
Intelligent Pen: A Least Cost Search Approach to Stroke Extrac-
tion in Historical Documents
Kevin L Bauer and William A Barrett, Brigham Young University

1 Abstract
Extracting strokes from handwriting in historical documents

provides high-level features for the challenging problem of hand-
writing recognition. Such handwriting often contains noise, faint
or incomplete strokes, strokes with gaps, overlapping ascenders
and descenders and competing lines when embedded in a table
or form, making it unsuitable for local line following algorithms
or associated binarization schemes. We introduce Intelligent Pen
for piece-wise optimal stroke extraction. Extracted strokes are
stitched together to provide a complete trace of the handwriting.
Intelligent Pen formulates stroke extraction as a set of piece-wise
optimal paths, extracted and assembled in cost order. As such,
Intelligent Pen is robust to noise, gaps, faint handwriting and
even competing lines and strokes. Intelligent Pen traces compare
closely with the shape as well as the order in which the handwrit-
ing was written. A quantitative comparison with an ICDAR hand-
written stroke data set shows Intelligent Pen traces to be within
2.58 pixels (mean difference) of the manually created strokes.

2 Introduction
One key problem in processing historical images is prop-

erly segmenting the image into words and extracting the relevant
stroke information from the handwriting. By their nature, histori-
cal documents pose many challenges for stroke extraction, includ-
ing faint strokes, strokes with gaps, form lines, and ascenders and
descenders (Figure 1).

While many algorithms for stroke extraction exist, their ef-
fectiveness is limited to newer documents that are cleanly scanned
with little degradation or that are born digital because of the chal-
lenges mentioned above.

3 Related Work
Typically the goal of stroke extraction algorithms is to be

able to apply on-line handwriting recognition methods to static,
offline handwriting images. This is usually done by using a me-
dial axis transform or some other thinning algorithm to extract a
skeleton: a pixel-wide representation that outlines the basic shape
of the handwriting. Figure 2 gives an example of a skeleton ob-
tained by line thinning. Various techniques exist for extracting
word skeletons, such as diffusion maps [5] or line thinning [7, 10].

Once the skeleton is obtained, some tracing method is used
to find an ordered path through the skeleton. As noted by Qiao
and Yasuhara [16], skeleton tracing methods fall into two main
categories: local tracing methods, which choose a direction at
each junction in the skeleton based on local heuristics, and global
searches, which create a graph model of the skeleton and then use
search techniques to find an optimal path through the text.

The bulk of the work examined falls into these two cate-
gories, with a few exceptions. In the area of binarization, Yan

(a) A stroke with a gap between
points a and b

(b) Bridging the gap

(c) Faint strokes with low SNR (d) Intelligent Pen recovers faint
or missing strokes

Figure 1: Intelligent Pen overcomes many of the pitfalls common
to historical document images

and Leedham [20] employ an adaptive thresholding technique that
subdivides the image into small regions and then examines fea-
tures such as the stroke angle and edge strength to set the thresh-
olding value for that region. Although their method does a good
job separating handwriting pixels from the background it does not
account for the presence of form lines and does not obtain the ac-
tual strokes of the handwriting.

Clawson and Barrett [4] attempt to distinguish handwriting
pixels from form pixels by first registering a group of similar doc-
uments to a template image having the same form lines but with
the handwriting removed. A sliding window is then compared
against both the template and the source image, and areas where
the document differs from the template are marked as handwrit-
ing. However this approach gives incorrect results for documents
with folds, tears, or other non-handwriting areas that differ from
the template.

3.1 Skeletonization and Local Search
Daher et al [5] obtain the skeleton using a diffusion map.

They then perform an ordered trace the skeleton by first finding
a start point, then using the gradient to calculate a direction and
step distance. However, their goal is only to extract graphemes,
not complete strokes, and their results are given in terms of the
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Figure 2: An example of a handwritten lower-case ‘a’ and its
skeleton, obtained by line thinning. Taken from a figure in the
paper by L’Homer [10].

number of graphemes extracted per page, which makes it unclear
how effective their method is in obtaining complete strokes.

