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Abstract. Study of the behavior of individual members in
communities of dynamic networks can help neuroscientists to
understand how interactions between neurons in brain networks
change over time. Visualization of those temporal features is
challenging, especially for networks embedded within spatial
structures, such as brain networks. In this article, the authors present
the design of SwordPlots, an interactive multi-view visualization
system to assist neuroscientists in their exploration of dynamic
brain networks from multiple perspectives. Their visualization
helps neuroscientists to understand how the functional behavior
of the brain changes over time, how such behaviors are related
to the spatial structure of the brain, and how communities of
neurons with similar functionality evolve over time. To evaluate
their application, they asked neuroscientists to use SwordPlots to
examine four different mouse brain data sets. Based on feedback,
their visualization design can provide neuroscientists with the ability
to gain new insights into the properties of dynamic brain networks.
c© 2016 Society for Imaging Science and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2016.60.1.010405]

INTRODUCTION
Application of the approach of social network analysis
(SNA) to mining and analyzing neurobiology data sets
can be valuable in helping neuroscientists to understand
and explore their data from different perspectives. The
application of SNA to the study of brain networks has
nodes mapped to a single neuron or a group of neurons,
while edges between nodes represent a functional connection
between neuronal sites. Neurons communicate through
electrochemical signals. They process incoming chemical
and electrical signals and transmit these signals to other
neurons and other types of cells. A neural network is a
group of connected neurons that performs a certain function.
A community is defined as a group of nodes that tend to
interact with other nodes in the same group more often
than the nodes outside the group. However, SNA is not
adequate to measure brain functional connectivity over time
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since it lacks the ability to capture dynamic changes in
the connectivity of these networks. Recently, there have
been attempts to ameliorate this problem, one of which
is dynamic network analysis (DNA).1 Detection of the
evolution of neural communities using DNA can be helpful
for understanding important changes in network structure
and individual node behavior over time.

We worked closely with neuroscientists who use the
DNA method to explore changes in functional behaviors
and their resulting effects on community identities of
neurons over time. The research goal of our domain
experts is to utilize social network modeling algorithms to
analyze mouse brain time-series imaging data to uncover
interactions among neurons across time and space. The brain
networks can be identified through the application of a
linear correlation method and then passing these correlation
metrics to a community analysis algorithm. Given the large
numbers of potential nodes (>20,000) in a typical brain
imaging experiment, effective visual representations are
necessarily needed to help domain scientists to study the
mouse brain using themodel of DNA. Although a number of
visualization tools have been developed during the last few
years, the development of applications for the visualization
and visual analytics of dynamic brain networks still requires
further effort. A major challenge in visualizing dynamic
brain networks is to reveal temporal features while at the
same time accounting for additional constraints imposed
by brain architecture, i.e., neuron location. Spatial and
non-spatial visual integration challenges are common across
domains, from geospatial applications to bioinformatics to
neuroscience applications.2

In this article, we present SwordPlots, an interactive
multi-view visualization application which assists the do-
main scientist to explore neuron behaviors within dynamic
communities in the mouse brain. Our visualization design
also provides the ability to filter data in a variety of ways in
order to make it easier for the user to explore the data. The
user can apply these capabilities to focus on a single node
of interest. A single node encapsulates many neurons, but
neuroscientists assume that the neurons within a single node
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have similar functionality since they are all in close proximity
to the same brain region. Once a node of interest has been
identified, the user has the ability to highlight the node to
gain more detailed information. We also create an additional
visualization view which displays some characteristics of the
communitymodel structure in space.Weuse two case studies
to illustrate the effectiveness of our visualization tool. The
visualization has the overall effect of reducing the data load
on the scientists by allowing them to pare down a large
number of neural connections within an experiment to those
areas of interest and examine their behavior in time.

The visualization has the contributions of allowing
neuroscientists to choose any one of the nodes to track
its behavior within dynamic brain communities during a
selected time range, providing sufficient interactions at both
the individual community level and the node level which
can offer the user an overview of the network and the
ability to focus on nodes of interest, and being designed for
a very new research topic which combines the DNA with
neuroscience. The remainder of this article is organized as
follows. Background knowledge is introduced in the second
section. The third section discusses the related work. In
the fourth section we present the implementation of our
visualization system in detail. The fifth section presents
two case studies, followed by a qualitative evaluation in the
sixth section. The seventh section discusses some limitations
and future work, and the eighth section summarizes the
contributions of the article.

