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Abstract
We propose a human-in-the-loop scheme for optical music

recognition. Starting from the results of our recognition engine,
we pose the problem as one of constrained optimization, in which
the human can specify various pixel labels, while our recogni-
tion engine seeks an optimal explanation subject to the human-
supplied constraints. In this way we enable an interactive ap-
proach with a uniform communication channel from human to
machine where both iterate their roles until the desired end is
achieved. Pixel constraints may be added to various stages, in-
cluding staff finding, system identification, and measure recogni-
tion. Results on a test show significant speed up when compared
to purely human-driven correction.

Introduction
Optical Music Recognition (OMR) holds potential to trans-

form score images into symbolic music libraries, thus enabling
search, categorization, and retrieval by symbolic content, as we
now take for granted with text. Such symbolic libraries would
serve as the foundation for the emerging field of computational
musicology, and provide data for a wide variety of fusions be-
tween music, computer science, and statistics. Equally exciting
are applications such as the digital music stand, and systems that
support practice and learning through objective analysis of rhythm
and pitch.

In spite of this promise, progress in OMR has been slow;
even the best systems, both commercial and academic, leave
much to be desired[7]. In many cases the effort needed to cor-
rect OMR output may be more than that of entering the music
data from scratch[8]. In such cases OMR systems fail to make
any meaningful contribution at all.

The reason for these disappointing results is simply that
OMR is hard. Bainbridge [17] discusses some the challenges of
OMR that impede its development. One central problem is that
music notation contains a large variety of somewhat-rare musi-
cal symbols and conventions [4], such as articulations, bowings,
tremolos, fingerings, accents, harmonics, stops, repeat marks, 1st
and 2nd endings, dal segno and da capo markings, trills, mor-
dants, turns, breath marks, etc. While one can easily build rec-
ognizers that accommodate these somewhat-unusual symbols and
special notational cases, the false positive detections that result of-
ten outweigh the additional correct detections they produce. Un-
der some circumstances, some not-so-rare symbols fall into this
better-not-to-recognize category, such as augmentation dots, dou-
ble sharps, and partial beams.

Another issue arises from the difficulty in describing the
high-level structure of music notation. Objects such as chords,
beamed groups, and clef-key-signatures, are highly structured and
lend themselves naturally to grammatical representation, how-
ever, the overall organization of symbols within a measure is far

less constrained. The OMR literature contains several efforts to
formulate a unified grammar for music notation [10, 11]. These
approaches represent grammars of primitive symbols (beams,
flags, note heads, stems, etc.) and begin by assuming a collec-
tion of segmented primitives. While our grammars have signifi-
cant overlap with these approaches, one of our primary uses for
the grammar is the segmentation of the symbols into primitives —
we do not believe it is realistic to identify the primitives without
understanding the larger structures that contain them. Kopec [12]
describes a compelling Markov Source Model for music recogni-
tion that simultaneously segments and recognizes. However, the
approach addresses a small subset of music notation and does not
generalize in any obvious way. In particular, our primary focus is
on the International Music Score Library Project (IMSLP), while
Kopec’s model covers a small minority of the examples encoun-
tered there.

Other difficulties stem from the kinds of image degradation
encountered, including poor or variable contrast, skew and warp-
ing of an image caused when the document is not aligned or flat
in the scanner bed, hand-written marks, damage to pages, as well
as other sources.

Some recent research has been dedicated to the improve-
ment of fully automated OMR systems in post-process fashion,
or other ways that leave the core recognition engine intact. These
efforts either create systems that adapt automatically [16, 24], add
musically meaningful constraints for recognition [1, 5], or com-
bine multiple recognizers to achieve better accuracy [9, 7]. How-
ever, OMR research is still a long way from our shared goal of
creating large scale symbolic music databases. Hankinson et al.
[15] created a prototype system for distributed large-scale OMR,
which converts a collection of Gregorian chant scores into sym-
bolic files to facilitate their in situ content-based retrieval, though
the approach still requires a large amount of careful proofreading
and correction. In light of these many obstacles and our collec-
tive past history, it seems unwise to bet on fully automated OMR
systems that will produce high-quality results with any consis-
tency. Instead we favor casting the problem as an interactive one,
thus putting the human in the computational loop. In this case
the essential challenge becomes one of minimizing the user’s ef-
fort, putting as much burden as possible on the computer, (but no
more). There are many creative ways to integrate a person into the
recognition pipeline, allowing her to correct, give hints, or direct
the computation. This work constitutes an effort in this direction.