Pavlidis [13] uses a line adjacency graph, scanning horizon-
tally on a binary image and finding sections of three or more adja-
cent dark pixels. Each of these sections becomes a node in the line
adjacency graph and is connected to adjacent nodes immediately
above and below it. Local heuristics are then used to identify path
and junction sections to create a simplified graph. Although faster
than other line thinning techniques, this method struggles with di-
agonals and curves and is ultimately unsuccessful at improving
accuracy in handwriting recognition.

Lee and Pan [9] extract the stroke order by searching for
an endpoint, then using local heuristics to trace back to the start
point. They then reverse the order of this back-traced path and
merge with adjacent paths to find a global ordering of the pixels.

In [3], Boccignone et al. use a line-thinning algorithm that
preserves the local thickness of the line. This is done by label-
ing each pixel of the skeleton with its 8-distance from the nearest
background pixel.

One unique variation is proposed by Lallican and Viard-
Gaudin [8]. They use the grayscale image to extract edge pix-
els, then match each edge pixel with the one opposite it. The
midpoints of the cross-sections of these pixels are used to form
a pseudo-skeleton. They then extract full strokes by applying a
Kalman filter to the pseudo-skeleton. Finally, they use a smooth-
ness function to divide or combine these curves. While their
method is successful in following strokes that undergo several
changes in curvature it does not account for variations in pixel
intensity. Their tests are confined to cleanly binarized images,
making it unclear how they would perform on historical docu-
ments.

Doerman and Rosenfeld [6] also employ a method that uses
cross-section lines connecting corresponding edge points. In their
case, the handwriting is not represented as a skeleton but as a
series of cross-sections. This allows easy computation of the
direction of the handwriting (which should be perpendicular to
the cross-section) as well as the thickness (which is the length of
the cross-section). However, their method relies heavily on local
heuristics, making it brittle in the presence of noise and degrada-
tion such as are found in historical documents.

3.2 Graph Search and Optimal Path Finding
Skeletons are often represented as graphs where each node

is a path, junction, or endpoint section of the handwriting. These
skeleton extraction techniques are then combined with graph
search methods, most of which rely on the gradient and local

stroke direction to determine which path to follow at each branch
node.

Tan et al. [17] apply the skeletonization and graph search
approach to handwritten Chinese characters. with the purpose of
extracting the common components that make up each charac-
ter. They test their method with four different skeleton extraction
methods, with the best one able to accurately extract 90.7% of
the strokes in the characters in their dataset of 341 Chinese char-
acters. Their dataset consisted of clearly defined characters with
thick strokes and no degradation issues.

Viard-Gaudin et al. [18] used a windowed scan to break the
handwriting into segments, each of which is small enough to rep-
resent with a feature vector. They then used a graph search to
connect the segments into strokes.

Qiao and Yasuhara propose multiple methods in [14], [15],
and [16]. In [14] they use a combination of local heuristics and a
global smoothness algorithm to compute the optimal path through
the skeleton. In [15] they use a bi-directional search, picking a
start and end point, then searching forward from the start point
and backward from the end point and finally merging the two
paths.

[16], [7], and [2] all treat the path traversal as an optimal
Euler path problem. An Euler path is defined as a path through
an undirected graph that passes through each node exactly once.
In each case computational complexity becomes an issue, so the
graph must either be reduced or searched hierarchically to reduce
computational complexity.

The key assumption made by the algorithms discussed above
is that the skeleton can be successfully extracted without loss of
data or the introduction of noise, and the publications contain
sparse information on what validation has been performed to this
effect. To overcome these challenges a new approach is needed
that is more robust to noise and works with older, degraded hand-
writing, and is tolerant to the existence of form lines that overlap
the handwriting. Rather than create a skeleton or graph represen-
tation of the image, we propose an algorithm that would operate
directly on the grayscale pixels of the original image.

The field of image segmentation provides inspiration for
such an approach. In [11] Mortensen and Barrett introduce In-
telligent Scissors, which uses a least-cost search algorithm to find
the edges of an object of interest in an image based on a few seed
points. This is done using a weighted sum of several image fea-
tures.

By choosing different features for the path-finding algorithm
we repurpose the idea behind Intelligent Scissors to create a new
algorithm for extracting strokes of handwriting, one that is piece-
wise optimal, operates on the original grayscale image, and is ro-
bust to noise, degradation, and other features of historical docu-
ments. Because it takes its inspiration from Intelligent Scissors,
we adopt the name Intelligent Pen for our approach.