BACKGROUND
Brain Network Analysis
Network analysis of brain imaging data has proven to
be a particularly challenging computational problem. For
example, functional magnetic resonance imaging (fMRI)
data using blood oxygen level dependent signals involves
the analysis of tens of thousands of voxels, each with their
own time series. Analysis of pairwise correlations across all
of these voxels produces millions of potential interactions
between voxels, leading to difficulties in producing a
coherent understanding of the patterns of activity. Early
efforts to analyze these data sets were focussed on seed-based
correlation approaches, whereby a time series in a region of
interestwas correlated to all other voxels in the brain.3–5 Such
methods have uncovered multiple different large-scale brain
networks, but are susceptible to biases based on the initial
seeds chosen. Multivariate approaches, such as independent
component analysis (ICA), have also been used and are
free from the biases inherent in visualizing networks based
on an initial seed.6,7 Most recently, graph-theory-based
methods have been applied to brain imaging data and
have revealed not only the presence of underlying networks
but also the logic underlying the organization of networks
by characterizing certain nodes as hubs, and by revealing
small-world behavior in certain brain networks.8

A potential problem with these approaches to brain
network analysis is their limited ability to extract the natural
dynamics of a network’s organization. That is, generally

these techniques are used to generate a single static network
map using a window of many minutes of the obtained
data. However, brain activity is intrinsically highly dynamic,
with functional associations between neurons and brain
regions that ebb and flow as the organism’s level of arousal,
focus of attention or topic of thought changes. Recently,
neuroscientists have applied DNA tools initially developed
for the study of social dynamics9,10 to the analysis of mouse
brain imaging data. Among the analysis tools commonly
used to understand the relationship between structure and
function in social networks is community inference. The
definition of ‘‘community’’ in the analysis of brain networks
is analogous to that of a neural assembly,11 whichwe define as
a group of neurons that act collectively and are functionally
connected.

Community Analysis
In network analysis, communities are generally defined
as groups of nodes that tend to have more and stronger
connections with each other than with nodes outside.
This concept is derived from social networks, and can
be applied in a variety of fields including biological
networks.12 Communities appear in networks where nodes
join together in tight groups that have few connections
between them. Several methods have been proposed to
find the structure, of which the best known is called
modularity optimization. Modularity is a standard metric
for finding and evaluating communities.13 Community
detection by modularity optimization on large networks is
a computationally challenging problem. Therefore, it needs
to use algorithms that find highmodularity partitions within
large networks in a short time. The Louvain algorithm14 is
ideally suited to finding communities in such cases. Besides
the advantage of being extremely fast, its steps are easy to
implement. In each static network, the nodes within the same
cluster have more edges connected to each other than to
nodes outside the cluster.

When dealing with dynamic networks, we are interested
in analyzing the evolution of communities across time that
can be defined as dynamic communities. We use the method
of Dynamic Community Inference (CommDy)9,15–17 to
study how the interactions and the structure of clusters
change over time. In this method, dynamic communities
are essentially viewed as dynamic clusters, where the
membership of the individual inside the cluster is determined
by a total value of ‘‘social cost’’. The definition of social cost is
based on two explicit assumptions about individual behavior,
motivated by research in the social sciences.9 First, it assumes
that individuals tend not to change their home community
affiliation too often.18 Second, it assumes that individuals
tend to interact with their respective home communities
most of the time.19 These assumptions are translated into
three cost parameters potentially incurred by an individual.
First, it posits a cost for a switch from one community to
another. Second, there is a cost of visiting a community of
which one is not a member. Third, in data sets for which
not all individuals are observed all of the time, there is a
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cost of absence for an individual who is not observed at
a gathering of the community of which it is a member. A
dynamic community is then defined as a time series of sets of
individuals amongwhom the overall social cost of interacting
is minimized.9,15,17 Figure 2 shows an example data set of
five individuals during six time steps. Circles are individuals
labeled with their identification numbers, while rectangles
are groups. Communities are identified by matching colors.

Brain Network Data and Characteristics
The data of dynamic brain networks we use in the article
are flavoprotein autofluorescence imaging data.20,21 The
technique of flavoprotein autofluorescence permits imaging
of subthreshold activity across broad areas of a living brain
slice with high sensitivity without introducing potentially
toxic dyes. The image data have dimensions of 172 (width)
× 130 (height) × T (time). Each pixel (node) in the
image represents a group of neurons. A weighted correlation
network is generated with a list of weighted edges connecting
pairs of nodes. Weighted edges ω(X ,Y ) represent the
linear correlation coefficient between any pair of two nodes
(X and Y ) over a certain time window t (Eq. (1)). The
threshold correlation coefficient and window size are both
systematically varied. By sliding the window one time step
(for each iteration) over the entire timeline (T frames), a time
series of correlation networks is obtained.

