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Abstract
Being an exclusively human ability, art cognition occupies

a unique position to inform our knowledge of human cognition.
To do so, however, it must be understood in computational terms
generalizable to other cognitive processes. Here, such an account
of art cognition is sought. Specifically, I argue that Bayesian in-
ference drives art cognition, by showing how it may underlie mu-
sic and visual art perception. The resulting account provides the
sketches of an economical and unified theory of art cognition con-
sistent with contemporary theories of perception.

1. Introduction
How and why we experience art has long been an elusive

question in cognitive science. Art seems to appear universally
across human cultures in many forms [1], yet we lack a firm un-
derstanding of how and why we treat certain stimuli as art. Why
do certain harmonic modulations feel so exciting? What makes
observing a landscape feel so different from looking at a painting
of it? Such questions remain outstanding in contemporary cog-
nitive science. Moreover, in addition to being interesting in their
own right, they also hold potential to shed light on more general
properties of the human brain – the only brain we know that cre-
ates and enjoys art.

For answers to these questions to be satisfying and useful,
however, they must be articulated in a language that can situate
them within the broader context of human cognition. Modern
cognitive science presumes cognition is a product of computa-
tion, so art cognition ought to be explained in such terms as well.
Moreover, the language of formal computation can describe ac-
tivity at the level of neurons and the level of behavior, allowing us
to extrapolate from the latter to the former and vice versa. [2]

The question thus becomes, what kinds of computations give
rise to the experience that is art? The purpose of this paper is to
suggest an answer. Importantly, rather than focusing on the sen-
sory processes necessary to see or hear an artwork (e.g. color per-
ception, pitch perception), I focus on how the outputs of such pro-
cesses may be exploited to experience some stimulus as art. This
process is what I will call art perception (e.g. listening to music),
as opposed to sensory perception (hearing sounds). Experiencing
any artwork requires both: sensory perception provides a percept
of the piece that is then processed in a certain way such that it pro-
duces the experience. The computations involved in these latter
stages – art perception1 – are the focus of this investigation.

A natural place to begin, then, is sensory perception itself.
Much work has focused on uncovering the computational prin-
ciples governing sensory perception, so can we extrapolate these
principles to explain art perception? I will suggest that the an-
swer is yes. Specifically, I will look at a particular hypothesis
known as the Bayesian brain hypothesis [3] that makes specific

claims about the computations underlying sensory perception and
the rest of cognition. I will argue that it has the potential to also
explain art perception. I will propose that the same mathemati-
cal formalism – Bayesian inference – could underlie both sensory
perception and art perception.

I begin by discussing the Bayesian brain hypothesis and its
central ideas. In §3, I show that it can be applied to explain music
perception, tying in the mathematics of Bayesian inference with
the ideas of late musicologist Leonard Meyer. I go on to discuss
how it could also explain our appreciation of visual art in §4 and
finish by discussing what the import the Bayesian brain hypothe-
sis can bring to art cognition and what future work is necessary. I
emphasize here at the outset that my approach is purely theoreti-
cal.

2. The Bayesian brain hypothesis
In recent years, much attention has been given to the hy-

pothesis that the brain is built to compute probabilities. Within
perceptual science, empirical motivation for this idea comes from
evidence showing that perceptual measurements in the brain ran-
domly fluctuate and underdetermine their causes, such that our
perceptual system must have a means for inferring the structure
of distal stimuli from a noisy and indeterminate proximal signal.
[3]

One such way of doing this is Bayesian inference, a mathe-
matical formalism for evaluating and updating the probability of
an event in the face of new relevant information. It is based on a
formula for computing the probability of a hypothesis H, condi-
tional on some data D – ‘the probability of H, given D’. It is called
Bayes’ rule:

p(H|D) =
p(D|H)p(H)

p(D)
(1)