Our first attempt to bring the human into OMR pipeline built
a user interface allowing the correction of individual primitives:
stem, beam, note head, single flag, sharp, augmentation dot, etc.
Thus the user’s task was simply to cover the image ink by adding
and deleting appropriate primitives. A benefit of this approach is
that it presents the user with a clearly-defined task that doesn’t re-
quire knowledge of the system’s inner workings. There are, how-
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ever, several weaknesses to this approach: the human tagging pro-
cess is laborious; it fails to provide important syntactic relations
between primitives; it requires the person to precisely register the
primitive with the image; and it allows the person to create unin-
terpretable configurations of primitives (say a stem with no note
head) creating havoc further down the OMR pipeline. Our aim
here is to improve on all these weaknesses while still presenting a
simple task to the user.

Our current approach first presents the user with the origi-
nal recognition results, obtained through fully automatic means.
The user may then label any individual pixel according to the
recognition task at hand. For instance, during system recogni-
tion the user may label a pixel as white space or bar line, while
during measure recognition we use a richer collection of labels
including, closed/half/whole note head, stem, ledger line, beam,
sharp, single flag, etc. The system then re-recognizes subject to
the user-imposed constraint. Since our recognizers embed highly
restrictive assumptions on the primitives they assemble, a single
correction often fixes a number of problems at once. Human and
machine then iterate the process of providing and synthesizing
human-supplied constraints into recognized results.

This approach leaves the registration problem — the precise
location of primitives — in the hands of the machine, where we
believe it belongs. Furthermore, since our system can only recog-
nize meaningful configurations of symbols, we avoid the problem
of trying to assemble human-tagged composite symbols that may
not make sense. While the resulting process may still be labo-
rious, our results indicate that the human burden can be reduced
considerably by employing this strategy. Furthermore, there are
many other ways of introducing human-specified constraints into
the recognition process, thus the current effort constitutes an ini-
tial exploration of a longer-term goal.

Interactive OMR
Various authors, such as Rebelo [13], suggest that interac-

tive OMR system could be a realistic solution to the problem,
though the central challenge of fusing the human and machine
contributions still remains open. Human-in-the-loop computation
has received considerable attention recently [23]. It has been ap-
plied to a wide variety of areas, such as retrieval systems [19],
object classification [20], character recognition [18], document
indexing [25], image labeling [22] and fined-grained visual cate-
gorization [21]. Romero [26] proposed a Hidden Markov Model
(HMM) for computer-assisted text transcription, in which the
user-imposed prefix is used to constrain both the sequence de-
coding and language priors. The potential of all these different
applications is summarized in von Ahn’s statement [18]: “Human
processing power can be harnessed to solve problems that com-
puter cannot yet solve.”

There have already been several OMR systems taking into
account human-in-the-loop computation. For instance, Fujinaga
[4] proposed an adaptive system that could incrementally improve
its symbol classifiers based on human feedback. Church [6] im-
plemented an interface accepting user feedback to guide misrec-
ognized measures toward similar correct measures found else-
where in the score. Our system uses human feedback in an en-
tirely different manner — as a means of constraining the recogni-
tion process in a user-specified manner, thus leveraging the user’s
input in the heart of the system. It is worth noting that our ap-

proach constitutes a generic framework that poses human-in-the-
loop recognition as constrained optimization, applicable beyond
the specific confines of OMR.

Human-Directed Recognition
As motivation consider the example given in Figure 1. Sup-

pose our recognition misses the upper note head of the chord (Fig-
ure 1b). Then suppose the user labels a single pixel that belongs
to the missing note head as solid head (Figure 1c). When the
system re-recognizes subject to this constraint, the note head, its
associated ledger line, accidental and stem portion may all be rec-
ognized correctly, with the extra objects resulting from inherent
constraints in the recognizer. We strive for results in which mul-
tiple recognition errors are fixed with a single piece of user input,
thus making good use of the user’s time.