ω(X ,Y )= corr(X ,Y )

=
1

t − 1

t∑
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(
Xi−Xmean
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)(
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)
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Then we find snapshots of functional clusters using the
Louvain clustering method, followed by the application
of CommDy. To better understand the neuron behaviors,
we need to identify some characteristics of nodes in
dynamic brain networks based on the use of CommDy.
The SwordPlots application encodes the characteristics listed
below.
Raw Data Attributes. In our brain network data, the
coordinates of pixels show the real locations (regions in the
brain) of the signals, and the pixel intensities represent how
strong/weak the signals at the corresponding regions are.
Therefore, the pixel values as well as their coordinates within
the image are critical features for analyzing the network.
Node Degree. The node degree for many real networks can
yield insight into mechanisms underlying system growth.22
Thus, there are significant benefits to visualizing the overall

spatial shape of the degree distribution and its variation with
time.
Home Community. Each individual has its own home
community identification code to identify its membership.
The individuals belonging to the same community have
the same home community identification code. Neurons
belonging to the same community have similar functionality.
Temporary Community. Each individual also has its tempo-
rary community identification code to identify the group
where it stays at a certain time step. The individuals staying in
the same community have the same temporary community
identification code. Neurons have similar functionality to
their current community, but tend to return to their original
home community after a short time.
Consistency. Sometimes, the individual may have a stronger
connection with members in other groups. Thus, it visits
other communities for a short period of time, without
changing its home community identification code. The
consistency is a measurement of times when the temporary
community of a node is the same as its home community
during the entire activity period. For example, node 4 in Fig. 2
belonging to the blue community visits the pink community
at T3. Its consistency is 0.8. Neurons behave anomalously if
they have low consistency.
Switchingness. Switchingness measures the percentage of
times when a node changes its membership during the
entire activity period. For example, node 3 in Fig. 2 changes
its home community identification twice, from T1 to T2
and from T4 to T5. Its switchingness is 0.5. Neurons
with low consistency and high switchingness have unstable
functionality.

Task Analysis
Based on in-depth discussions with domain experts from
neuroscience and computational biology, we identified five
main tasks that could be enabled using a visualization
application. Task 1: observe multiple attributes of neurons
over time to understand how neurons interact with each
other (neuron behaviors). Task 2: interact with an individual
node (i.e, a group of neurons), such as selecting interesting
nodes at any region in the brain. Task 3: find relationships
between the functional and spatial structures in the brain,
to see whether two regions are close to each other or cross
two sides of the brain when they are highly correlated.Task 4:
identify patterns in how dynamic communities change over
time in order to show functional connectivity in the brain.
Task 5: generate hypotheses and make predictions about
brain data sets.

RELATEDWORK
Brain/Neuronal Connectivity Visualization
A wide range of visualization tools for biological net-
work analysis has been discussed in a comprehensive
survey by Pavlopoulos et al.23 Cytoscape24,25 is a popular
bioinformatics package for biological network visualization
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and data integration. In general, the analysis and visual-
ization of brain networks focus on either the cell level
or the region of interest (ROI) level. At the cell level,
Lin et al. developed the Neuron Navigator (NNG)26 for
analyzing, observing and discovering the connectivity within
the neural maze. Sorger et al. implemented an interactive
two-dimensional graph, neuroMap,27 to render the brain and
its interconnections. Al-Awami et al. designed NeuroLines28
for scalable detailed analysis of neuronal structures and
their connectivity at the nanoscale level. For the ROI
level, Li et al.29 presented a visual analytics approach for
the identification of ROI and brain network exploration.
Jianu et al.30 developed a visualization of two-dimensional
neural maps for connectivity exploration and analysis in
the human brain. Irimia et al.31 implemented a circle-based
visual representation of human connectomics for classifying
neuron connectivity relationships in the brain. Margulies
et al.32 provided an overview of various frameworks for
visualizing anatomical and functional connectivity in the
human brain. Christodoulou et al. presented BrainNetVis,33
which effectively quantifies and visualizes brain networks.
BrainNet Viewer,34 developed by Xia et al., is a graphtheo-
retical network visualization toolbox which uses MATLAB
to generate figures for brain connectomes. In addition,
the comparison of different connectivity data is another
important problem in the neurosciences. Alper et al.35
discussed matrix-based visual representations to compare
brain connectivity patterns. Forbes et al.36 introduced the
3D+Time Brain View application for visualizing functional
fMRI data in a stereoscopic environment; their system
illustrates the temporal evolution of brain activity clusters in
response to linguistic stimuli. Ma et al.37 used an animated
dual representation consisting of the enhanced node-link
diagram and the distance matrix to visualize dynamic brain
networks. However, it has the limitation on scaling to larger
networks.

Dynamic Data Visualization
A good overview of dynamic data visualization techniques
is presented by Beck et al.38 Beck et al. state that the time
dimension can be effectively mapped using animation or to
a space dimension representing a timeline.39,40 Animation
of a series of dynamic graphs has the advantage that
the entire screen can be devoted to the drawing of the
graph.41 GraphAEL42 supports the notion of time slice
to visualize evolving graphs with a temporal component.
Frishman and Tal developed an algorithm for drawing a
sequence of clustered graphs,43 and also created a method
for drawing a sequence of graphs online based on a
force-directed node-link layout.44 Animation of transitions
between time slices may also help users to understand
how the graph structure evolves.41 Bach et al.45 designed
a visual interface called GraphDiaries to improve support
for identifying, tracking and understanding changes in
dynamic networks. Several other studies46–48 also support
the idea that animation can be an effective way of presenting
transitions that are beneficial for the purpose of visualization.