Provided some set of hypotheses (e.g. presence/absence of edges)
and relevant observations (activation of retinal ganglion cells),
this formula yields the probability distribution of hypotheses that
takes into account the observed data – the posterior probability
distribution p(H|D). In other words, it provides a way for eval-
uating which of the hypotheses under consideration are more or
less likely under the observed data. The same formula can be used
to update these probability evaluations in the face of new incom-
ing data. Importantly, it can be shown that it does so optimally,
in the sense that it always converges to the true probability dis-
tribution [4] and it generalizes better than any other method. [5]
But the true power of this formalism is that anything can be sub-
stituted for H and D, provided that the corresponding prior p(H)
and likelihood p(D|H) functions are known.2 As such, Bayesian
inference has been used to successfully model various cognitive
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abilities [3, 6, 7]. Beyond a formula, the Bayesian brain hypoth-
esis is a framework for thinking about the computations the brain
performs to do what it does, the claim being that it computes con-
ditional probabilities in accordance with Bayes’ rule.3

In addition to the wealth of empirical results showing that
humans behave in a Bayesian manner [6] (i.e. in accordance with
what would be predicted by Bayes’ rule), strong theoretical rea-
sons exist for why the brain should carry out such computations.
Computing precise predictions under uncertainty is essential for
the survival of any organism. Any decision requires predicting
possible outcomes and evaluating which are more or less likely.
Safely navigating an environment requires updating expectations
about where dangers may lie. And, at a lower level, biological
perceptual systems are so noisy that they demand a probabilis-
tic inference of what is causing the sensory signal, since several
causes may be consistent with it. [3] Because of the uncertainty
inherent in each of these problems, probabilistic computation is
particularly well suited for solving them. Bayesian inference sim-
ply provides the optimal method for computing the required prob-
abilities.

These inherent properties of all organisms that move and per-
ceive have led some to suggest that computing predictions is in
fact the primary purpose of the brain. Neuroscientist Rodolfo
Llins has argued that brains evolved specifically to predict the
outcomes of motor movements, proposing that the higher reason-
ing of the modern human brain is an evolutionary derivative of
this primitive function. [8] And Friston’s Free Energy Principle
claims that all of neural computation hinges on minimization of
prediction error. [9] In this same vein, I will argue that prediction
underlies art perception. The Bayesian brain hypothesis provides
a framework for thinking about how this could be so.

It is an important caveat, however, that Bayes’ rule tells us
nothing about how neurons carry out Bayesian inference. In-
deed, this is one of the questions currently at the forefront of the
Bayesian approach [7] and several promising proposals exist. I
will discuss one possibility called predictive coding, but there are
many others (e.g. [10]). The point here is to clarify that, rather
than a discussion of how the brain gives rise to art perception,
this paper is chiefly a discussion of how computation gives rise
to art perception. I will propose the culprit is a particular kind
of computation – Bayesian inference. How the brain carries out
Bayesian inference is a separate problem that is in fact being dealt
with extensively today. [7] I will only hint at some possible an-
swers to this secondary question.

I will now go on to explore how the Bayesian machinery that
has been applied to explain sensory perception could also explain
how we appreciate music. I begin with music perception because
the role of probability and prediction in this domain has been pre-
viously explored. I will show that this previous account in fact
aligns elegantly with the Bayesian brain hypothesis.

3. Prediction in music
Leonard Meyer first proposed that probability plays a central

role in music perception in a seminal paper on meaning in mu-
sic. [11] His thesis was that, akin to other behavioral phenomena,
the perception of music can be reduced to prediction: enjoying a
piece of music consists of predicting what will come next and sub-
sequently verifying whether those expectations are confirmed or
violated. For example, Richard Wagner’s notorious Tristan chord

in Tristan und Isolde (1865) has the effect it has because the lis-
tener constantly expects a harmonic resolution that doesn’t come
until the climactic liebestod.

