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Abstract 

In the last century, many vision scientists have considered 
individual variability in data to be “error,” thus overlooking a 
trove of systematic variability that reveals sensory, cognitive, 
neural and genetic processes. This “manifesto” coincides with old 
and recent prescriptions of a covariance-based methodology for 
vision. But the emphasis here is on using small samples to both 
discover and confirm characteristics of visual processes, and on 
reanalyzing archival data. This presentation reviews, briefly, 215 
years of sporadic and often neglected research on normal 
individual variability in vision (including 25+ years of my own 
research). It reviews how others and I have harvested covariance 
to a) develop computational models of structures and processes 
underlying human and animal vision, b) analyze and delineate the 
developing visual system, c) compare typical and abnormal visual 
systems, d) relate visual behavior, anatomy, physiology and 
molecular biology, e) interrelate sensory processes and cognitive 
performance, and f) develop efficient (non-redundant) tests. Some 
examples are from my factor-analytic research on spatiotemporal, 
chromatic, stereoscopic, and attentional processing. 

Introduction 
Here I report research examining individual differences (IDs) 

in a diverse variety of vision studies, and demonstrate how these 
differences contain systematic variability that elucidates sensory, 
cognitive, neural and genetic processes.  

Most vision science uses “experimental” paradigms, focusing 
on average differences across stimulus conditions, while treating 
IDs as “random error variance.” But data from many of these 
experiments contain a separate type of information relevant to 
studying visual mechanisms. Far less vision science has focused on 
“correlational” or “factor analytic” approaches which treat normal 
IDs as systematic and meaningful, reflecting the true variability of 
underlying processes more than random error.  

I propose a more extensive exploration of systematic IDs in 
visual data to identify “factors” of the visual mind, eye, nervous 
system and genome. In fact, attempts to understand vision by using 
IDs, and to understand IDs by modeling visual processes, have 
been pursued since the 19th century, when Bessel and others [1]-
[4] studied IDs in temporal detection among astronomers, and 
Galton [5]-[6] attempted to link visual performance to general 
cognitive abilities. This “manifesto” coincides with scattered, oft-
neglected prescriptions for a covariance-based methodology for 
vision, and with recent studies that interrelate IDs in functional 
organization, anatomy, physiology, heredity, psychophysics, 
optics, cognition, and multiple visual functions, using normal, 
clinical, developing and aging populations [7]-[31], [64]-[178], 
including my own work [32]-[53].  

But the primary emphasis here is on analyzing IDs using 
small samples obtained from typical experiments and archival 
data, to discover and confirm visual processes. 

 

         

            

 
Figure 1. Luminance spatial contrast sensitivity functions (CSFs) for a few 
individuals selected from larger samples. Upper panel: adults, photopic [38]. 
Middle panels: infants, photopic [31]-[32], [36]. Lower panel: adults, scotopic 
[44]-[45], [54]. Solid lines without points show means for complete samples. 
Orange, purple, green, and yellow delineate separate “factors.” Even for small 
samples, IDs at one SF correlate with IDs at neighboring but not distant SFs. 
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1. The variability in visual data is often 
systematic, not random. 

This principle becomes clear when inspecting the spatial 
contrast sensitivity functions (CSFs) in Figure 1, which contains: 

(A) Top panels: three CSFs obtained from a larger sample of 
human adults under photopic conditions [38].  

(B) Middle panels: a longitudinal sample of data obtained at 
photopic light levels from 4 exceptionally consistent infants at 4-, 
6, and 8 months of age [31]-[32], [36]. 

(C) Lower panel: three CSFs obtained from a larger sample of 
human adults under scotopic conditions [54], [44]-[45]. 

Even in these small samples, and without correlational or 
factor analytic statistics, a clear “intuitive factor analysis” is 
possible.  These data were selected to show that IDs at a particular 
spatial frequency are correlated with IDs at neighboring but not 
distant spatial frequencies. For instance, in the top panel (orange 
region), observer KB shows the highest sensitivity for all four 
spatial frequencies below 1 c/deg, while DT is near the mean, and 
HK is below the mean for all four.  But in the rest of the top panel 
(purple region), KB’s sensitivity regresses to the mean, DT drops 
below the mean, and HK rises above the mean. While results 
within a region (orange or purple) inter-correlate, results across 
larger regions seem not to inter-correlate (between orange, purple).  
And so, this typical (as I’ve found) example shows that even with 
very small samples containing negligible measurement error, 
systematic and potentially informative differences reside in IDs.  