Although animation is useful to visualize the dynamic
changes in networks, the exploration of animated graph
diagrams leads to high cognitive efforts due to our limited
short-term memory.49 A better overview is provided if
the time dimension is mapped onto a timeline and the
dynamic graph is visualized in a single static image.50
Compared with animation, the timeline approach makes
it easier for users to identify changes in the context of
the evolution, as they are still visualized on the screen.
Classic examples of time-series data visualization techniques
such as line graphs and bar charts focus on presenting
univariate data sets. Visualization of multivariate time-series
data is complex and requires special effort. A well-known
technique dealing with this problem is the ThemeRiver51,52
developed for document visualization. It is an intuitive
representation of the change between both variables and
time steps. Placing node-link diagrams on a timeline is a
simple way to visualize dynamic networks. Greilich et al.
designed TimeArcTrees53 for visualizing weighted, dynamic
compound digraphs by drawing a sequence of node-link
diagrams from left to right in a single view.When visualizing
dynamic communities, line graphs are generally used to
represent individual vertices, with color-coding presenting
community identity. Reda et al.54 focussed on revealing the
community structure implied by the evolving interaction
patterns between individuals in dynamic social networks.
Vehlow et al.55 combined a dynamic community structure
with a dynamic graph in a single image to reveal typical life
time phenomena of communities.

Besides mapping the time to the 2D space, visualizing
temporal data based on the space–time cube has become
another popular method for dynamic graph visualization.
Gatalsky et al.56 presented some exploratory analysis of
spatio-temporal data by using the space–time cube. Groh
et al.57 used an interactive three-dimensional model to
visualize activity and social proximity in streaming event data
during a given time period. SocioScape58 is an interactive
tool for the visual exploration of spatially referenced, dy-
namic social networks. The Wakame visualization system59

can support discovering anomalies and comparing perfor-
mance across multiple time series for multi-dimensional,
spatio-temporal data. Bach et al. introduced Matrix Cubes60
to represent dynamic networks based on the space–time cube
metaphor.

Although a large number of both neuronal connectivity
visualizations and dynamic graph visualizations exist, at-
tempting to integrate them is a challenge since the former
focus on spatial data and the latter focus on non-spatial
data. Maries et al. developed a framework called GRACE2
for the visual integration, comparison and exploration
of correlations between spatial and non-spatial data sets.
However, our goal is to visualize the dynamic change of
multiple abstract attributes (non-spatial) of mouse brain
networks (spatial) during a period of time. We found
that none of the existing visualizations enabled all of the
tasks defined in the section above. Thus, we introduce a
novel visualization application to assist domain experts in
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(a)

(b)

(c)

(d)

(e)

Figure 1. A SwordPlot includes multiple integrated components for representing time-series data and the community membership of a node in a dynamic
network. This figure shows the main elements of a SwordPlot: (a) the sword pommel for representing the community identifications (the circle for home
community and the rectangle for temporary community) of the node at the current time step; (b) the upper sword cross-guard for representing the node’s
temporary community identifications over time; (c) the lower sword cross-guard for representing the node’s home community identifications over time; (d) the
sword blade for representing the raw data (pixel value); and (e) the sword point used for changing the size of a SwordPlot.

Figure 2. Visualization of CommDy on an example data set including
five members across five time steps.15 Rectangles represent temporary
communities, while circles represent home communities. The same colors
indicate the same community identifications. At T1, there are three
communities: green, pink and blue. At T2, member 3 switches to the
pink community and member 2 switches to the green community. At T3,
member 2 is absent and member 4 visits the pink community without
changing its home community identification. At T4, member 0 is absent,
member 2 switches to the pink community, and member 4 comes back
to its home community. At T5, member 3 switches to the pink community
and member 2 switches to the green community.

exploring the dynamics of mouse brain networks at the
neuron level without losing their spatial reference. Figure 3
shows an overview of the pipeline to process the mouse brain
data.

VISUAL DESIGN
The main goals of our SwordPlots application are to explore
neuron behavior over time and discover the relationships
among the resulting dynamic communities in both space
and time. Our visualization technique uses a combination of
different visual representations, and customized interactions
to support exploration of the domain data. According to the
requirements of the domain experts, we implemented our

integratedmulti-view visualization systemwith the following
techniques.We choose to use timeline-based representations
to observe neuron behaviors over time (Tasks 1 and 4).
Animation may be helpful for Task 1 as well. Sufficient
interactions are provided for our domain scientists to interact
with individual nodes (Task 2). The space–time-cube-based
representation is used to find relationships between spatial
structures and network properties (Task 3). The SwordPlots
application includes four coordinated views: the image
control panel; a panel that shows recommendations and
enables the filtering of data; the Space–Attribute cube; and a
viewport that presents a number of SwordPlot visualizations
to represent individual nodes. Each of these views is
discussed below.