His theory thus presupposes probability judgments in music
perception – judgments that guide the predictions and expecta-
tions of how the music at hand will unfold in real time. Could
these computed probabilities be the output of Bayesian inference,
just like those that have been proposed to underlie sensory percep-
tion? In Meyer’s terminology, listening to a piece of music con-
sists of the continual processing and updating of two elements: the
antecedent – what we have heard – and the consequent – what we
expect to hear. Music perception consists of predicting the con-
sequent based on the antecedent. According to Bayes’ rule, this
prediction should be based on the posterior probability computed
as follows:

p(consequent|antecedent) =
p(antecedent|consequent)p(consequent)

p(antecedent)
(2)

In typical Bayesian terminology, the data is the music heard un-
til now – the harmonic, rhythmic, and melodic progression of the
music – that informs the probability distribution over hypotheses
about what will come next – one’s expectations of what chord,
duration, or pitch will follow. Provided the space of possible con-
sequents (the hypothesis space) and the prior and likelihood func-
tions, Bayesian inference gives us a way of predicting the conse-
quent from the antecedent.

So what are the hypothesis space, the prior, and the likeli-
hood function? And, how are they determined? Meyer’s answer
is that they depend on the musical style(s) one has been familiar-
ized with. In a given style of music, certain features are more or
less likely to follow others – in Western music, for example, a
tonic chord is likely to follow a dominant seven chord. Also, the
range of values subsumed under a particular feature space may
differ from style to style – the pitches used in Western tonal music
are always taken from the chromatic scale, but Indian music uti-
lizes microtones. [12] Given the surprising ability of infants and
adults to learn the statistics of their auditory environment [13, 14],
we should expect such statistical regularities to be internalized by
listeners such that their musical predictions are sensitive to the
statistics of the style(s) they have been exposed to. For example, a
Westerner’s posterior distribution over harmonic consequents for
an antecedent consisting of a dominant seven chord should gen-
erally peak at the tonic4 (i.e. arg maxθ p(θ |V7) = I). Addition-
ally, the domain of this function (the hypothesis space) should be
restricted to harmonies that are used in common practice tonal
Western music (e.g. should exclude cluster chords).

It is easy to see how such functions could be formalized as
likelihood and prior probability density functions in the Bayesian
framework. The above posterior distribution, for example, would
be derived by computing p(V7|θ)p(θ), where p(I) and p(V7|I)
would be quite high for a Western listener, who would have been
exposed to countless musical stimuli in which there were many
instances of a tonic chord (I) preceded by a dominant seven chord
(V7), and many tonic chords spread throughout.4 It is thus plau-
sible that music perception in a given style is governed by like-
lihood and prior functions sensitive to the statistical regularities
of that style, which are acquired and tuned through extensive ex-
posure to it. Computing these functions to arrive at the posterior,
however, is non-trivial, as the likelihood and prior functions may
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take complex forms that can make the computation intractable.
[15] A formally equivalent alternative that has been proposed to
underlie other parts (if not all) of cognition is called predictive
coding. [9, 16] The idea behind this implementation of Bayesian
inference is that two streams of information are simultaneously
active, one encoding current predictions of the system (e.g. the
visual system) and the other encoding the prediction error (the di-
vergence between the current prediction and the current empirical
observation, e.g. current retinal stimulation). As the system con-
tinually makes observations and predictions, the prediction errors
feed back to the prediction stream, tuning it to the statistics of the
current environment being observed and thus appropriately alter-
ing the predictions to “explain away” the prediction error. [16]
This computation is in fact formally equivalent to Bayesian in-
ference, where the top-down predictions serve as empirical priors
in inferring the posterior distribution over what observations are
to be expected. [9] Predictive coding models have successfully
explained several phenomena in vision, including extra-classical
receptive field effects in the retina [17] and binocular rivalry [18],
among others (for a review, see [16]). Furthermore, neurophysio-
logical evidence exists indicating the presence of two neural pro-
cessing streams encoding predictions and prediction error, respec-
tively. [19, 20]

