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Abstract
Medical images in biomedical documents tend to be complex by
nature and often contain several regions that are annotated using
arrows. Arrowhead detection is a critical precursor to region-
of-interest (ROI) labeling and image content analysis. To detect
arrowheads, images are first binarized using fuzzy binarization
technique to segment a set of candidates based on connected com-
ponent principle. To select arrow candidates, we use convexity
defect-based filtering, which is followed by template matching via
dynamic programming. The similarity score via dynamic time
warping (DTW) confirms the presence of arrows in the image.
Our test on biomedical images from imageCLEF 2010 collection
shows the interest of the technique.

Introduction
Motivation

Essential information is often conveyed succinctly through graph-
ical illustrations and figures/images in biomedical publications.
Medical images tend to be complex by nature, and are often anno-
tated with graphical overlay pointers, such as arrows and asterisk.
Medical researchers often use these pointers to highlight mean-
ingful regions-of-interest (ROIs) (see Fig. 1), while minimizing
distractions from other less relevant regions. Additionally, they
are often referred to in figure captions and mentioned in the ar-
ticle text. Therefore, detecting arrows could help identify mean-
ingful ROIs and annotate them with the concepts appearing in the
biomedical text [1, 2]. This paper improves on prior work in ar-
row detection toward meeting this goal in image content analysis.

Related work

We find that there are few techniques reported in the literature
to detect overlaid arrows. Existing methods rely on sparse pixel
vectorization, segmenting text-like and symbol-like objects, and
global or local thresholding.

In [3], Dori et al, proposed a technique to detect arrows based
on sparse pixel vectorization [4]. The concept relies on the cross
sectional runs (or width runs) of black image regions (assuming
arrow in black). These runs represent the line at intervals along
the tracking direction and records the middle points of these sec-
tions. The points are then used to construct vectors. The vector-
ization process results in many thick short bars from the arrow
heads that are then used to make a decision. The technique uti-
lizes an interesting application but is limited to machine printed

line images. Features such as eccentricity, convex area and solid-
ity has been used to detect arrows, but the current techniques are
limited to regular arrows (i.e., straight arrows showing left, right,
top and bottom) [5]. Additionally, the method uses pre-defined
threshold to avoid small objects and noise. Cheng et al use text-
like and arrow-like objects separation, assuming that arrows are
shown in either black or white color with respect to the back-
ground [6]. From the binary image, arrow-like object separation
employs a fixed sized mask (after removing the small objects and
noise as in [5]), which are then used for feature computation such
as major and minor axis lengths, axis ratio, area, solidity and Eu-
ler number. A recent study uses a pointer region and boundary de-
tection to handle distorted arrows [7], which is followed by edge
detection techniques and fixed thresholds as reported in [8, 9].
These candidates are used to compute overlapping regions, which
are then binarized to extract the boundary of the expected point-
ers.

Fundamentally, edge-based arrow detection techniques are
limited by the weak-edge problem [5–7]. No matter how ro-
bust the arrow detection techniques are, hard thresholding (either
global or local) is one of the primary reasons for failure. This
means that a hard threshold cue often weakens the decision in
pointer detection. For edge detection in binary or grayscale im-
ages, most state-of-the-art methods use classical algorithms like
Roberts, Sobel and Canny edge detection. Template-based meth-
ods are limited since they require new templates to train new
images. Also, it may be necessary to re-evaluate the threshold
values when new images are used. Edge-based techniques are
still considered since sampling points can be remarkably compact
compared to solid regions, especially when broken boundaries
are recoverable. In biomedical images, one of the major issues
for a broken boundary is non-homogeneous intensity distribution,
where pointers overlap with content. According to Hori and Doer-
mann (1995), broken lines can be recovered when gaps are small
but, in practice, they are often inaccurate [10].

Contribution outline

Our method can be summarized as shown in Fig. 2. It relies on
a grayscale fuzzy binarization process at different levels. Sim-
ilar to previously reported work [11], candidates are segmented
based on connected component (CC) principle. These candidates
are filtered using hull convexity defect-based technique. This step
helps prune artefacts (or unwanted noisy connected components)
and store arrowhead-like candidates. Next we perform template
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(a) (b) (c)
Figure 1. Three examples showing different types of arrows pointing specific image regions. These are taken from published biomedical articles.
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Figure 2. Overall system workflow in block format. Block-wise explanation can be found in section ‘method’.

matching using dynamic programming to confirm whether the
candidate is an arrowhead. In our assessment, An arrow is said
to be detected if their matching score exceeds an empirically set
threshold.

