventing them from overfit-
ting [19]. We have also tried values of p = 0 (corresponding to no
dropout), p = 0.2 and p = 0.8.

Notice that we haven’t performed a systematic, extensive
hyper-parameter search, due to limitations in access to computa-
tion (GPUs). Using random search [33] or Bayesian optimization
[34] might lead to improved results, as has been observed empiri-
cally in [34].

Model Test error
(%)

Ours 0.38
Deeply-Supervised
Nets [7]

0.39

Fractional max-
pooling [9]

0.44

Maxout Networks
[10]

0.45

Network in Network
[11]

0.47

Table 2. Comparison with state-of-the-art results on MNIST test
set (single system, no data augmentation)

Results
The error rate obtained with the system described in Section

is shown in Table 2 2. The same table also shows results of other
deep learning approaches which obtain state-of-the-art results on

©2016 Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2016
Document Recognition and Retrieval XXIII DRR-060.5

MNIST without using data augmentation and model ensembles.
The misclassified digits are shown in Fig. 1 1.

FIGURE 1. All misclassified samples of the MNIST test set. The first number

is the estimated label, the second one is the ground truth.

This result matches and slightly improves, to the best of our
awareness, upon the best previous result for a single model trai-
ned without data augmentation at the time the experiments were
performed [7] [8].

We have computed the Wald confidence interval with 95 %
confidence ; rounded to two decimals, we obtain an upper bound
of the error rate of 0.5 % and a lower bound of 0.26 %. We have
also performed 12 new experiments using different random seeds.
The best test set error rate we obtain is 0.38 %, while the worst
is 0.49 %. The mean error rate over these random sampling ex-
periments is 0.43 % with 0.029 % standard deviation. Notice that
while the 0.38 % error rate estimate provided above seems ra-
ther optimistic, we have managed to reproduce that result using a
different random seed (the random seed affects every part of the
system which involves stochasticity : the parameter initializations,
dropout, as well as batch normalization with mini-batches).

We present below a more thorough comparison between our
deep CNN and other deep CNN architectures which obtain state
of the art results on MNIST without using data augmentation and
model ensembles.

In [11], the authors use a modified CNN architecture where
the convolutional layers contain micro neural networks instead
of simple linear filters followed by nonlinearities. This enhances
the discriminability for local patches within the receptive fields
and allows them to replace the fully connected layers with global
average pooling. Dropout and SGD with momentum are used.

Authors in [10] use a Maxout activation function, which is
similar to ReLU, but designed specifically to work well with dro-
pout. This activation function is used in both the convolutional
and the fully connected layers.

[7] use companion loss functions for training the hidden
layers of their deep convolutional neural networks, in order to bet-
ter deal with vanishing gradients [18]. The CNN they train isn’t
as deep ; they use bigger filter sizes for the convolutional layers,
the ReLU activation function and different loss functions for both
the main and the companion objectives (the hinge loss). They also

use 0.5 dropout for regularization and SGD with fixed momentum
for optimization.

[9] introduce a stochastic form of spatial pooling, which al-
lows them to reduce the spatial size of the activation maps more
gradually. They use a modified, spatially-sparse CNN [35], with
LReLU and dropout.

Notice that the use of micro neural networks and companion
objective functions for the hidden layers are complementary to
our approach and could be used to further enhance performance.

Conclusions
In this paper we have argued for engineering systems which

can perform automatic (learned) feature extraction, rather than
using hand-engineered features. Using a deep learning approach
also allows for deep learning innovations from other applications
domains to be imported and applied with ease and the deep lear-
ning contributions can also be used in other application domains.

One possible extension of this work is training the system
on more extensive handwriting datasets, such as NIST SD-19, as
well as using data augmentation and training ensembles. The ro-
bustness of the results we have obtained could be improved by
choosing the hyper-parameters in a more automatic fashion, using
random search [33] or Bayesian optimization [34].

Another possible direction for future research is integrating
convolutional neural networks into text-line handwriting recogni-
tion systems. Though, historically, convolutional neural networks
have played an important role in recognizing digit or character
sequences [21], more recently, they have been replaced with Mul-
tidimensional Long Short-term (MDLSTM) neural networks [1]
[2].

Acknowledgments
This research was supported by a DGA-MRIS scholarship.

We wish to thank the Paris-Saclay Center for Data Science for ac-
cess to the GPU platform which was used for this work, platform
funded by the P2IO LabEx (ANR-10-LABX-0038) in the frame-
work « Investissements d’Avenir » (ANR-11-IDEX-0003-01) ma-
naged by the French National Research Agency (ANR). We also
thank NVIDIA Corporation for a GPU donation.

Références
[1] Alex Graves and Jürgen Schmidhuber. Offline handwri-

ting recognition with multidimensional recurrent neural net-
works. In Advances in Neural Information Processing Sys-
tems, pages 545–552, 2009.

[2] Theodore Bluche, Hermann Ney, and Christopher Kermor-
vant. The limsi handwriting recognition system for the htrts
2014 contest. In 2015 13th International Conference on Do-
cument Analysis and Recognition (ICDAR), pages 86–90.
IEEE, 8 2015.

[3] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hin-
ton. Speech recognition with deep recurrent neural net-
works. In 2013 IEEE International Conference on Acous-
tics, Speech and Signal Processing, pages 6645–6649.
IEEE, 5 2013.

[4] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton.
Imagenet classification with deep convolutional neural net-
works. In Advances in Neural Information Processing Sys-
tems, pages 1097–1105, 2012.