Figure 1: Symbol re-recognition with user input

For all recognition components of our system, including staff
finding, system identification, and symbol recognition, we formu-
late the essential tasks as optimization problems. Letting x denote
a pixel location in the image, and I(x) the grey level intensity at x,
we have four types of probability models for these intensities in-
dexed by M = {b,w, t,n}. These correspond to pixels we believe
to be black, white transitional, and null[1], with the probability
models denoted by pb, pw, pt , pn. For instance, a solid note head
could be modeled as an ellipsoidal region of pixels labeled black,
surrounded by a transitional region, surrounded again by a region
labeled as white. All other pixels in the image would be labeled
as null.

For a possible image interpretation, H, we assign each image
pixel to one of the four models through the function MH(x). For
instance, the interpretation may be a particular configuration of
staff lines tracked throughout the image, while MH(x) could label
these lines as black with the remainder as null. We compute the
score of a particular hypothesis as

SH = ∑
x

log
pMH (x)(I(x))

pn(I(x))
(1)

In theory, the sum extends over the entire image, though hypothe-
ses generally label many pixels as null which only contributes 0’s
to the sum of Eqn. 1, thus we confine the sum to the region of
pixels not labeled as null. Our approach for all phases of recogni-
tion begins by optimizing SH subject to the inherent grammatical
constraints on the hypothesis [1].

In formulating human-directed recognition, we allow the
user to introduce various constraints by labeling individual pix-
els. For instance, the user may specify that a certain pixel must be
labeled as a staff line, bar line, note head, stem, sharp, beam, etc.
Thus, at any point in our interactive computation we have a col-
lection of user-supplied constraints, C = {(xi, li)} for i = 1, . . . ,n,
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meaning that the user forces the pixel at xi to be labeled as li. From
these constraints we develop an additional term to our objective
function:

TH = ∑
x

t(x,PH(x))

where PH(x) is the label of location x according to the hypothesis,
H, and

t(x,PH(x)) =


C x = xi,PH(x) = li some i
−C x = xi,PH(x) 6= li some i

0 otherwise
(2)

Thus the objective function gives a bonus of C whenever the user-
specified constraint is satisfied, and a penalty of −C if it is not.
Our constrained objective function is then

QH = SH +TH . (3)

We choose C large enough so that satisfying the constraints is the
first priority of the recognizer, essentially disallowing hypotheses
that do not respect the constraints. The work flow of our system
is illustrated in Figure 2. At the highest level the user is required
to follow a specific order of three sequential steps:

1. The system begins with staff finding. Here the user must
correct any misrecognized staves before moving on the the
next step, though they are rare.

2. Systems, subsystems, and bar lines are recognized. Again
the user must correct errors resulting from this phase before
moving on.

3. The contents of the measures are recognized, one by one.
The basic process begins with the automatically recognized
results. Then user and machine iterate between offering
human-supplied constraints and automatic re-recognition
subject to these constraints. The user creates constraints by
clicking on individual pixels and labeling the pixels with an
appropriate tag. The recognized results will be automati-
cally saved.

Users correct errors by clicking on any incorrect recognized
pixel and giving the desired label for the location. The system
accepts these locations and labels and use them as constraints in
the recognition process.

Staff Finding
Staff identification provides an illuminating example of our

human-in-the-loop strategy. First, we summarize briefly the
recognition strategy that finds the initial staves for the user.

The first phase of our staff finding algorithm chooses a col-
lection of full-page-width overlapping image slices so that each
staff line must be associated with at least one image slice that
completely contains the staff and no other staves as in Figure 3.
For each such slice we track the height of the 5 parallel staff
lines, allowing the vertical positions to vary gradually over the
width of the image, assuming that such a staff exists (it may not
in some slices). Each such trace can be described by a collec-
tion of black pixels that mark the staff position. We score each
trace using Eqn. 1 applied only to these pixels using the black
model and seek the optimal trace through DP. Similar algorithms
are found throughout the OMR literature. A complementary DP

algorithm then seeks the optimal partition of the vertical dimen-
sion of the image into slices, where each slice can be labeled as
either a staff line (scored under the data model above), or as blank
space (scored under the null model). We run the algorithm at a va-
riety of different staff spacings and choose the optimally scoring
configuration.