4 Intelligent Pen
Intelligent Pen performs a minimum cost path search using

a cost function that is tuned for the domain of historical docu-
ment processing. The goal is to create a complete trace of the
handwriting for which the minimum cost paths are the ones that
pass through the handwriting, ignoring noise and properly follow-
ing the original path of the author’s pen, even in the presence of
gaps and low-contrast segments. The process begins by expand-
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ing multiple wavefronts of minimum cumulative cost from mul-
tiple seed points, all in cost order. As wavefronts collide, paths
coalesce or terminate due to comparatively high cost.

4.1 Seed Point Selection
To begin with, we need to choose seed points for the algo-

rithm. To do this, we divide the image into several vertical strips,
as in Figure 3a. We then use our least-cost equation to find the
shortest path from the top of each stripe to the bottom. Figure 3b
shows how the paths snap to any handwriting. For each stripe we
then find the segment of the obtained path with the lowest cost,
and choose the center of that low-cost segment as a seed point.
Because these seed points lie in the center of a low-cost area of
the path there is a high probability that they lie on a stroke of
handwriting. Because additional seed points are generated auto-
matically, as described below, we require comparatively few seed
points to initiate the process.

(a) The image is divided into ver-
tical strips, and the optimal path
from top to bottom is found for
each strip

(b) The paths snap to the nearest
handwriting, and the local mini-
mum on each path is chosen as a
seed point

Figure 3: Finding start points

4.2 Wavefront Expansion
To find the shortest path from one point to another we use a

variation of Dijkstra’s algorithm, using the cost function defined
in Equation 3. To start, we initialize the cost Cxy for each point p
in the image using the following sigmoidal equation:

Cxy =
1

(1+ e−k(i−t))
+Fxy (1)

In Equation 1 i is the grayscale intensity of p, and t is the
Otsu threshold of the image (as defined in [12]). Subtracting t
from i in the equation creates the sigmoidal cost function centered
at t shown in Figure 4. After some experimentation a value of k =
0.1 was shown to work well and was used for the examples in this
paper. Fxy is a cost applied for form lines and varies for each row
depending on the distance to the nearest form line.

Before running the algorithm we manually specify the y co-
ordinates of the centers of any form lines and calculate Fxy for all
pixels within 5 rows according to the following equation:

Fxy =

5−|(y− y f )|
5 if (y− y f )< 5

0 otherwise
(2)

Figure 4: The cost is calculated using a sigmoidal function cen-
tered at the Otsu threshold t.

In Equation 2 y f is the center point of the nearest form line.
When expanding a point p in the wavefront, the cumulative

cost N for each neighbor n of p is calculated as follows:

N = dn ∗Cn +Cp +1 (3)

The distance cost dn is 1 for four-connected neighbors of p
and
√

2 for diagonal neighbors of p. We add a constant value of 1
to the cost so that, in the presence of pure black (zero cost) paths
we give preference to shorter paths.

Figure 5 and Algorithm 1 give an example of how the cost
wavefront expands. Having initialized our cost matrix as in Figure
5a, a start point is then expanded, and all its neighbors are added
to the wavefront (yellow in Figure 5b-5d). Costs on the wavefront
are maintained in sorted order and the node with the lowest cost
is the next to be expanded. Any pixels neighboring this node that
are not already in the graph are added, and their cost is set to be
the cumulative cost of the shortest path back to the start point.
This is done by adding the value from the initial cost matrix to
the cumulative cost for the node being visited. Each node stores
a pointer to the neighbor lying on its shortest path to the start
point, so once the wavefront reaches a stopping criteria we have
the shortest path to the seedpoint from anywhere in the wavefront.

It should be noted that due to Bellman’s principle of optimal-
ity [19] every sub-path of an optimal path is itself an optimal path
between its endpoints. We exploit this principle to stitch together
piece-wise optimal paths.

Since the points with the lowest cumulative cost are ex-
panded first, each wavefront tends to do a soft fill on the hand-
writing as it expands in all directions (Figure 6). The following
sections describe how paths are grown and coalesced from the
collision of multiple wavefronts to obtain a complete trace of the
handwriting.