©2016 Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2016
Document Recognition and Retrieval XXIII DRR-060.6

[5] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre,
Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. Learning phrase representations using
rnn encoder-decoder for statistical machine translation. In
EMNLP, pages 1724–1734, 2014.

[6] Christopher J.C. Burges Yann LeCun, Corinna Cortes. THE
MNIST DATABASE of handwritten digits. http://
yann.lecun.com/exdb/mnist/. [Online ; accessed 30-
November-2015].

[7] Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou
Zhang, and Zhuowen Tu. Deeply-supervised nets. 9 2014.

[8] Julien Mairal, Piotr Koniusz, Zaïd Harchaoui, and Cordelia
Schmid. Convolutional kernel networks. In NIPS, pages
2627–2635, 2014.

[9] Benjamin Graham. Fractional max-pooling. CoRR,
abs/1412.6, 2014.

[10] Ian J. Goodfellow, David Warde-Farley, Mehdi Mirza, Aa-
ron Courville, and Yoshua Bengio. Maxout networks. pages
1319–1327, 2 2013.

[11] Min Lin, Qiang Chen, and Shuicheng Yan. Network in net-
work. page 10, 12 2013.

[12] D. Ciresan, U. Meier, and J. Schmidhuber. Multi-column
deep neural networks for image classification. In 2012 IEEE
Conference on Computer Vision and Pattern Recognition,
pages 3642–3649. IEEE, 6 2012.

[13] Alex Graves. Supervised Sequence Labelling with Recurrent
Neural Networks, volume 385 of Studies in Computational
Intelligence. Springer Berlin Heidelberg, 2012.

[14] Francesco Visin, Kyle Kastner, Kyunghyun Cho, Matteo
Matteucci, Aaron C. Courville, and Yoshua Bengio. Renet :
A recurrent neural network based alternative to convolutio-
nal networks. CoRR, abs/1505.0, 2015.

[15] Dan C. Ciresan, Ueli Meier, Luca Maria Gambardella, and
Jürgen Schmidhuber. Handwritten digit recognition with a
committee of deep neural nets on gpus. CoRR, abs/1103.4,
2011.

[16] Li Wan, Matthew D. Zeiler, Sixin Zhang, Yann LeCun, and
Rob Fergus. Regularization of neural networks using drop-
connect. In ICML (3), pages 1058–1066, 2013.

[17] Diederik Kingma and Jimmy Ba. Adam : A method for
stochastic optimization. 12 2014.

[18] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On
the difficulty of training recurrent neural networks. In Pro-
ceedings of The 30th International Conference on Machine
Learning, pages 1310–1318, 2013.

[19] Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout : a simple
way to prevent neural networks from overfitting. Journal of
Machine Learning Research, 15(1) :1929–1958, 2014.

[20] Sergey Ioffe and Christian Szegedy. Batch Normalization :
Accelerating Deep Network Training by Reducing Internal
Covariate Shift. In ICML, pages 448–456, 2015.

[21] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Procee-
dings of the IEEE, 86(11) :2278–2324, 0 1998.

[22] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. 9 2014.

[23] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Kar-

pathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Li Fei-Fei. Imagenet large scale visual recog-
nition challenge. International Journal of Computer Vision,
115(3) :211–252, 4 2015.

[24] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep
sparse rectifier neural networks. In International Confe-
rence on Artificial Intelligence and Statistics, pages 315–
323, 2011.

[25] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Recti-
fier nonlinearities improve neural network acoustic models.
Proc. ICML, 30, 2013.

[26] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical
evaluation of rectified activations in convolutional network.
5 2015.

[27] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Delving deep into rectifiers : Surpassing human-level per-
formance on imagenet classification. 2 2015.

[28] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning
internal representations by error propagation. pages 318–
362, 1 1986.

[29] Stefan Wager, Sida I. Wang, and Percy Liang. Dropout trai-
ning as adaptive regularization. In NIPS, pages 351–359,
2013.

[30] https://github.com/Newmu/Theano-Tutorials/
blob/master/5_convolutional_net.py. [Online ;
accessed 30-November-2015].

[31] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal
Lamblin, Razvan Pascanu, Guillaume Desjardins, Joseph
Turian, David Warde-Farley, and Yoshua Bengio. Theano :
a CPU and GPU math expression compiler. In Proceedings
of the Python for Scientific Computing Conference (SciPy),
June 2010. Oral Presentation.

[32] Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, James
Bergstra, Ian J. Goodfellow, Arnaud Bergeron, Nicolas Bou-
chard, and Yoshua Bengio. Theano : new features and speed
improvements. Deep Learning and Unsupervised Feature
Learning NIPS 2012 Workshop, 2012.

[33] James S. Bergstra, Rémi Bardenet, Yoshua Bengio, and
Balázs Kégl. Algorithms for hyper-parameter optimiza-
tion. In Advances in Neural Information Processing Sys-
tems, pages 2546–2554, 2011.

[34] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practi-
cal bayesian optimization of machine learning algorithms.
In Advances in Neural Information Processing Systems,
pages 2951–2959, 2012.

[35] Benjamin Graham. Spatially-sparse convolutional neural
networks. CoRR, abs/1409.6, 2014.

©2016 Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2016
Document Recognition and Retrieval XXIII DRR-060.7

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://github.com/Newmu/Theano-Tutorials/blob/master/5_convolutional_net.py
https://github.com/Newmu/Theano-Tutorials/blob/master/5_convolutional_net.py