The patterns evident in small samples are often consistent 
with what is found in much larger sets. For instance, Figure 2 
shows results for larger samples for spatial CSFs obtained for 
adults using luminance modulated gratings (as in Figure 1).  The 
upper and lower panels are for photopic and scotopic CSFs, 
respectively.  Each square within the matrix of squares represents a 
scatterplot. Each scatterplot plots log contrast sensitivities obtained 
for many individuals at one spatial frequency as a function of log 
contrast sensitivities contrast obtained for many individuals at 
another spatial frequency. For instance, in the scotopic data [44]-
[45], [54], in the second to left top square, the sensitivities of 50 
observers obtained using .2 c/deg gratings are plotted as a function 
the sensitivities of these 50 observers obtained using .4 c/deg 
gratings, with visibly high correlation. The correlation between .2 
c/deg and 1.2 c/deg is also positive, but not as strongly correlated. 
As such, regions of inter-correlation can be seen in these data.  As 
with Figure 1, regions of inter-correlation are marked by colored 
boxes, with distinct regions evident. And so again, in these 
comparatively large samples, a clear “intuitive factor analysis” is 
possible, even without correlational or factor analytic statistics. 

Although the example provided is for spatial contrast 
sensitivity functions, it is worth noting that such systematic 
variability with clearly delineated underlying factors is typical of 
high quality visual data collected using psychophysics (large 
numbers of trials per point, and relatively bias-free methods such 
as 2AFC) and many electrophysiological measures (e.g., 
electroretinograms and visual evoked potentials).  (See historical 
section). This is certainly the case in my own work and 
collaborations involving human spatial and temporal CSFs, using 
luminance and chromatic gratings, photopic and scotopic light 
conditions, psychophysics and VEPs methods, and adults and 
infants. It is also the case for many other types of data I’ve 
investigated, including spectral sensitivity functions in man and 
(genetically modified) mouse, binocular corrugated gratings, VEP 
contrast response functions, infant visual attention data, and color 
naming [32]-[53].   

                                        
Figure 2. Scatterplot matrices for full sample of individuals’ photopic and 
scotopic CSF data. 

2. Systematic variability is usually visible and 
interpretable in terms of underlying 
processes, even in data from a few 
individuals.  

When one inspects CSFs from adults, infants, and non-human 
species, patterns of individual variability consistent with 
spatiotemporal channels become evident.   

Figure 3, for instance, shows spatial frequency tuning curves 
for six foveal, scotopic processes postulated by Wilson and Gelb 
after modeling psychophysical masking data [55], [56].  The 
orange and purple regions from Figures 1 and 2 correspond to 
regions primarily detected by mechanisms A and B, respectively.   
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That is, it looks like the “sources of variability” (a term used in 
factor analysis) in Figures 1 and 2 are explained by, or consistent 
with, mechanisms A and B from the model of Wilson and Gelb. 

Similar indications of underlying mechanisms are visible in 
IDs for other published functions (e.g. spectral sensitivity, 
luminous efficiency, color matching, sensitivity of horizontal and 
vertical corrugations defined by binocular disparity).  But visual 
and perceptual scientists typically focus on average differences 
across experimental conditions (e.g., average differences in 
contrast sensitivity for different spatial or temporal conditons, or 
different ages).  
 
3. Analyses of IDs can be used to confirm 
what is already “known” about underlying 
processes, or to discover previously unknown 
visual processes.  

If one has a priori knowledge or a strong theory of the 
processes underlying a visual function, then confirmatory factor 
analyses should succeed in recovering those processes from IDs in 
that function.  This type of “confirmatory” analysis is contrasted to 
“exploratory” analyses, in which one uses individual differences 
and factor analyses to discover previously unknown processes or 
sources of variability.   

The difference between confirmatory and exploratory factor 
analyses is illustrated in Figure 4, for CSF data.  In a confirmatory 
analysis (upper section), one begins (Panel 1) with an a priori 
model of underlying spatially-tuned processes, and attempts to 
predict (blue arrow) the pattern of IDs obtained in empirical data 
(Panel 4, i.e., the types of patterns presented in Figures 1 and 2).  
In other words, are ID patterns within the data consistent with an 
existing model of optical, neural or genetic processes? In an 
exploratory analysis (Figure 4, middle section), one uses the 
pattern of IDs contained in empirical data (Panel 4) to infer or 
discover (red arrow) optical, neural or genetic processes. In both 

Figure 4. The nature of confirmatory and exploratory factor analytic models, 
using the example of spatial CSFs.  See text for details.  