Putting aside technicalities of how Bayesian inference would
be implemented in this context, the Bayesian account of music
perception I am illustrating explains several phenomena seen in
listeners across cultures and musical styles. The idea that a given
listener’s musical predictions are dependent on the musical styles
she is familiar with can account for why a listener exposed to
only, say, Western music will struggle to hear any logic in mi-
crotonal Indian music. This account also correctly predicts that
novices and experts should differ in their perception of music
[21, 22, 23, 24] (although, see [25]), since more exposure to a
musical style should theoretically lead to a posterior distribution
more sensitive to subtle musical elements in it (e.g. modulations,
motivic manipulations). These observations reflect the fact that
music perception is to a great extent driven by the integration of
perceptual information with prior knowledge, a computation that
is neatly formalized by Bayesian inference. What may be music
to some may be noise to others, and this is determined by previ-
ous experience that shapes the prior and likelihood distributions.
Noise occurs when these functions can’t work with the provided
antecedents and consequents; music arises when they output a
rich palette of predictions by exploiting viable consequents and
informative antecedents.

Of course, providing the perceptual material that originates
this palette is the job of the composer. Doing this well requires an
intimate understanding of the statistical regularities present in the
musical style being composed in – working within these regular-
ities is precisely what it means to write a piece in that style. The
key point here is that a skilled composer can use these regularities
to exploit listeners’ musical intuitions to manipulate their expec-
tations. By remaining within the confines of the style and veering
away from it from time to time in a carefully balanced way, a
composer can maintain the informativeness of the antecedent so
as to simultaneously guide and violate the listener’s expectations.
Some examples of this (borrowed from [11]) are provided in table
1 below, embellished with the Bayesian terminology I introduced
earlier.

Table 1. How composers manipulate and violate listeners’ ex-
pectations

Compositional
technique

Explanation in terms
of Bayesian inference

Musical example

Delaying the
expected
consequent

The consequent as-
signed highest proba-
bility does not occur
next, but it remains
the most likely as the
music continues until
finally arriving at that
consequent

Tristan und Isolde
(1865) Richard
Wagner: Tris-
tan chord that
doesn’t resolve
until the very end
of the opera

Ambiguous
antecedent

The posterior prob-
ability distribution
over possible conse-
quents is relatively
flat – many conse-
quents are predicted
with equal probability

Mazurka Op. 24
No. 2 (1836)
Frederic Chopin:
opening mea-
sures ambiguous
as to C major or
G major

Unambiguous
antecedent
followed by
unexpected
consequent

Observed conse-
quent is assigned (by
the posterior distri-
bution) a very low
probability relative
to other possible
consequents

Symphony No. 3
in Eb Major, Op.
55 (1806) Ludwig
van Beethoven:
C# in opening Eb
major triad theme

I have argued that Bayesian inference could underlie music
perception and has potential to explain several music perception
phenomena. But do we have any empirical evidence that Bayesian
inference is really happening in these cases? The idea that pre-
dictions are central to music perception has intuitive appeal for
any musician, and much scholarly work has supported it. But
concrete evidence demonstrating that these predictions are com-
puted in a Bayesian manner will require Bayesian models of mu-
sic perception to be implemented and corroborated with behav-
ioral results. Bayesian models have been applied to several ar-
eas of music cognition [26], but not to musical predictions. Two
main challenges arise here. On the theoretical front, we need to
formally define possible prior and likelihood functions, or hierar-
chical predictive coding models. One way of tackling this is by
uncovering the statistical regularities of particular styles of mu-
sic (e.g. [27]), regularities that should be reflected in the prior
and likelihood functions of a listener indoctrinated in that style.
Or, musical grammars may be proposed that translate to particu-
lar prior and likelihood distributions. Alternatively, hierarchical
Bayesian models (e.g. predictive coding models) can be trained
on musical examples of a given musical style and subsequently
analyzed to examine the musical predictions they make.