The important observation is that the permissible labelings
of black pixels are highly constrained: these pixels occur in non-
intersecting structures of 5 parallel lines of fixed spacing whose
height varies gradually if at all. Consider the case in which our
algorithm fails to identify a staff line, for instance, by mistaking
a flurry of ledger lines as a staff line. In such a case, a single
hand-labeled pixel on a correct staff line position will constrain
the recognition engine to find a global interpretation consistent
with the constraint. Similarly, we may choose to label a rectangle
containing a “false positive” staff line pixels as white space, thus
creating a different type of constraint that achieves the same re-
sult. While errors of the staff finding algorithm are comparatively
rare, this approach easily fixes the few errors we do observe, usu-
ally with a single iteration of labeling followed by re-recognition.

We will reuse this basic channel of information flow between
human and computer in other aspects of our system. A virtue of
this approach is that the user employs a uniform method of com-
munication regardless of the intricacies of the recognition algo-
rithms.

System Identification
In a musical score staves are grouped in systems that identify

staves that are played at the same time. The primary feature iden-
tifying a system is that the staves in the system share the same
horizontal bar line positions, optionally extending these bar lines
between the staves. Thus, bar line identification and the partition
of staves into systems are inextricably linked. For this reason we
estimate systems and bar lines simultaneously. We consider every
collection of consecutive staves as a possible system, seeking the
optimal configuration of bar lines for each. Thus, if there are N
staves there are N(N−1)

2 possible systems to be considered. For
a candidate system, we seek the best configuration of bar lines
subject to a minimal separation constraint between bar lines. We
formulate this problem as optimizing Eqn. 1 using the candidate
bar line locations, finding the globally best configuration using
DP. As with staff finding, we label the bar line pixels as black, all
all other sites are labeled null.

Having scored each candidate system we seek the best par-
tition of the staves into systems, where the score of a particular
grouping into staves into systems is the sum of the data model
scores for each system. This optimal partition is easily identified
with DP, once again nesting one DP problem inside another.

Again we have a problem where the permissible configu-
rations of black pixels are highly constrained since each system
must place the bar lines in identical horizontal positions. The al-
gorithm has an incentive for grouping staves together, even though
this decreases the degrees of freedom in placing bar lines, since
this allows the algorithm to correctly explain bar lines that extend
between adjacent staves, as they often do. For system identifica-
tion a single pixel hand-labeled as a bar line or a single rectangle
labeled as white space causes global changes to the recognized
systems. An example will be presented in our experiments.
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Figure 2: Workflow of human-directed OMR system

Figure 3: Staff-line recognition. The top-down sliding windows contain either no staff or a single staff. We simultaneously decode the
page staff structure and recognize the precise location of staves in the staff-containing windows.
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Figure 4: Left: Graph for the clef-key-signature structure. Right: Recognition accomplished by finding the optimal partition into labeled
regions where the labeling corresponds to a path through the graph.
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Figure 5: Left: Graph for the chord structure. Right: Graph for a beamed group.

Measure-Level Symbol Recognition
Measure recognition forms the heart of our system. In this

process where we seek a collection of non-overlapping symbol
hypotheses that explain the contents of a staff measure. There are
two phases to this process: finding potential symbols and resolv-
ing the overlap between these symbols.

We begin by launching dedicated recognizers for beamed
groups, isolated chords and notes, clef-key signature groups,
whole notes, isolated symbols such as rests, text dynamics, slurs,
and hairpin crescendos. In all cases except the isolated symbols,
we employ model-based recognizers that look for grammatically-
constrained hypotheses that restrict the shape, as with slurs and
hairpins, or restrict the possible configuration of primitives, as
with beam groups and isolated notes. For instance, the mono-
tonic nature of the tangent angle in a slur provides a grammatical
constraint on the (height,angle) “states” that can be used in recog-
nition. A simple grammatical example can be seen in Figure 4
which describes a model for the clef-key-signature complex found
at the left edge of a staff. The graph in the left panel of the figure
expresses the notion that the structure begins with one of several
possible clefs, followed by up to 7 possible sharps or flats, whose
vertical positions are known given the clef — each legitimate in-
terpretation corresponds to a path through this graph. The right
panel of the figure shows the goal of our recognition: we seek a
labeled partition of the target region in which the segment labels
come from a path through the graph. Given a partition and a la-
beling, the positions of the clef and accidentals are determined,
thus we can compute the data score, Eqn. 1, for this interpreta-
tion. We compute globally optimally scoring interpretation (par-
tition and labeling) using DP. This basic recognition paradigm is
a common one found throughout the document recognition litera-
ture and elsewhere.