 

Figure 3. A model of photopic spatial mechanisms based on computational 
modeling of visual masking functions.[55]-[56].  The orange and purple 
regions in this figure denote regions primarily determined by Wilson’s 
mechanisms A and B, respectively, and also correspond to the orange and 
purple factors shown in Figures 1 and 2. 

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.16HVEI-112

IS&T International Symposium on Electronic Imaging 2016
Human Vision and Electronic Imaging 2016 HVEI-112.3



instances, one makes assumptions (Figure 4, lower section) about 
how underlying processes combine to determine threshold (Panel 
2), and about how underlying processes vary across individuals 
(Panel 3).  In the example, an all-or-none combination rule is 
shown in Panel 2, and a discrete set of processes of constant shape 
and tuning vary in sensitivity across individuals.   Mechanisms 
tuned to high and low spatial frequencies are assumed to vary 
independently in the example.  

The terms confirmatory factor analysis (CFA) and exporatory 
factor analysis (EFA) are taken from the factor analytic literature. 
In both types of factor analysis, one might use visual inspection (as 
in Figures 1 and 2), correlations, factor analytic statistics, structural 
equation modeling, multidimensional scaling, principal component 
analyses, independent component analyses, or similar to confirm or 
explore putative underlying processes.  In CFA, the user defines 
which variables or items are related to the specified constructs or 
latent factors based on a priori theory, and tests to see if the a priori 
model fits the data. In EFA, the same statistics may be used to 
infer the presence of latent factors which are responsible for the 
shared variance in a set of observed variables.  The researcher does 
not specify a model or structure, and assumes that each variable 
could be related to each latent factor.   

Figure 5 demonstrates what I believe to be a powerful 
demonstration of a set of confirmatory analyses. Peterzell and 
Teller [38, 42] predicted that individual differences in their adult 
CSF data set would be consistent with Wilson’s model of spatial 
channels, mentioned previously. First, they determined that regions 
of high inter-correlation were found, consistent with the existence 
of sets of spatial frequencies that are detected by the same 
underlyng channel (i.e., Figure 2, top section). Statistical factor 
analyses, which derive variability sources (or factors) from the 
data, were then used to estimate channel tuning.  Two significant 
factors were found in the data. Both factors showed clear spatial 
frequency tuning. That is, when principal components or factors 
were rotated to approximate simple structure using Varimax, the 
factor loadings varied systematically with spatial frequency.  

The tuning of channels was estimated by fitting factor 
loadings to photopic contrast sensitivities using the following 
equation:  

                                                               mean log  
                                                       contrast sensitivityn  
Channel Contrast Sensitivityin = ---------------------------       (1)

              abs (1/factor loadingin)1/Q 
 
which determines the analyzer contrast sensitivity for factor i at 
spatial frequency n.  Q is the exponent of an often used probability 
summation equation, consistent with results from photopic 
masking and channel theory [55, 56].  For each of the factors at 
each spatial frequency, Equation 1 generated channel sensitivity 
values that can vary from near-zero (for factor loadings near zero) 
to the mean log contrast sensitivity (for factor loadings equal to 
one). 

The symbols in Figure 5 represent predicted contrast 
sensitivities that were calculated using Equation 1.  In the lower 
panel are the results from the initial study of Peterzell and Teller 
[38[, as well as the results from a second study under slightly 
different conditions which replicated the initial result [42].  

Thus, in an initial study and a replication, Peterzell and Teller 
confirmed that the channel model of Wilson and Gelb could 
account for individual differences in the data.  That is, the factors 
obtained from the data were close to matching the predictions of 
the existing model.   

Several examples demonstrate the variants of confirmatory 
analyses in some studies.  

 
A. Monte Carlo simulations of visual models 
successfully detect known underlying processes.  

In simulations, visual functions are created for simulated 
individuals by combining simulated, independently varying 
processes defined by existing models.  For instance, simulations of 
various models of spatial channels of adult and infant spatial 
channels yield statistical factors that accurately recover the known 
input [22], [34], [36].  

 
B. When individuals are genetically modified to 
add a visual process, the additional, separable 
process is detectable in patterns of IDs.   