4.3 Parallel Path Expansion
After choosing start points in the fashion described above,

we use each start point as the seed point for a wavefront, then al-
low all the wavefronts to expand simultaneously and in parallel in
order of lowest cost. This parallel path expansion causes the al-
gorithm to focus first on areas of lowest cost. If for some reason a
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(a) Initial Cost Matrix: Costs ∼ pixel intensity. Green start point

(b) Each neighbor sets
a backpointer

(c) Cumulative cost is
calculated

(d) Diagonal Cost
given by Cn *

√
2

(e) Expand node with
minimum cumulative
cost (156)

(f) Cumulative costs
updated

(g) Expand Node with
next lowest cumulative
cost (159, lower left)

(h) The wavefront expands along lower-cost (darker) strokes rather
than outward in all directions

Figure 5: Wavefront Expansion Algorithm

Algorithm 1 Wavefront Expansion Algorithm

W ← startPoints // W: set of all points in wavefront
B← startPoints // B: cost-ordered set of boundary points

while No stopping criteria reached do
// Get lowest-cost, unvisited point
// (53 In Fig 5b, 156 in 5e, and 159 in 5g)
p← B[0]
neighbors = getNeighbors(p)

for n in neighbors do
if n not in W then

W.add(n)
B.add(n)
// calculate cost based on distance (Fig. 5d)
if n.x 6= p.x and n.y 6= p.y then

n.cost← n.cost ∗
√

2

seed point is in a high cost region of the image, it won’t expanded
as quickly as other seed points (Figure 6b).

A video of how the parallel wavefront expansion algo-
rithm looks in real time can be found at https://youtu.be/
uSU9V-gaxls. As shown in Figures 6c and 6d the wavefronts
eventually collide and merge together, then continue to expand
until reaching the end of the strokes. Note that Intelligent Pen
does not follow the horizontal lines because we set those lines to
be higher cost because they are not part of the handwriting (see
Figure 9b).

4.4 Path Consensus
Now that the wavefronts are expanding in cost order, we need

to set a stopping criteria to prevent them from completely filling
the image. Therefore, the wavefronts only expand until we reach
one of three stopping criteria.

1. The number of pixels in the wavefront reaches a certain pre-
defined threshold.

2. One wavefront runs into another actively expanding wave-
front (Figure 6c).

3. A wavefront collides with the edge of the image.

Once a stopping point is reached we use a contour following
algorithm to obtain an ordered list of all the points on the outside
border of the wavefront. Next, several “free points” (the green
points in Figure 7a) are selected at regular intervals around this
border. We then follow the backpointers from each free point
back to the start point, which gives the shortest path for each free
point (the yellow paths in Figure 7b). Points lying on one or more
of these candidate paths are chosen as consensus paths (the red
paths in Figure 7c). The red consensus points define the optimal
path for this segment.

4.5 Creating New Seed Points
To generate new start points every consensus path is ex-

tended to the edge of the wavefront, as shown in Figure 8 and
Algorithm 2. This is done by first finding the endpoint e of each
consensus path (orange), then looking at each point pi on the out-
side edge of the wavefront that contains e in its path back to the
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(a) Seed Points a, b, and c associ-
ated with purple wavefronts A, B,
and C

(b) Wavefront C is on a lower-cost
stroke and expands faster than A
and B

(c) When wavefronts A and B meet,
they merge and continue expanding

(d) The unified wavefront contin-
ues to expand along the lowest-cost
strokes

Figure 6: Simultaneous Expansion of 3 Wavefronts A, B, and C

start point S (shown in blue in Figure 8). We then choose the pi
whose path from the start point has the lowest cost per pixel. The
consensus path is therefore extended to contain all of the path
from the start point to the chosen pi (green), and pi becomes a
new start point. This process is repeated for each consensus path.

Algorithm 2 Extending a start point to the edge of the wavefront

Input: Start point S, Consensus path with endpoint e.
Output: Extended path with endpoint e2 on wavefront border

P← all points on edge of wavefront
for pi in P do

Follow pi’s backpointers to get shortest path to S.
if e is not on pi’s shortest path to S then

Remove pi from P
Order all pi in descending order by length of shortest path to S
Choose first pi (i.e. with longest path) as new start point.

If two wavefronts collide, new start points are generated for
each wavefront, though the point of intersection is discarded from
the set of new start points.