SwordPlot
In our design, we evaluated different visual encodings to
better represent important attributes of dynamic brain net-
works. Although the representation of circles and rectangles
shown in Fig. 2 is effective to visualize the community
identifications, it has limitations: it does not scale well to
more than a few nodes or a few time steps; it does not
clearly track how the home and temporary community
identifications of individual nodes change over a long time
period; it lacks any spatial references for the nodes. Thus, we
created a SwordPlot model (Figure 1), a timeline-based plot
for each node in the entire network. A detailed explanation
of the sword parts is shown in Figure 4. A SwordPlot
provides an overview of a node’s behaviors across an entire
timeline (Task 1) and makes it easy to identify interesting
behaviors at certain time steps, such as when it changes its
memberships or temporarily visits other communities. In
addition, displayingmultiple SwordPlots makes it possible to
compare different nodes at once to find patterns within the
data (Task 4). We also use a brain image slice view to display
the real locations (Task 3) of selected nodes represented by
SwordPlots.
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(a) (b) (c)

(d)(e)

Figure 3. Flow diagram: (a) mouse brain, (b) camera, (c) time-series imaging data of mouse brain slices, (d) generate dynamic communities using DNA
and (e) present the analysis results using the SwordPlots visualization.

Figure 4. A detailed explanation of the various visual encodings within the different components of a SwordPlot, showing the change in community over
time for a single node.

Sword Pommel.We still keep the visual representation of the
community identification shown in Fig. 2 using the color of
the circle to represent the node’s home community and the
color of the rectangle to show its temporary community. This
works well for a single node at a particular time step. The
triangle at the top left corner is used for mapping the node to

its location in the image of the mouse brain slice. Dragging
the sword pommel to move the SwordPlot to a new location
avoids overlapping by others.

Sword Body. The sword body is used to display the raw
pixel’s value represented by the yellow line during the
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selected time range. With the pixel values embedded, the
relationships between neuron signals and their community
identities/structures can be easily explored. This has the
benefit of providing users with a view to see the correlations
between these two attributes by visualizing the raw data pixel
values. The time labels are drawn on the sword body as well.
The time slider is used for zooming in/out on the SwordPlot,
so that the neuroscientists can focus on the time range of
interest.
Sword Cross-guard. The sword cross-guard is the bar-chart-
based representation. The heights of the bars in both the
upper and lower cross-guards are mapped to a statistic,
e.g., node degree in this article. Since the neuroscientists
are only interested in the node degree distributions in
time qualitatively, but not the exact values at certain
particular time points, we decided not draw the axes for the
cross-guards. As we discussed in the Brain Network Data
and Characteristics section, each individual should have
two identification codes: the home community represented
by the color of the upper cross-guard and the temporary
community represented by the color of the lower cross-guard.
We display the same color above and below if the member
stays in its home community. If the individual is visiting its
neighboring community at time t then we display a different
color above (home) and below (temporary). The reason
why we use two types of bar charts to represent the upper
and lower cross-guards is to distinguish the two community
identifications in a more obvious way. Missing cross-guards
mean that the node degree is zero. In other words, the node
is not active at the corresponding time. Clicking on the end
point of the thin bar in the lower cross-guard pops up a detail
panel showing some statistical information on the node at the
corresponding time step. The statistical information includes
somequantitative data, e.g., the pixel value, node degree, time
point, etc.
Sword Point.To havemore SwordPlots displayed and to avoid
overlaps of multiple SwordPlots in the main view, the user is
allowed to adjust the size of swords interactively by dragging
the sword point. Dragging the sword point toward to the
sword pommel decreases the size of the SwordPlot, while
dragging it away from the sword pommel increases the size.

Figure 5 is a demonstration of the sequence of changes
of a node’s individual community identifications. The node
with its membership in blue stays in the blue community
until the time 319, and then joins the red community
with change of its home community identification as well.
However, it comes back to the blue community at time 326
without changing its membership. At time 329, it leaves
the red community and becomes a member of the purple
community. In the next time steps, it visits the orange
community and then comes back to its home community.