Unlike the common state-of-the-art methods, our method
uses four different levels of fuzzy binarization. This ensures that
overlaid arrow candidates are not missed. however, it may result
in repetitions. We note that the primary variation in an arrow ap-
pearance is due to its tail (shape and size). Therefore, our method
limits itself to just detecting arrowheads.

The remainder of the paper is organized as follows. In sec-
tion ‘method’, we explain our concept in detail, where it mainly
includes binarization process and candidate selection. Results are
reported in experiments section, including a comprehensive state-
of-the-art comparison. In the conclusion section, we state conclu-
sions and provide next-steps.

Method
Fuzzy binarization
In biomedical images (see Fig. 1), arrows appear with either high
or low intensity to enhance their visibility in the image. In addi-
tion, in many cases arrows are blurred, overlapped or surrounded
by textured areas. In such contexts, typical binarization tools that
are based on fixed threshold values are unable to perfectly extract
candidate regions. Therefore, we focus on an adaptive binariza-
tion tool, which is based on a fuzzy partition of a 2D histogram of
the image, taking into account the gray level intensities and local
variations [12]. 2D Z-function criteria based on the optimization

of fuzzy entropy are then computed from this histogram to auto-
matically set the threshold. Z-function employs two kernels: low
level and high level cuts, in addition to direct inversions. The lat-
ter issue (image inversion) takes opposite image intensities into
account. Altogether, four different binarized levels are processed,
as illustrated in Fig. 3. In Fig. 3 (a), arrow candidates are encir-
cled in both red and black (with respect to the background color).
The main idea of using four different levels of binarization is not
to miss the overlaid arrows. Furthermore, deformed and/or dis-
torted arrows can be discarded since the arrows are repeated in
other levels of binarization. In Fig. 3 (b), some of the arrows are
repeatedly segmented.

From a pool of several candidates (see Fig. 3 (b)), we are
required to select arrow-like candidates. In what follows, we de-
scribe a complete candidate selection process in detail.

Candidate selection

Our candidate selection process is based on the characteristics of
the arrowhead, which can typically be represented by a triangle.
Unlike the previously reported work [11], we do not take tail in-
formation into account. One of the primary reasons is that it may
vary geometric signatures computed from extreme points of a tri-
angle (i.e., triplet) because tail structures tend to vary from time
to time. Such a change will affect overall appearance of the arrow
(Fig. 4). After we detect arrowhead, we will take the correspond-
ing tail into account since both came from the same CC.

To detect an arrowhead, the following steps are carried out:
1) convexity defect-based arrowhead candidate cropping; and
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Figure 3. Fuzzy binarization (of Fig. 1 (c)): (a) four different levels (level 1 to level 4), where the segmented arrows are encircled both in red and black with

respect to the background color; and (b) a collection of all segmented CCs including arrows (encircled in red).

. . .
Figure 4. Examples showing the changes in tail structure (plus its absence).

2) arrowhead candidate matching with the templates.

Convexity defect-based arrowhead candidate cropping

To select arrow-like candidates, we apply hull convexity defect
concept (see Fig. 5). A set of points along the contour of the
binary CC are defined to be convex if it contains the line seg-
ments connecting each pair of its points. In a convex combina-
tion, each point xi in the set S is assigned a weight or coefficient
wi in such a way that the coefficients are all non-negative and sum
to one, and these weights are used to compute a weighted aver-
age of the points. For each choice of coefficients, the resulting
convex combination is a point in the convex hull, and the whole
convex hull can be formed by choosing coefficients in all possible

(a) (b) (c)

(d) (e)
Figure 5. Arrowhead candidate cropping: (a) an arrow, (b) convex hull, (c)

convexity defect, (d) a complete convexity defect region, and (e) arrowhead

candidates.

ways. Expressing this as a single formula, the convex hull is the
set:

{
∑
|S|
i=1 wixi|(∀i : wi ≥ 0)∧∑

|S|
i=1 wi = 1

}
. This means that the

convex hull of a finite point set S ∈ Rn forms a convex polygon
when n = 2. In Fig. 5 (b), an example is shown. Using such a
convex hull, we attempt to remove tail since their exists convex
shaped silhouettes in both sides (see Fig. 5 (c)), which is com-
puted by subtracting an original candidate from the convex hull.
In Fig. 5 (d), the convexity defect region is shown, which is just
a convex hull of both convex shaped silhouettes. At the end, in
Fig. 5 (e), arrowhead candidate(s) is(are) selected by subtracting
an original image with the convexity defect region.
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Arrowhead candidate matching with template
To confirm arrowhead candidates (see Fig. 5), we apply a template
matching technique. We extract a feature along the contour and
match with the predefined templates using dynamic time warping
(DTW) technique. The arrowhead candidate is confirmed when
the similarity score crosses the empirically designed threshold.