Finally, every point within the wavefront is set to have in-
finite cost, guaranteeing that no point in the wavefront will be
explored again. This is to prevent backtracking over the same
section of handwriting multiple times. This can be safely done
because of the piecewise-optimal nature of each path. Since each
consensus path is an optimal path, we know that there are no ad-
ditional useful paths to be found anywhere in the wavefront or
they would already have been uncovered. Setting costs within the
wavefront high also saves computation.

Figure 9 shows how the cost map changes over time as the
wavefront expands.

(a) Free points (green) are se-
lected at regular intervals around
the wavefront’s border

(b) For each of these free points
the shortest path to the start point
(yellow) is found

(c) Consensus points (red) appear on more than one of the yellow candi-
date paths and define the optimal path for this segment

Figure 7: Using path consensus to extract strokes

4.6 Stopping Path Growth
In addition, to save computational cycles and avoid explor-

ing areas that have a low probability of handwriting we stop ex-
panding a wavefront if it becomes roughly circular. This is due to
the behavior of the wavefront expansion algorithm. When there is
no handwriting near it the wavefront tends to expand in a circular
pattern since all costs are roughly equal. Therefore, if a wavefront
is circular it has a low probability of containing handwriting. To
determine when to discard such circular wavefronts we calculate
an inverse eccentricity value ecc−1 as the number of points in the
wavefront (W ) divided by the length L of the longest path within
it (Equation 4).

ecc−1 =W/L (4)

Wavefronts that are following a stroke of handwriting such
as those in Figures 6 and 9 tend to be long and skinny, with a low
ecc−1 value. On the other hand, Figure 10 shows an example of
a (green) circular wavefront that was pruned because of its high
ecc−1 value.

Since such circular wavefronts tend to occur at the end of
a stroke it makes sense to prune them, and in practice this op-
timization improves the accuracy of Intelligent Pen, saving com-
pute time and avoiding exploring areas of the image with no hand-
writing.

4.7 Path Pruning
As we go through the steps above we keep track of each con-

sensus path we find. We then use three conditions to prune out
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Figure 8: Consensus path end point e (orange) is extended to the
edge of the wavefront by choosing the point pi that is the furthest
point from S that has e on its shortest path.

(a) Original handwriting image (b) Initial Cost Map. Form lines
set to high cost.Note high-cost area
around the form lines

(c) The wavefront after several
timesteps.

(d) Cost map with wavefront points
set to infinite cost.

(e) The wavefronts after several
more expansions

(f) The cost map continues to ex-
pand with the wavefronts.

Figure 9

false positives, as outlined in Algorithm 3. These conditions are
the cost-per-pixel (pi.cpp in Algorithm 3), inverse eccentricity
(pi.ecc), and order expanded (pi.order). The cost per pixel is de-
fined as the cumulative cost of the path divided by its length. The
inverse eccentricity of a path is defined as the number of pixels
in the wavefront divided by the length of the path and is used to
penalize circular wavefronts (see section 4.6). We use the order
in which the paths were found as a third pruning criterion because
the wavefronts are expanded in cost order, so the last ones to be
explored are less likely to contain handwriting.

As outlined in Algorithm 3, once these three values are cal-
culated for each path we normalize them, then use a weighted
sum of the three to determine a final pruning cost. We can then
apply Otsu thresholding to this set of pruning costs to remove any
high-cost paths.

Figure 11 shows how Algorithm 3 is used to detect false pos-
itives. Figure 11a shows handwriting with all the strokes initially

Figure 10: A wavefront at the end of a stroke (green) expands in
a circle and is pruned.

Algorithm 3 Pruning High Cost Paths

Given a list of consensus paths P, and weights wc,we,andwo:
i← 0
for pi in P do

pi.cpp← p.cost
p.length // cost per pixel of path

pi.ecc← p.wave f ront.count
p.length // eccentricity of p’s wavefront

pi.order← i // order in which paths were found
i← i+1

for pi in P do
pi.cpp← normalize(p.cpp)
pi.ecc← normalize(p.ecc)
pi.order← normalize(p.order)
pi.pruningCost ← (wc ∗ pi.cpp) + (we ∗ pi.ecc) + (wo ∗

pi.order)
t← getOtsuT hreshold(paths)
for pi in P do

if pi.pruningCost > t then
P.remove(pi)

extracted by Intelligent Pen. The highest cost paths, marked in
blue, are removed by Otsu thresholding, leaving the results shown
in 11b. The qualitative examples shown in this paper all used
pruning weights of wc = 1, we = 0, and wo = 0, but we are cur-
rently exploring ways to automatically tune these weights for bet-
ter results.