On the experimental front, we need a way of measuring lis-
teners’ actual predictions to corroborate and inform our models.
Directly determining a listener’s prediction in a given instance
may be impossible, but there are many ways of testing the agree-
ment between the musical predictions of a model and of a human.
[28, 29, 30] For example, it has been shown that musical expec-
tations are predictive of priming effects in reaction time experi-
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ments. [28, 30] Thus, if a Bayesian model predicts that chord x
is more likely than chord y to succeed some presented chord pro-
gression, then a priming experiment with humans should show
greater priming effects for x than for y following the presenta-
tion of that chord progression. Alternatively, listener predictions
may be inferred from other measurable variables such as musi-
cal tension [26, 31] or emotional response (i.e. from a violation
or dramatic satisfaction – Wagner’s liebestod, for example – of a
prediction), which can be measured with galvanic skin response.
[23, 24]

A significant prediction that falls out of several instantiations
of the Bayesian theory of music perception that I am presenting
is that any given human should be able to learn any musical sys-
tem. If we consider the predictive coding proposal claiming that
our musical predictions are tuned to the statistics of the musical
styles we are familiar with, it should be theoretically possible to
train anyone to be able to enjoy and appreciate any type of mu-
sic (as long as it contains the necessary elements for expectations
and predictions to be made). On the other hand, the proposal that
the likelihood and prior functions are determined by some kind
of learned or innate musical grammar does not entail this predic-
tion at all. This claim can be tested by taking artificial language
approaches frequently employed in linguistics. [32]

Another empirical approach is to continue the search for mu-
sical universals. [33] One of the features that makes the theory I
am sketching here so attractive is that it should apply across all
musical styles and cultures (and all visual art forms, see below).
Hence, musical elements crucial to allowing the formation of pre-
dictions and expectations should exist in all musics in the world.
One proposed universal that supports this idea is the use and repe-
tition of motivic units, which can happen at multiple musical lev-
els. [34] Relatedly, all musical systems seem to be isorhythmic:
once a rhythmic pattern is established, it is continued throughout
the piece (e.g. time signatures in Western music). [34] It is also
worth noting that any listener of any culture will always believe
that the music he is familiar with sounds the most natural. [33]
This easily falls out of my proposal that a listener’s music percep-
tion machinery is tuned to the statistics of the musics they have
been exposed to.

Focusing in on Western music, a significant observation that
may reflect the central role of prediction in music perception is the
historical development of Western composition. Western compo-
sitional innovation has followed a trend seemingly directly related
to the facilitation and manipulation of musical prediction. Early
polyphonic music followed strict rules that facilitated prediction;
in the medieval organum, for example, tritones between overlap-
ping voices were always avoided [35], ensuring that the conse-
quent would not contain one (thus making it more predictable).
Conversely, Beethoven and Brahms (600-700 years later) em-
braced dramatic harmonic modulations to unpredictable harmonic
areas, frequently employing tritones to do so (e.g. Beethoven late
string quartets). In the latter half of the 19th century Richard Wag-
ner’s operas flaunted his ability to keep listeners’ predictions un-
satisfied for long periods of time (e.g. table 1, 1st row). Decades
later, in the 1920s Arnold Schoenberg invented the twelve–tone
technique that influenced many later 20th century composers; this
technique emphasized the emancipation of music from tonality,
thus discarding tonal centers and keys4, making it virtually im-
possible to make any melodic or harmonic predictions (e.g. String

Quartet Op. 28, Anton Webern (1937-8)). Digging deeper into
20th century music, we find that many compositions that are
meant to push the boundaries of what constitutes music explicitly
remove the elements of music that allow prediction (e.g. 4:33,
John Cage (1952); Pome symphonique, György Ligeti (1962)).
The trend is clear: from facilitating prediction to manipulating it
to removing it. While this pattern may not necessarily imply the
causal link between prediction and music perception that I am
proposing (correlation is not causation!), it does suggest some
relationship between them. The Bayesian account I have pre-
sented accounts for this relationship, while also explaining spe-
cific historical events such as the mixed reception of Beethoven’s
3rd Symphony and the chaotic premiere of Stravinsky’s Rite of
Spring [35]: the listeners’ prior and likelihood distributions were
not yet tuned to such innovative compositional techniques (like
the Westerner listening to Indian music).