Feature extraction. Along the contour, we have a set of coor-
dinate points, P = {pi}i=1,...,n. To extract feature vector ( f ), we
compute the change in angle with respect to x-axis from any con-
secutive pair, f = {αi}i=1,...,n, where αi = arctan

(
yl−yl−1
xl−xl−1

)
. This

goes in a cyclic order either clock wise or anti-clock wise. In
our feature vector, continuous redundancy of αi can be possi-
ble, αi = αi+ j, j = 1, . . . ,m, where m ≤ n. Therefore, it is de-
sired to express the contours of shapes with a few representa-
tive pixels (called the dominant points). Through polygonal ap-
proximation [13–15], we represent a digital curve using fewer
points such that the properties of the curvature of the digital
curve are retained. Next the geometrical properties like inflex-
ion points or concavities can be evaluated. In our implementa-
tion, to make it simple and effective, we compute the difference
between the angles and check whether it crosses the threshold,
ε . The choice of ε is usually user-defined. This means we take
αi if |αi−αi+1| ≤ ε . Like most line fitting/polygonal approx-
imation (or dominant point detection) methods, it can be made
non-parametric by using the error bound due to digitization as a
termination condition. Fig. 6 shows three examples, where the
changes in angles are shown at all dominant points. To make the
feature vector rotation invariant, one needs to follow either clock-
wise or anti clock-wise to compute changes in angles.

Dynamic time warping (DTW). DTW allows to find the dissim-
ilarity between two non-linear sequences potentially having dif-
ferent lengths [16, 17]. In Fig. 6, one can notice the variations
in feature vector from one arrowhead to another. Let us consider
two feature sequences: f1 = {αi}1=1,...,n and f2 = {β j} j=1,...,m
of size n and m, respectively. The aim of the algorithm is to pro-
vide the optimal alignment between both sequences. At first, a
matrix of size n×m is constructed. Then for each element, local
distance metric δ (i, j) between the events ei and e j is computed
i.e., δ (i, j) = (ei− e j)

2. Let D(i, j) be the global distance up to
(i, j),

D(k, l) = min

D(k−1, l−1),
D(k−1, l),
D(k, l−1)

+δ (k, l)

with an initial condition D(1,1) = δ (1,1) such that it allows
warping path going diagonally from starting node (1,1) to end
(n,m). The main aim is to find the path for which the least cost
is associated. The warping path therefore provides the difference
cost between the compared signatures. Formally, the warping path
is, W = {wk}k=1...l , where max(i, j) ≤ l < i+ j− 1 and kth ele-
ment of W is w(i, j)k ∈ [1 : n]× [1 : m] for k∈ [1 : l]. The optimised
warping path W satisfies the following three conditions: boundary
condition, monotonocity condition and continuity condition. We
then define the global distance between f1 and f2 as,

∆( f1, f2) =
D(n,m)

l
.
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Figure 6. Three examples showing a complete process (from left to right)

starting from an original candidate (resulting from fuzzy binarization - see

Fig. 3), arrowhead cropping (see Fig. 5) to feature extraction after polygonal

approximation.

The last element of the n×m matrix gives the DTW-distance be-
tween f1 and f2, which is normalised by l i.e., the number of
discrete warping steps along the diagonal DTW-matrix. Overall,
DTW measures the similarity between two sequences, and can be
summarized as follows.

1) If the cropped candidate is not actually an arrowhead, DTW
results in high cost. The results are opposite to those arrow-
head candidates.

2) Thanks to DTW, noise in arrowhead (along the contour) does
not let the cost to go beyond the threshold. This means that
some of the arrowheads with noisy artefacts connected to them
are still detected.