Image Control Panel
The image of a mouse brain slice shown in Figure 6 is
used as a control panel to select an interesting node. The
user clicks on a node (pixel) in the image to draw a
SwordPlot (Task 2) in the main view and add it to the list

Figure 5. Transitions of the individual memberships of a node’s home
community (the lower part) and its temporary community (the upper part).
The node changes its home community identity from blue to red, and then
to purple. The node visits the blue community once when it belongs to the
red community, and visits the orange community once when it belongs to
the purple one.

of selected nodes as well. They click on the node in the
selected list to remove its SwordPlot from the main view.
Meanwhile, the image displays the corresponding locations
of the selected nodes, which builds the connections between
time-dependent attributes and the spatial information. In
addition, nodes in the selected communities are also drawn
on the image (Fig. 6). Playing animation helps the domain
scientists to observe the community structures at different
time steps and to track the evolution of communities.
Theoretically, the SwordPlots for all nodes can be displayed
in the main view simultaneously. However, due to the
limitations of the distinguishable colors andhuman’sworking
memory capacity, the number of selected nodes will not
exceed a certain value. We discussed this with our domain
experts and decided to use ten as the maximum number.

Recommendation and Filtering
Besides giving the ability for the user to explore some
interesting regions randomly, our visualization provides
recommendations as well to make the exploration more
efficient. The three recommendations are calculated based
on three characteristics: the community size, the node
stability and the node degree. The community size is based on
the total number of members the community has during the
entire time period. The stability is calculated by two factors:
consistency and switchingness. The higher consistency and
lower switchingness the node i has, the more stable it is
(Eq. (2)). The most connected nodes have high accumulated
node degrees during the entire time period T (Eq. (3)).
Again, as we indicated in the subsection above, we chose to
use the top ten recommendations due to the scalability of
the color encoding. We used ten categorical colors for the
top ten communities from the D3 color ordinal scales,61,62
and used Cynthia Brewer63 for the top ten stable and top
ten most connected nodes. The user clicks on the circle
buttons of the top ten communities to draw all of the
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Figure 6. The image control panel is used for selecting interesting nodes
and displaying community structures and identities. The recommendation
panel includes the top ten communities, top ten stable nodes and top ten
most connected nodes. The selected nodes are added into the list in the
last row.

nodes in the corresponding community. In Fig. 6, the top
five communities are selected to display on the image of
a mouse brain slice. However, only the top two are being
observed at the current time point. Fig. 6 also shows the two
most stable nodes with larger blue dots and the two most
connected nodeswith larger red dots. Filter sliders are used to
detect interesting features including time, node degree, node
consistency and node switchingness. The main contribution
of the filtering operation is to offer the user a way to explore
the relationships between different attributes. For example,
nodes that are located near the boundary of the activation
area may have higher switchingness than nodes in the center.
Nodes with higher degree have slightly lower consistency
compared with nodes with lower degree.

stability(i)= consistency(i)× (1− switchingness(i)), (2)

TotalConnections=
T∑
t=1

nodeDegree(t). (3)

Space–Attribute Cube
We create a 3D model to represent a network statistic with
the spatial reference in the brain networks. This is similar to
but has important differences from the idea of the space–time
cube. According to the technique of the space–time cube, the
vertical dimension represents the positions of an object at
different moments in time. In our 3D model, nodes can be
represented in a cube as dots placed vertically according to
one property value of the dynamic networks, such as node
degree. We call this 3D model the Space–Attribute Cube.
Color in the Space–Attribute Cube, like the SwordPlot, is
used to represent the community identifications. The Space–

(a)

(b) (c)

Figure 7. Space–Attribute Cubes at two time steps. Each individual node
is represented by a colorful dot. The color indicates the community that
the node belongs to. The X and Y coordinates show the real location of
the node in the brain. The height of the node represents its corresponding
node degree.

Attribute Cube reveals the distribution of node degrees of
all active individuals in space, and how the distribution
is related to the community structure. The left cube in
Figure 7 demonstrates such a case, with the nodes belonging
to the same community (red) located in different regions of
the brain (a)–(c) with very different distributions of node
degrees. One explanation is that the red nodes in (a) have
strong connections with the nodes at the top of (b) and (c),
but few connections with nodes that are also located in (a).

To overcome the problem of occlusion59 in 3D rep-
resentations (perspective projection) of data, the visu-
alization provides three options for the user to rotate
the Space–Attribute Cube along the X , Y , and Z axes
in either the clockwise or the anti-clockwise direction.
To discover how the property measured in the third
dimension changes over time, animation is applied to the
Space–Attribute Cube. The animation starts playing on
pressing the play button and pauses on pressing the pause
button. Once the animation is paused, the user can press
the left or right arrow key on the keyboard to advance
the animation one frame forward or in reverse. Animation
used in the Space–Attribute Cube provides a spatial form
representation for multivariate time-dependent data and a
temporal representation for multivariate spatial data. Fig. 7
presents different distributions of node degrees at two time
points. The left cube at earlier time indicates that the right
side of the brain has stronger connections than the left
side, while the right cube at later time shows the opposite
situation.