This essential recognition approach is generic and is used for
various other symbol recognizers. For instance, the left panel of
Figure 5 describes a simplification of the grammar we use for iso-
lated chords, involving constrained configurations of stems, note

heads, and ledger lines. Similarly, the right panel of the same
figure shows are grammar for beamed groups. In both of these
cases we create regular grammars that, in essence, draw all pos-
sible configurations of the primitives and seek the globally best
explanation of the data. In the case of the chord grammar the par-
tition of the image is along the vertical dimension, while for the
beamed group it is along the direction of the beams.

After we identify our possible hypotheses we allow them to
compete for overlapping regions by “auctioning off” the contested
image portions. We do this by allocating the contested region to
both objects, recognizing the other subject to this allocation con-
straint, taking the best scoring joint (and non-overlapping) inter-
pretation. These processes are described in more detail in [2].

The interactive portion of measure recognition begins by pre-
senting the user with our recognizer’s result for the measure, su-
perimposing the recognized objects in color over the original. The
user then labels single pixels or entire rectangles with descriptive
tags such as stem, solid note head, sharp, ledger line, slur etc.
Some of the labels may provide additional information, such as
3-beam or 2-flag to give the recognizer more precise information.
The system then re-recognizes the entire measure subject to the
user-supplied constraints. The constraints are easy to impose in
the individual recognizers simply by adding a bonus when a con-
strained pixels is labeled correctly, or imposing the bonus if not.
User and computer alternate their contributions of supplying con-
straints and constrained recognition until the user is satisfied with
the result.

An illustrative example is shown in Figure 6. The original
incorrect interpretation provided by the recognizer is shown using
the dashed path. After the user clicks on the 4th flat and labels the
pixel as flat, the constrained recognizer finds the bold path which
correctly interprets the clef-key-signature complex.

Most of our recognizers work by first identifying possible
candidate locations, then by employing the appropriate dedicated
recognizer at the location. For example, beamed groups, isolated
notes and chords, slurs, and hairpins all work this way. The in-
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teractive interface allows the user to add and delete candidates as
well, thus ensuring that all necessary candidates are present, and
that the recognition is not burdened by false positive candidates.
The latter lead to unnecessary computation, but more importantly,
may produce unwanted measure symbols that “win out” over the
ones we seek. Thus editing the candidates gives the user a way to
nip these unwanted results in the bud. In the iterative process the
user may edit candidates and label pixels in any order desired.

Experiments
As staff finding errors are comparatively rare, we focus our

experiments on the remaining two recognition steps of system
identification and symbol recognition. Our system identification
test set consists of 55 pages coming from 20 randomly selected
IMSLP [3] scores (16 of the 20 don’t have any system or bar line
errors), as described in Table 1. As discussed in Section Sys-
tem Identification we simultaneously group the staves into sys-
tems and recognize bar lines for each system. The partition of
staves into systems is equivalent to making a binary decision for
each of the “gaps” between staffs, identifying whether or not the
system continues through the gap. Thus when there are n staves
on a page there are n−1 such binary decisions, hence n−1 pos-
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Figure 6: Experimental result and illustrative diagram for the
user-supplied constraint used in recognition. Top Left: Initial
recognition without any user-supplied constraint; Top Right: Fi-
nal recognition with a single user-supplied constraint; Mid: User
place a label on the last flat key; Bot: Explanation of the human-
directed symbol recognition: dashed path for the original recog-
nition and bold path for the optimal one subject to user-supplied
constraint.

sible errors. It doesn’t seem possible to evaluate bar line errors
meaningfully unless the containing system is correctly identified
(see the top panel of Figure 7). For this reason we divided the
process into two phases: first we take user input to correct the
systems; once these are correct we allow further input to correct
the bar lines. We only count the bar lines errors from the point
where the systems are correct, and do so by including both false
negative and false positive bar lines as single errors.

For system identification the user is first presented with the
results from the fully automatic recognition process, then allowed
to correct interactively by labeling individual pixels or rectangu-
lar regions as bar line or white space. After each such user action
our algorithm re-recognizes subject to the new constraint as well
as past constraints. Table 1 tallies the results of this process. The
table indicates, for instance, that we were able to correct the 10
system errors with only 4 user actions, while the 192 remaining
bar line errors were corrected with 133 actions. In both cases we
arrive at the desired result with significantly less effort than hand
correction of each change, partly because we employ fewer ac-
tions, but also because the actions require less of the user. With
both systems and bar lines we see that the constraints in our mod-
els allow the process to fix errors that were not explicitly identi-
fied.