3) Feature extraction and DTW matching techniques provide
robustness to rotation and scale changes. As an example,

∆( , ) = 0.00 and ∆( , ) = 0.00

Experiments
Datasets, ground-truth and evaluation protocol
The imageCLEF dataset[23] is used for testing. It is composed
of 298 chest CT images. Each image is expected to have at least
one arrow, and there are 1049 pointers, in total. For all images
in the dataset, ground-truth of the pointers were created and each
ground-truth includes information like arrow type, color, location,
and direction. For validation, for any given image in the dataset,
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Table 1: Performance comparison (in %).
Previously reported methods Template-based methods

Metric Our method M1 [6] M2 [8] M3 [7] M4 [11] GFD [18] SC [19] ZM [20] RT [21] D-Radon [22]
Precision 88.50 81.10 22.80 84.20 93.14 75.10 68.30 55.20 59.50 62.10
Recall 93.80 74.10 77.80 81.60 86.92 78.33 71.40 57.70 63.60 65.30
F1-score 91.09 77.00 35.00 83.00 89.94 76.68 69.82 56.40 61.48 63.65

(a)

(b)
Figure 7. Examples of when the proposed method succeeds and fails: (a)

noisy artefacts connected along the tail does not affect the method, and (b)

they do largely affect when connected with arrowhead.

our performance evaluation criteria are precision, recall and F1-
score,

precision =
m1

M
, recall =

m1

N
and

F1 score = 2
(
(m1/M)× (m1/N)

(m1/M)+(m1/N)

)
,

where m1 is the number of correct matches from the detected set
M and N is the total number of pointers (in the ground-truth) that
are expected to be detected.

Result and analysis
Our results
Table 1 shows the performance evaluation scores in terms of pre-
cision, recall and F1-score. In the reported results, we prioritize
the recall measure since we do not like to miss arrow candidates.
The method achieved F1 score of 91.09%.

Our method is able to detect arrowheads regardless their tail
structure. But, if the shape of the arrowhead is affected by noisy
artefacts, the proposed method fails. Fig. 7 shows both examples:
noisy artefacts that are connected along the tail, and noisy arte-
facts that are connected with arrowhead. Also, the method does
not detect highly curved arrows since convexity defect-based ar-
rowhead cropping does not yield expected arrowhead candidates
(i.e., almost all curved arrows are missed).

Comparative study
Further, the comparative study with state-of-the-art methods has
been made. In this comparison, our benchmarking methods are
categorized into two groups: 1) state-of-the-art methods that are
specially designed for arrow detection; and 2) common template-
based method by using well-known state-of-the-art shape descrip-
tors.

Recent arrow detection methods. Four well-known methods from
the state-of-the-art that are specially designed for arrow detection
are used: 1) global thresholding-based method (M1) [6], 2) two
edge-based methods (M2:M3) [7, 8], and 3) a template-free geo-
metric signature-based method [11]. The results are provided in
Table 1, where method 4 (M4) performs the best with precision,
recall and F1 score values 93.14%, 86.93% and 89.94%, respec-
tively.

Template-based methods. In case of template-based method, we
created 11 templates (arrows) having different shapes (includ-
ing sizes). The template size can further be extended in ac-
cordance with the dataset. To extract shape features, we took
the most frequently used shape descriptors (in computer vision)
from the state-of-the-art. They are 1) generic Fourier descrip-
tor (GFD) [18], 2) shape context (SC) [19], 3) Zernike moment
(ZM) [20], 4) R-transform (RT) [21] and 5) DTW-Radon [22].
As before, results (precision, recall and F1-score) are provided
in Table 1. Among all shape descriptors, GFD provides the best
performance.

On the whole, considering such a dataset, the proposed
method outperforms the best state-of-the-start arrow detection
method by more than 1% F1 score, and the template-based (shape
descriptor) method by more than 16% F1 score, at the cost of low
precision and high recall.

Conclusion & future work
In this paper, we have presented a new method to detect over-
laid arrows in biomedical images. Images are first binarized via
fuzzy binarization tool to segment a set of candidates. To select
arrow candidates, we use a hull convexity defect-based arrowhead
cropping, which is followed by template matching via dynamic
programming. In our assessment, (using imageCLEF 2010 col-
lection), our results outperforms the state-of-the-art methods.

To the best of our knowledge, this is the first time arrow de-
tection has been done without using tail information since vari-
ations in the shape and size of the tail change an overall shape
of the complete arrow. As our next steps, we plan to integrate
previously reported techniques (state-of-the-art methods) that can
be used as pre- or post-processing steps. Further, use of machine
learning instead of using template-based approaches, would be
our immediate concern.
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