To summarize, this section argues that music perception
could arise from prediction via Bayesian inference. Bayesian in-
ference has the power to explain individual differences across cul-
tures, historical eras, and levels of expertise by formalizing the in-
tegration of perceptual information with prior knowledge. Specif-
ically, prior knowledge of a musical style is formalized by prior
and likelihood distributions that reflect the statistics of that style.
This account also welcomes mechanistic proposals for how this
prior knowledge could be acquired and integrated with incoming
perceptual information (e.g. predictive coding). Importantly, I
have suggested we aim future empirical and theoretical work to-
wards revealing the formal properties of these prior and likelihood
distributions by constructing and testing Bayesian models. This
will yield the kind of rigorous evidence needed to verify the the-
ory I have presented.

4. Visual art as Bayesian inference?
If we look closely, we find that the historical development

of visual art follows a trend similar to that of music, away from
the predictable. Renaissance and baroque art, for example, fo-
cused on realistic depictions of religious figures and events – a
subject matter that is in a certain sense predictable, concerning
actual physical objects and forms depicted as they are in reality
(fig. 1, see below). Going forward 200 years, impressionists con-
tinued painting familiar scenery but now depicting it in a more
abstract manner (fig. 2). Rather than presenting objects as they
look in real life, impressionists aimed to create an ‘impression’ of
the scene by depicting constant shifts of light. [36] The later cu-
bism (fig. 3) and abstract art (figs. 4-5) styles of the 20th century
depart greatly from predictability on a canvas, depicting forms
that exist only in one’s imagination, only vaguely evoking ele-
ments of physical reality. As with music, 20th century visual art
is often explicitly concerned with challenging the audience’s in-
terpretive ability by deviating wildly from one’s predictions (e.g.
Dadaism, fig. 6). Again, this evidence does not necessarily imply
that visual art perception relies on predictions. But the parallel
historical development does suggest at least that music and visual
art perception may arise from similar processes.

In fact, there is a lot more in common between music and vi-
sual art. In many Western languages, the same vocabulary is used
to describe the effect of an artwork, whether it is visual or audi-
tory. Indeed, both musicians and visual artists strive for the com-
mon goal of creating something ‘beautiful’, whatever that word
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may entail. The empirical results tell a similar story: Ishizu &
Zeki (2011) found that the medial orbitofrontal cortex activates
proportionally to judgments of beauty in both auditory and visual
domains, suggesting that the neural substrate of beauty in music
overlaps with that in visual art. This result resonates strongly with
the hypothesis I am putting forth here: that art perception across
modalities is governed by the same probabilistic computation. In-
deed, an extension of my hypothesis could be that aesthetic beauty
itself is a manifestation of probabilistic computation.

What this discussion points to is the question of whether vi-
sual art perception could be the outcome of Bayesian inference,
as I proposed was the case with music perception. One interest-
ing and quite comprehensive proposal of the cognitive processes
underlying visual art perception is the Leder et al (2004) model of
aesthetic appreciation. The authors propose that the process of ex-
periencing a piece of visual art consists of arriving at a satisfying
interpretation of it. As demonstrated by the Dada art movement
of the early 20th century, visual art emphatically relies on con-
text: putting a toilet on a pedestal in an art museum elevates its
status to more than a functional object (fig. 6). Such a context
challenges the viewer to interpret the perceived object, since the
artist must have deliberately placed the toilet there for some rea-
son. According to Leder et al, inferring these reasons – whether
it relates to putting common-place objects on a pedestal or using
certain colors rather than others, etc. – is the information pro-
cessing problem that gives rise to experiencing and appreciating
visual art.