Figure 7 shows an illuminating example of how the system
works. In the top panel we see an incorrectly recognized system
with a collection of mostly incorrect bar lines shown in red with
gaps between bar lines of a system shown in blue. Thus the sys-
tem interprets this portion of the image as three systems, the first
and last containing only a single staff, while the middle system
contains two staves. According to our error tally, this counts as
3 system gap errors. The middle panel shows the user identify-
ing a single pixel, circled in red, as “bar line”, thus allowing the
algorithm to fix a large number of related errors, as shown in the
bottom panel.

For measure recognition we tested on the 3rd movement,
Notturno, from Borodin’s Second String Quartet. Figure 8
presents one example of how human-directed symbol recognition
works. The upper-left panel shows the original measure, while
the upper-middle panel shows our system’s initial recognition of
the chord which misses a half note head as well as the associated
natural sign and augmentation dot. The user clicks on a single
pixel, as in the bottom panel, identifying the pixel as part of a half
note head using the open tag. Using this information the system
is able to correctly identify the note head as well as its associated
accidental and augmentation dot. While not represented in the
figure, the grammatical relations between all of these symbols are
understood as well. We created hand-labeled ground truth con-
sisting of notation primitives for this movement by using fully
automatic recognition and then laboriously adding and deleting
various primitives. Needless to say, such ground truth requires a
great deal of effort to create, and is difficult to do at a large scale.
Since our system performs symbol recognition at the staff mea-
sure level, we also evaluate at the staff measure level by count-
ing (automatically) the number of false positive and false negative
primitives for each such measure. In doing so we only count er-
rors for the types of primitives that our system tries to identify, not
including, for instance, “wrong side” note heads and grace notes.

In the user correction phase we iterate between accepting a
human-supplied pixel label and re-recognizing the measure sub-
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Table 1: Evaluation of System Identification with user input

IMSLP ID Pages System Errors System Corrections Bar line Errors Bar line Corrections
11741 21 0 0 77 49
86550 12 1 1 27 17
113998 10 9 3 19 15
114193 12 0 0 69 52
total 55 10 4 192 133

ject to all current constraints. There are 36 possible labels the
user can assign to a pixel at present, including the 3 types of note
head (whole, half, and solid), 3 types of flag (1 flag, 2 flags , 3
flags), stems, sharp, flat, double sharp, ledger line, augmentation
dots, staccato, accent, slur, hairpin (cresc. and dim.), etc., and, of
course, white space. We assume that the user tries to minimize
the amount of work in achieving the results, as was the case with
these experiments. More specifically, certain types of user labels,
such as beams and stems, often fix a number of problems at once
due to the highly constrained relations between beamed group and

Figure 7: System Identification with user input (experiment on
the sixth page of Chopin’s Nocturnes, Op.15). Top: The origi-
nal recognition. Middle: User places identifies a single bar line
pixel circled in red. Bot: The result subject to the user-specified
constraint.

chord primitives. Thus we assume our users will add these labels
first, when needed.

Table 2: Evaluation of Measure Recognition with user input

Measures Primitive Errors Corrections Remaining Errors
119 423 235 25

Figure 9 shows us the average number of corrections made
by the i-th (i = 1,2, . . . ,9) user input. The dotted line in the figure
at height 1 represents our baseline, since if primitives were cor-
rected one-by-one there would be 1 user action for each corrected
error. The figure partitions the measures by the number of errors
incurred in the initial recognition. From these graphs one can see
that the benefit for our approach is greatest in the hard measures
(with many errors), which is where the majority of the user’s time
is spent. The figure also shows that in each category the first sev-
eral user actions give the most benefit while the incremental ben-

Figure 8: Symbol Recognition with user-supplied constraint (ex-
periment on the third page of the third movement, Notturno, of the
second Borodin String Quartet). Top Left: The original measure.
Top Middle: The initial recognized result. Top Right: The sec-
ond recognized result with one extra user input. Bot: The place
where user added constraint.
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efit of the later user actions decreases. Table 2 aggregates over
the entire experiment showing a total of 423 corrections result-
ing from 235 clicks. 25 errors remain uncorrected through this
process through various limitations of recognition engine. For in-
stance, the current parameter settings may make it impossible to
recognize certain configurations. We show the evolving recogni-
tion process over a measure in the website below1.