As perhaps the only example of this confirmatory approach, 
IDs in chromatic sensitivity functions of transgenic mice 
(expressing a functional long wavelength [L] photo-pigment, in 
addition to S and M photo-pigments) were compared to 
unmodified wild type mice (expressing S and M photo-pigments 
only) [52].  Using the archival data of Shabaan et al. [57] Peterzell 
and Crognale verified the existence of an additional ID factor in 
the data from 5 transgenic mice compared to 5 wild type mice.   

 

Figure 5. Estimates of the contrast sensitivity of spatial frequency tuned  
covariance channels plotted as a function of spatial frequency.  Estimates  in 
the top panel are for yellow-black sinewave grating stimuli [42], and for 
white-black gratings from an earlier study [38].  The points denoted by the 
symbols are derived from Eq. 1, using the mean CSFs obtained, and factor 
loadings computed from the empirical data.  Smooth curves represent the 
spatial frequency channels A and B of Wilson [55]-[56] (see Figure 3).  
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C. “Known” processes can be recovered from 
archival data.   

In the most sophisticated factor analysis of visual data to date,  
MacLeod and Webster [23]-[24], for example, examined IDs in the 
color matches of normal human observers from the archival data of 
Stiles and Burch. Independent sources of IDs included the 
following identifiable factors: macular pigment density, lens 
pigment density, the spectral positions of three cone types, the 
covarying densities of the photo-pigments, and rod intrusion. Their 
factor analyses produced direct estimates the M- and L-pigment 
absorption spectra that matched, nearly, previously identified 
spectra.  Thus they confirmed an established model using the 
previously unexplored variability in archival data.   
 
4. Studies of IDs can test competing models 
of visual processes.   
 

The development of infants’ CSFs for luminance and 
chromatic gratings provides an example. Two classes of models, 
both based on the emergence of multiple spatial channels, have 
been proposed to account for CSF development.  One class 
suggests that each spatial frequency channel is fixed in spatial 
scale, but grows in sensitivity (i.e., a vertical shift) with age, with 
channels tuned to higher frequencies achieving measurable 
sensitivity only at later ages [58].  The second class suggests that 
multiple channels exist at birth, and that with age each individual 

channel shifts both in sensitivity (vertically) and in spatial scale 
(horizontally) toward higher spatial frequencies [59]-[61].  The 
observed developmental changes in the CSF, and psychophysical 
masking and adaptation data, can be fit by either model. 

Possible shifts in spatial scale of the individual channels were 
examined by applying ID theory and methodology to luminance 
and chromatic CSFs of human infants in a series of psychophysical 
and VEP experiments [32]-[34], [36-37], [39], [41], [43]. Data 
were analyzed in the same manner as with adults (Figure 5), and in 
each study revealed factors that appeared to shift as predicted by 
the scale-change model.  Figure 6 shows results from a 
longitudinal psychophysical study using luminance-modulated 
gratings [32], [33], [36], along with results from adults under 
comparable conditions [38]. IDs suggest the presence of at least 
two channels by 2 months of age.  The spatial scale of these 
covariance channels shifts with age, in support of the scale-change 
hypothesis, and specifically Wilson’s [61]-[62] model.  
 
 
5. Studies of IDs can discover previously 
unknown visual processes.   
 

Exploratory (vs. confirmatory) factor analyses are conducted 
when a priori knowledge of the underlying processes is absent.  In 
general, covariance in IDs is interpreted to indicate a univariant 
process, though alternatives possible. 

As an example, Peterzell, Schefrin, Tregear and Werner [44] , 
[45] examined the covariance structure of IDs underlying 50 
scotopic CSFs, using archival data [54].  The factor analysis was 
“exploratory” because little was known about scotopic spatial 
channels.   