Importantly, the solution to this problem is never a one–shot
process. Rather, the viewer formulates and cycles through differ-
ent hypotheses until finding the one that produces the most sat-
isfying interpretation. Leder et al call this the Cognitive Mas-
tering–Evaluation feedback loop. Evidence for such a mecha-
nism comes from arguments and experimental findings support-
ing the claim that the process of obtaining a satisfying under-
standing of an artwork is a rewarding one. For example, one of
Ramachandran & Hirstein’s (1999) laws of aesthetic experience
states that the challenge of distinguishing figure from ground, or
object recognition, can produce a pleasurable effect (e.g. that
“aha!” moment when you see the Dalmation in fig. 7). Elabo-
ration effects showing that viewers assign higher aesthetic ratings
to art when they are given extra information about it (e.g. a title)
also support this idea.5 [40, 41, 42]

This process of selecting and evaluating hypotheses about an
artwork is particularly relevant to the present discussion because
the probability distributions involved in Bayesian inference simul-
taneously provide solutions to both of these stages. Namely, the
posterior distribution can provide a hypothesis of the most likely
interpretation, and the likelihood distribution provides a means to
test it. Consider Bayesian inference over different possible inter-
pretations I1, I2, ... of an artwork with features f1, f2, f3, ...:

p(Ik|{ fi}) =
p({ fi}|Ik)p(Ik)

p({ fi})
(3)

Provided the currently observed features of the artwork { fi}, this
formula is a means for evaluating the suitability of different inter-
pretations. Using the resulting posterior probability distribution,
an appropriate interpretation can be selected by, for example, tak-
ing the interpretation Ik at which the distribution peaks.6 However,
due to attentional limits and biases, not all features can be noted

at once, so some features remain to be observed to confirm the
currently selected interpretation. Supposing the brain computes
the prior and likelihood functions above, the search for more fea-
tures can be guided by the likelihood distribution p({ fi}|Ik). This
function is a kind of exercise in theory of mind: if I wanted to
produce an artwork concerning Ik, what features would I likely
incorporate?

I illustrate with the following simplified example. Suppose
you perceive sad faces in a painting. The posterior distribution
will yield a high probability for Ik = ‘the artist is depicting sad-
ness’, in part because the probability returned by the likelihood
p(sad f aces|Ik) will be high (because, presumably, you would ex-
pect someone who wanted to depict sadness to paint sad faces).
You thus select the interpretation Ik. Having selected Ik, you now
consider peaks in the likelihood distribution p({ fi}|Ik), i.e. fea-
tures likely to be in a painting in which the artist is depicting sad-
ness. In a sense you are predicting certain features to be in the
painting. Two such predictions may be the presence of the feature
darkness (low luminance) and the feature blue (short wavelength
light), since the probabilities p(darkness|Ik) and p(blue|Ik) are
high. You subsequently turn your visual attention to these fea-
tures to corroborate the predictions. If you find that these are not
present in the painting, you compute the new posterior distribu-
tion

p(Ik|sad f aces,¬darkness,¬blue) (4)

You now select the hypothesis most probable under this distri-
bution and restart the process, the loop continuing until a stable
solution is achieved. This iteration of inferences could constitute
the computations underlying the feedback loop that Leder et al
(2004) hypothesize plays a central role in visual art perception.