Our symbol representations have tree-like structures. For ex-
ample, any number of stems may belong to a beam, while a sev-
eral note heads may belong to the stem, while accidentals and
other modifying symbols may belong to the note head. When the
user corrects one of the leaf nodes of a tree, the benefit is restricted
to the symbol in question since there are no symbols “down-
stream” to benefit from the added information. For example, if
the system misses an accidental, the user-supplied constraint can
provide no benefit beyond recognizing and precisely locating the
symbol. While we didn’t distingushing between “leaf node” and
“non leaf node” corrections in our evaluation, it is clear that the
benefit, as measured in primitive detections, will be distinctly dif-
ferent in these two cases.

While these experiments show that this approach decreases
the user’s correction effort considerably, there are additional ben-
efits. For one, the tedious and sensitive process of registration is
relegated to the computer, shifting this burden away from the user
and resulting in greater accuracy. In addition, we are guaranteed
that all resulting composite structures (beamed groups, chords,
clef-key-signature structures) are composed of meaningful con-
figurations of primitives.

Discussion
Given the difficulty of optical music recognition, as well as

the great deal of domain knowledge necessary to correctly un-
derstand and interpret musical scores, it seems reasonable to cast
the problem in terms of human-in-the-loop computing thus giving
both machine and person contribute what they do best. We have
proposed a simple template for human input — the labeling of

1http://music.informatics.indiana.edu/papers/drr16/

Figure 9: Error decrease at the i-th input: Blue: average error
decrease in the measures having more than 10 errors; Magenta:
error decrease in the measures having more than 6 errors; Green:
average error decrease in the measures having errors.

individual or collections of pixels — that provides a uniform for-
mat for human-machine communication, without requiring any
knowledge of the system’s inner workings. The evaluation shows
that the system improves significantly on one-by-one correction
of primitives, while relieving the person of the difficult registra-
tion task, and guaranteeing that the eventual results are grammat-
ically meaningful.

We see this as the first step in a move toward user-directed
recognition, with several promising unexplored variations already
apparent. The current work involves making constraints on the
image labeling, though another interesting class of constraints
could be placed in the recognition models themselves. One simple
example involves the many objects that orbit around note heads,
such as articulations, accidentals, and augmentation dots. For a
given measure, beamed group, or note, any combination of these
could be “switched” on or off, thus constraining the search space
of the recognition process.

Another promising direction allows the user to edit the model
used for a particular note, beamed group, or measure, requiring
some number of notes in a chord, some number of chords in a
beamed group, or some collection of symbols in a measure. As
we further constrain the model the problem begins to resemble
the registration problem, rather than recognition. Similar kinds
of model restrictions apply to system identification, for instance,
allowing the user to specify the maximum or minimum num-
ber of staves per system. Such a constraint would be helpful,
for instance, in piano music where nearly all systems have two
staves. As above, these constraints could be switched on and off
as needed.

The current work treats the measure as the unit of analy-
sis. This makes sense given the current state of our system which
also uses the measure in this way, though this probably isn’t the
right unit for human-directed recognition. It occasionally takes
30 seconds or so to recognize a complicated measure, which is
not consistent with the interactive needs of the system we envi-
sion. A better idea would be to allow the user to build up the final
measure, symbol-by-symbol, treating past symbols as regions that
cannot be violated. This avoids the time-consuming phase of our
system that must find non-overlapping variants of the original hy-
potheses, and would allow faster response to the user’s requests.

We continue to improve the user interface so as to save more
time for the users. A message box with auto-competition or drop-
down selection will facilitate label selection. It is also possi-
ble to let the system actively predict the user-supplied labelings
so that the user can frequently skip the tedious input step. The
system can also offer different options to the user, for example
simple/complex beaming, beamed groups with one-way/two-way
stems, thus allowing the user to limit the application of more per-
missive and error-prone symbol models.

Finally, it is worth noting that we have proposed a gen-
eral paradigm for human-in-the-loop recognition in terms of con-
strained optimization that may apply to a wide variety of prob-
lems that require human assistance. Such recognition problems
arise in many domains, such as computer vision, natural language
processing, and machine listening, where considerable domain
knowledge is needed to guide and interpret data analysis, though
this knowledge is hard to incorporate directly into the recognition
models.
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