CASE STUDY
We used the imaging data of 172× 130× T , as described
in the Brain Network Data and Characteristics section, to
evaluate the SwordPlots application. Here, T is the number
of frames, which is different (between 1000 and 2000) for
different data sets. We build correlation networks based on
these 22,360 pixels per frame captured during T frames,
and then apply the CommDy method, as discussed in the
Community Analysis section, to the time series of these
networks.
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(a) (b)

Figure 8. The behaviors of two nodes in the coronal slices of the mouse brain (a) before and (b) after the corpus callosum cut are displayed using the
SwordPlots, with the snapshots of 2D and 3D views at two time steps.

Case Study I
For the first case study we looked at a coronal slice
preparation of a mouse brain. The data contain mirror-
image connectivity where the two cerebral hemispheres
are connected by a single easily manipulable conduit of
information flow: the corpus callosum. One hemisphere
of the brain is stimulated, and the activation of correlated
areas in the contralateral hemisphere is measured. To
assess whether the dynamic communities identified by
CommDy correspond to known neuronal networks, after
trans-hemispheric networks are characterized, the corpus
callosum is cut using microscissors. We then optimize the
CommDy analytical parameters based on known changes to
the network induced by callosotomy. All data are collected
at 70 frames per second using a 2.5× objective and a Retiga
Exi camera with 8 × 8 hardware binning and StreamPix
software for image collection. This produces pixel sizes of
approximately 24× 24 µm.

Figure 8 shows, in an in-vitro preparation, an example
of the behaviors of two nodes at analogous locations across
the two hemispheres in (a) the pre-cut and (b) the post-cut
conditions. From the SwordPlots in Fig. 8(a), we find that
the two nodes have similar trends of raw pixel value,
similar distributions of node degrees in time, and the same
community identifications (red) during most of the time.
This indicates the similar behaviors of the two nodes across
the two hemispheres. From the observation of the image
slice view using animation, we see the partially symmetrical
structure of the red community in both hemispheres where
the two nodes are located. We then find more nodes

with such similar patterns in that region using SwordPlots,
illustrating the connection between the left and right sides
of the mouse brain. The Space–Attribute Cube is used
to explore the community structure, which reveals some
information that cannot be retrieved from the image slice
view. For example, we may not be able to see any difference
between two time steps through the image slice views, but
we can obviously see the variation in node degree using the
Space–Attribute Cube.

After the corpus callosum is cut (see Fig. 8(b)), we can
easily see that the activation in the two hemispheres happens
at different times via the SwordPlots, and moreover that
there is no community across the two hemispheres. Since
there is a long period of silence between two activations,
animation is not an efficient way to identify when the
activation occurs.However, we can target the interesting time
periods directly by using the SwordPlot view. The views of the
Space–Attribute Cube also show an interesting phenomenon,
where a community (purple on the right side of the brain or
green on the left side) has a distinctly different distribution in
node degree, which causes the ring structures shown in the
image slice views. One explanation is that nodes in the outer
ring have strong connections with the nodes in the upper
right region, but few connections with each other.

Case Study II
For our second case study, we investigated the impact of
aging and/or peripheral hearing loss on auditory cortex (AC)
activity. We examined network activity in the AC in slice
preparations20,64 taken from young and aged mice. We used
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(a) (b)

Figure 9. The behavior of one node in the auditory thalamocortical slices of (a) a young mouse and (b) an aged mouse is displayed using the SwordPlots,
with the snapshots of 2D and 3D views at two time steps.

the auditory thalamocortical slice, which contains large areas
of the AC. For this study we had two main hypotheses. 1.
Aging is associated with diminished network associations
within the AC. 2. Changes in network activity with aging
are caused, at least in part, by peripheral hearing loss. Using
the SwordPlots visualization tool, we were able to assess the
likelihood of the validation of these hypotheses.

In a different animal, using an in-vivo preparation,
Figure 9(a) shows the behavior of a node in the AC in a
young mouse. Its SwordPlot indicates its consistency within
the red community during the active period. We can also
see an outer ring structure in this data set. However, the
SwordPlot of a node at a similar location in Fig. 9(b) of
an aged mouse shows frequent changes in colors within the
sword cross-guard area as well as inconsistencies between
the upper and lower cross-guard colors, indicating a high
switchingness and a low consistency. This demonstrates the
instability of the aged mouse brain.

We also found contrasting community structures in
the young and aged mice. In the young mouse, the red
community is mainly in the center of the AC surrounded by
the blue one, while in the aged mouse the red community
stays in the left part of the AC and the green/blue one is
located on the right side. The views of the Space–Attribute
Cubes also show that the young mouse has only one peak
of the node degrees, located in the center red community,
but the aged mouse has two peaks that are apparent on the
left (the red community) and right sides (the green/blue
community). These differences between the young and aged
mice, shown clearly in the SwordPlots application, provide
an initial validation for our hypotheses.