The process underlying photopic CSFs had been modeled in 
terms of multiple channels selective for spatial frequency, with the 
lowest frequency channel obtained “foveally” using stationary 
sinusoidal gratings typically had its peak sensitivity near 1 c/deg 
[38], [42], [60].  But less was known about the processes 
underlying the scotopic CSF. The channels could vary 
considerably.  Hess and Howell  demonstrated that the CSF peaks 
near 0.2 c/deg when stimuli were presented scotopic luminances 
[63]. This low-frequency peak was unexplainable using only a 
band-pass channel peaking near 1 c/deg.  Hence, the researchers 
concluded that several spatial frequency channels exist at very low 
spatial frequencies but may operate as scotopic luminances only 
(or, similarly, the peak of a channel might shift to lower spatial 
frequencies at low light levels, due, perhaps, to a reduction of the 
influence of the surrounds of receptive fields). At the same time, 
Greenlee et al. [60] determined that the lowest adaptable frequency 
channel obtained using scotopic stationary gratings occurred well 
below 1 c/deg (as measured in rod monochromats).  They 
concluded that rod monochromats differed from normals. Equally 
likely from their results, though, was the possibility that scotopic 
vision, unlike photopic vision, contains multiple spatial frequency 
channels below 1 c/deg.    

And so an exploratory factor analysis was conducted in an 
attempt to estimate the number and nature of spatial channels 
mediating scotopic contrast sensitivity.  First, individual data (e.g., 
Figure 1, lower panel) and correlation matrices (i.e., Figure 2, 
lower panel scatterplot matrix) were examined, revealing evidence 
consistent with discrete multiple channels.  Factor analyses using 
the same methods as with photopic adult and infant data provided 
the results shown in Figure 7.   

Figure 6. Estimates of the contrast sensitivity of spatially tuned  covariance 
channels plotted as a function of spatial frequency [38], [32], [33], [36].  
Comparison of covariance channels obtained from IDs to the predictions 
derived from Wilson’s [61], [62] computational model of the development of 
spatial frequency channels (smooth curves).  As mean foveal cone spacing 
decreases and eye size increases with age, the peak sensitivity of each 
channel shifts from lower spatial frequencies to its adult value.  The 
covariance channels are superimposed on Wilson’s channels A and B  
{upper and lower). The covariance channels shift rightward to higher spatial 
frequencies with age, consistent with developmental scale change. 
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The symbols in Figure 7 (lower panels) represent predicted 

contrast sensitivities that were calculated using Eq. 1, the mean log 
scotopic CSF (Figure 1, lower panel), and the factor loadings from 
the factor analyses on either 12, 37, or 50 subjects (with only 12 
participants providing data at all 6 spatial frequencies).  

Three discrete factors were obtained from the IDs. For the 
two scotopic channels tuned to the highest spatial frequencies, we 
discovered (Figure 7, lower panels) that the tuning functions 
resemble those obtained for photopic vision, both from our own 
factor analytic studies, and from the aforementioned 
spatiotemporal model of Wilson ([55]-[56], as shown in Figure 5). 
That is, the symbols obtained from our data map onto the “A” and 
“B” spatial channels specified in the computational model.  In 
contrast to the photopic data, however, we discovered a single 
covariance channel in the scotopic data that is tuned to very low 
spatial frequencies (with a dashed line drawn through the points).  
Of course, this “discovery” is offered with caution.  Further 

research is needed  to validate the existence of this channel.  
 

6. Conclusion.   
 
The history of studying individual differences in vision has 

not been reviewed here in much detail. And yet it seems fair to say 
that the history is richer than most current researchers realize.  At 
various points in history, researchers have used factor analytic 
approaches and individual differences in attempts to elucidate 
vision and visual processes.  The groups interested in such research 
have included astronomers developing “personal equations” and 
“personal scales,” psychometricians studying human abilities, 
military researchers hoping developing screens, social and cultural  
psychologists  studying situational perception, as well as visual 
psychophysicists and neuroscientists studying visual processes.  
And topics in the visual literature include investigations into such 
diverse topics as dark adaptation, acuities (including vernier 
acuity), spectral efficiency (vλ), contrast sensitivity, illusions, 
Rorschach responses, imagery, gestalt factors (e.g., “closure”), 
aesthetic preference, field dependence, spatial tests, visual 
memory, color preference, face recognition, electrophysiology vs 
psychophysics vs. other domains, synesthesia, eyewitness 
perceptual abilities, global and local processing, pupil size, visual 
memory, and more.  A more detailed summary of factor analytic 
research into visual processes remains to be attempted.  

In sum, other researchers and I have harvested covariance to 
a) identify structures and processes underlying vision, b) analyze 
and delineate the developing visual system, c) compare typical and 
abnormal visual systems, d) relate visual behavior, anatomy, 
physiology and molecular biology, and e) interrelate sensory 
processes and cognitive performance.  Results may suggest a 
framework for inferring processes from data, and perhaps a 
map for future discoveries.  
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