4.8 Additional Passes
In many cases one pass of the algorithm will miss some por-

tion of the text due to natural breaks in the handwriting, an incom-
plete set of seed points, etc. However, the algorithm can be repeat-
edly applied, with each iteration preserving information from the
previous one. Each pass uses the ending cost map from the pre-
vious pass where wavefronts associated with previously explored
costs are set high as in 9. This minimizes computation on subse-
quent passes by focusing the search only on unexplored regions.

Figure 12 shows how we obtain start points for additional
passes. After the initial pass (Figure 12b), we look for unexplored
handwriting by Otsu thresholding the image using only the unex-
plored points as input, then finding all the connected components
of unexplored pixels (Figure 12c). The final result, shown in Fig-
ure 12d, shows how the extra passes allowed us to recover some
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(a) Each path is assigned a final cost based on cost per pixel, eccentric-
ity, and the order found. High cost paths (blue) are removed using Otsu
thresholding.

(b) Results after removing high-cost strokes.

Figure 11: Pruning high-cost paths

of the missing strokes.

4.9 Combining and Ordering Paths
Having obtained a set of consensus paths, we then group

them together into larger connected components. In an ideal sit-
uation each connected component would represent an entire cur-
sive word. For example, in Figure 13, the name “Gibb” is all part
of one connected component (shown in green), while the name
“John” is part of a separate connected component (blue). In some
cases extra connected components can be created for capital let-
ters that don’t connect to the word, as well as in cases where wave-
fronts failed to connect properly (such as the base of the ‘J’ in
“John”).

As a final step, Intelligent Pen performs a basic ordering of
the pixels in each connected component. For each connected com-
ponent we build an ordered set of pixels as outlined in Algorithm
4. We start by adding the leftmost pixel to a stack. While the
stack is not empty we pop a pixel off the stack and add it to the
ordered set, then see if there’s a neighboring pixel not in the set
already. If there’s only one, we push it onto the stack and con-
tinue. If there are multiple neighbors not already in the stack or
the ordered list then we know we’re at an intersection, and we
want to take the branch that continues in the same direction as the
path we’ve been following. To do this we find the trajectory of the
past 10 pixels on the path, then calculate the predicted position of
the next point pi+1. Then for each neighbor ni we calculate the
difference di between ni and pi+1. We then sort the neighbors by
di, and push them onto the stack in that order. As a result, the
neighbor that changes direction the least is processed first, giving
the stroke continuity as shown in Figure 14.

5 Results
Two datasets were chosen to validate the effectiveness of the

algorithm: one provided by an ICDAR contest[1], and one pro-
vided by FamilySearch. The ICDAR dataset provided a quantita-
tive look at the algorithm’s performance, while the FamilySearch
Dataset provided several qualitative demonstrations of where In-
telligent Pen outperforms existing algorithms.

(a) Original Image

(b) The first pass misses the top half of the ’B’ and part of the ’J’

(c) Previously visited pixels (purple) are ignored on the second
pass. New start points (orange) are chosen using the unvisited con-
nected components (green)

(d) The second pass recovers additional strokes that were missed
on the first pass

Figure 12: Using additional passes to pick up missing strokes

5.1 Qualitative Results
The second dataset was a set of cursive names from histori-

cal documents. It was provided by FamilySearch along with the
transcriptions of the names obtained by volunteer indexers. The
images in this dataset all have noisy backgrounds, form lines cut-
ting through the handwriting, ascenders and descenders. Many
of the images have low contrast between the handwriting and the
background, as well as gaps in the strokes and other imperfections
in the writing. Figure 15 shows two pieces of handwriting from
this dataset, along with the strokes obtained by Intelligent Pen
after one pass. Figures 11 and 13 are also taken from the same
dataset.

Intelligent Pen recovers much of the handwriting while not
including the form lines. The J in Figure 11 is particularly suc-
cessful, fully recovering the descender and ascender while not fol-
lowing the form lines or the noisy horizontal lines. In Figure 15b,
Intelligent Pen correctly recovers all the strokes, but also picks up
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Figure 13: Once the strokes are obtained they are joined together
into connected components.