EVALUATION
To further evaluate our approach, we also interviewed two
graduate students who each have extensive experience in
visualizing functional neuroimaging data. The first is a
graduate student with over five years’ experience working
with MRI machines in a Speech and Hearing laboratory at
a research university. The second is a graduate student in
computer science who is working with a laboratory in the
Department of Psychiatry at another university to develop
techniques to analyze properties of the human connectome.
After a brief introduction to the system and an explanation
of its features and primary visual encodings, we conducted
a cognitive walkthrough, asking each of them to carry out
tasks using an example data set. During the walkthrough we
encouraged them to ask questions and to give us feedback.
We were interested primarily in the qualitative response of
experts who were not familiar with the specific design goals
of the technique, and to seewhat its utilitymight be to experts
in a different area, but who make use of similar data.

The feedback was generally positive; they both stated
that they liked using the system and that they found the
visualization approach interesting and potentially useful.
One of them said that the SwordPlot representation provides
an ‘‘easy way’’ to understand the ‘‘changing of community
identifications,’’ and that it ‘‘packages a lot of information
well.’’ However, they were split on the novelty of SwordPlot’s
visual encodings. One said that he had not seen anything like
it, while the other said that ‘‘the combination of timelines is
not novel,’’ but admitted that it did seem like it would ‘‘give
an intuitive and effective way’’ for him to explore his data.
One participant mentioned that he liked the way in which
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raw data were linked to the community identifications and
node degrees, and noted that it could be useful for revealing
potential correlations between those attributes.

In addition to these general comments, each of the
participants provided more detailed feedback about some of
our specific design choices. One of the participants wanted
to know why we limited users to the selection of a maximum
of ten simultaneous SwordPlots. We acknowledged that,
due to limits of screen space, there is a tradeoff between
the ability to show detailed information and displaying
more models, which could enable a user to find similar
patterns across multiple nodes. The participant then agreed
than more than five or six would probably provide an
overwhelming amount of information and would be difficult
to perceive. The other participant said that he would rather
have more detailed information provided as he could not
imagine the need to ever focus on comparing more than two
nodes at the same time. One of the participants liked the
recommendation operation, as it provides a useful starting
point for investigating the data. He told us that ‘‘it would be
nice to have the top ten least connected nodes available as
well,’’ and that he would like to have the ability to choose a
node with a specific rank. The other participant told us that
he liked the ability to apply a combination of filters, which
seemed like a helpful way to discover patterns, for example, to
see how certain nodes are sensitive to a certain feature given
a fixed range of other features.

Both of the participants indicated that they found the
3D view informative. One of them told us that it would
be ‘‘totally useful’’ to see the coordinated image slice view
and SwordPlots together. Both of the participants opened
the 3D view of the Space–Attribute Cube after they noticed
interesting patterns in the image slice view. One told us that
they would like to have the ability to interact further with
the 3D view of the Space–Attribute Cube. He also wanted
to know how the Space–Attribute Cube, and our tool in
general, would handle volumetric data rather than image
slices. Overall, both of the experts told us that they saw this
as a compelling tool overall, and indicated that they would be
interested in trying it out on their own data sets.

DISCUSSION AND FUTUREWORK
The two case studies indicated that our interactive multi-
view visualization application with animation can be of
significant help in the exploration of neuron behavior
within dynamic communities of mouse brain networks.
Further user studies will be necessary to document the
degree to which this visualization can be of help. While
the individual visual encoding is not novel, the combination
of visual encoding in a tool to handle spatial and non-
spatial information with the application of dynamic network
analysis to neuroscience research has not been performed
before. Our use of the multiple coordinated views through
interactive filtering and color-coding provided us with new
insight into this domain problem. In addition, it also steered
our investigation, and allowed us to identify changes in
analysis parameters that aided our visualization of these data

sets. Future work will include incorporating an option to
vertically align the SwordPlots to make comparison tasks
easier. We also plan to more clearly indicate links between
each SwordPlot and its corresponding node in the image.
Furthermore, we are exploring ways to extend the scalability
of the application, such as by providing an option to condense
the SwordPlots by turning off either the upper or the lower
part of the cross-guard if it is not currently required.

CONCLUSION
In this article, we presented SwordPlots, an interactive
application for visualizing neuron behavior within dy-
namic communities of brain networks. The design of the
SwordPlots application coordinates multiple visualization
approaches, including the use of animation to show change
over time, the introduction of a novel 3D representation
called the Space–Attribute Cube, and the SwordPlot itself,
which provides details about individual neuron behavior.
We tested the application using real-world image data on
mouse brain networks, showing that it aids domain experts
in fulfilling a range of visual analysis tasks, and we showed
that the application shows promise in other domains through
a qualitative study with two experts in neuroimaging. While
the response from the neuroscientists and the neuroimagers
was encouraging, we plan to improve the application both
to better fulfill the needs of the neuroscientists that we
collaborated with and to make it a more generally useful
tool for researchers with different types of dynamic data.
Specifically, we expect that our visualization would be useful
for any data set whose elements have a meaningful spatial
location and that can belong to and change communities,
such as data sets collected from studying animal social
interactions.
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