Algorithm 4 Ordering Paths

1: Given a list of connected points C, an empty list of points O,
an empty stack S, and an integer d:

2: Sort C from left to right
3: Grab first (leftmost) point in C and push it onto S
4: while S is not empty do
5: Pop point p off of S
6: Add p to O
7: Get all points N in C that neighbor p and are not in O or S
8: if There is only one point ni in N then
9: Push ni onto S

10: else
11: Fit polynomial function f to past n points
12: for ni in N do
13: Find next n points on same path as ni
14: for Each of these n points pi do
15: di = pi - f (pi)

16: Calculate sum d of all di

17: Order N by d
18: Push each ni onto S

some false positives on the inside of the ’B’ as well as on the ’k’
and ’h’. Figure 15d Is a nearly perfect example, though it does
pick up a stray piece of form line on the right edge of the image.

Figure 16 shows a few more examples. Figure 16b returns a
fairly complete set of strokes, but misses a section of the ’G’. The
connecting line between the ’l’s and the bottom half of the ’m’ are
missing because of the high-cost from their proximity to the form
line. The ’e’ and ’g’ in Figure 16d are likewise missing strokes
due to pruning high-cost sections containing the form line.

5.2 Quantitative Results
The first dataset examined was taken from a contest in con-

nection with ICDAR 2013[1]. It consisted of 605 signatures that
were acquired using a Wacom Intuos4 Large digitizing tablet and
a Wacom Inking pen. The signatures were written on a blank pa-
per on top of the tablet to acquire the online information, then the
paper was scanned to provide the data in an offline format. For
our analysis we used the 605 signatures that were provided with
numeric ground truth data (x, y coordinates).

Because the signatures were captured in a clean environment
using ink on a blank paper they lack several of the challenges
common to historical documents such as background noise, form
lines, and degradation. However, there were several examples of
low-contrast, light strokes and minor gaps in the handwriting.

The online data consisted of a series of points representing

Figure 14: The strokes are ordered to correctly navigate junctions
such as the loop in ‘h’

Mean Distance: 2.584
% within 1 pixel: 12.8%
% within 2 pixels: 45.6%
% within 3 pixels: 68.4%
% within 4 pixels: 79.4%
% within 5 pixels: 86.5%

Table 1: Comparison of Ground Truth for the ICDAR Dataset
with strokes extracted by Intelligent Pen. All numbers are aver-
aged over all 605 signatures

the trajector of the pen, marked as green squares in Figures 17 and
18. For each image, Intelligent Pen was used to extract a series of
pixels representing the strokes of the signature, marked in red in
the examples.

For each ground truth point the distance was calculated to the
nearest stroke pixel identified by Intelligent Pen. Table 1 gives a
summary of the results:

One thing we observed when evaluating these numerical re-
sults is that, perhaps due to parallax problems inherent in the cap-
ture method employed for these signatures, the online data does
not necessarily match up with the scanned images of the ink signa-
tures. For example, Figure 18 shows a representative case where
the online data was a few pixels off from the handwriting. A vi-
sual examination of the results shows that the results obtained by
Intelligent Pen, because they followed the handwriting, were a
few pixels off from the ground truth but overlay very closely with
the actual strokes. We believe that without the parallax offset, the
agreement between the green points and Intelligent Pen would be
much closer.

6 Future Work
As has been shown, Intelligent Pen has great potential to re-

cover strokes from degraded images of historical documents. One
limitation of the results presented in this paper is that the form
lines are manually specified. To fully automate the process a bet-
ter method for initializing the cost map for form lines is needed.
We are also currently exploring a new method for training the cost
function that uses the cumulative histogram of several training im-
ages instead of a fixed sigmoidal function.
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(a)

(b)

(c)

(d)

Figure 15: Examples of Intelligent Pen’s performance on images
in the FamilySearch dataset

7 Conclusions
While it’s not yet a perfect solution, we have shown that In-

telligent Pen is capable of overcoming many of the barriers to
handwriting extraction in historical document images. Its success
on the ICDAR dataset shows its ability to perform well on hand-
writing for which it has not been trained with good quantitative
comparison. Analysis of the results obtained on the FamilySearch
images shows its potential for opening doors to the challenging
problem of handwriting recognition in older, noisy historical doc-
uments.
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