Furthermore, these inferences need not only consider such
high-level interpretations as ‘the artist is depicting sadness’.
Viewing a given artwork will entail considering and selecting
multiple hypotheses at multiple levels ranging from the emotional
and symbolic (e.g. visual metaphors) down to the purely visual
and aesthetic (e.g. color, lighting).7 Continuing the simplified ex-
ample above, in addition to considering and evaluating the inter-
pretation that the artist is conveying sadness, one might also inter-
pret a contour in the painting as a frown. Once you have arrived
at this hypothesis (that that contour is a frown), you will sub-
sequently test it by searching for frown-like visual features (e.g.
concavity). Should you find these, you will have confirmed your
hypothesis and strengthened your understanding of the artwork,
leading to a rewarding experience (much like the rewarding ef-
fect of object recognition discussed by Ramachandran & Hirstein,
1999). This explanation can also account for the peak-shift effect,
whereby the emphasis of an object’s essential features creates a
pleasurable aesthetic effect, as in caricatures [39]: after recogniz-
ing Barack Obama in fig. 8, the exaggerated features of his face
have a pleasant effect – this could arise from the dramatic confir-
mation of the initial hypothesis that Obama is being depicted.

Moving on to thinking about how a chain of inferences like
the one I am proposing could be implemented in neural hard-
ware, it is easy to see how the predictive coding scheme eas-
ily accommodates it. We can imagine the top-down prediction
signals arranged hierarchically, where the highest levels corre-
spond to high-level interpretations (sadness) and the lower lev-
els to low-level interpretations (frown), all the way down to in-
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dividual line segments (concave curve) and spatial frequencies.
This architecture would elegantly accommodate the Bayesian ac-
count of visual art perception in a framework that makes empiri-
cal predictions even at the neurophysiological level. Furthermore,
the predictive coding framework provides a mechanistic expla-
nation of the attentional search for features under a given inter-
pretation/prediction signal: attention simply corresponds to ap-
propriately changing the weights assigned to the prediction error
signals (in neurophysiological terms, the gain of the neurons pro-
ducing these signals). [9, 16] Back to the sad painting example:
when you are searching for the feature blue, the brain adjusts the
weights of the error signals such that the error signal correspond-
ing to color predictions is prioritized.

Just like the Bayesian account of music perception, Bayesian
visual art perception can explain individual differences across cul-
tures and levels of expertise [44] because the prior and likelihood
distributions provide a way of integrating prior knowledge into
the computation. For example, the likelihood distribution reflects
the statistical dependencies and regularities between features and
artistic intentions that a viewer has encountered in her past experi-
ence viewing and/or creating art, and through her explicit knowl-
edge about artistic techniques and tendencies. General statistical
regularities observed in every day life should come into play as
well (e.g. sad people tend to frown). [45] Expertise leads to a
likelihood function more sensitive to nuanced interpretations and
features of visual art. The same applies to the prior distribution
and hypothesis space – experts know interpretations to look for a
priori and will consider more possibilities.

Empirically confirming the Bayesian theory of visual art per-
ception that I have presented here will again require two lines of
work: (i) constructing and implementing computational models of
visual art perception, and (ii) comparing the predictions of these
models with those of humans. One of the primary difficulties with
the former is that the hypothesis space in this case seems impos-
sible to define. In the case of harmony or melody, the hypothe-
ses are discrete and occupy a finite space. But when it comes
to high-level interpretations of an artwork – e.g. ‘this sculpture
is about death’, ‘the artist was in love when he painted this’ – ,
the possibilities seem endless and the space they encompass in-
finitely dimensional.8 Overcoming this difficulty will either re-
quire focusing on modelling only lower-level interpretations that
are easier to represent mathematically or modelling visual art per-
ception in a carefully controlled experimental task restricting the
hypothesis space to a finite set without making the interpretation
process too artificial. Another possibility is building hierarchical
Bayesian models that learn the statistical regularities in sets of
artworks and thus ‘learn’ the possible high-level interpretations.
These models can also be enriched by incorporating features of
the early human visual system, which would feed into the proba-
bilistic computation the kinds of signals actually available to the
visual system. [46] The predictions of such hierarchical models
can be tested as follows: (1) group together artworks assigned
similar high-level interpretations by the model, (2) have human
subjects assign their own labels to each of these groups, and (3)
see if individual human responses to single artworks correspond
to the group-level labels assigned by the human subjects in step
(2).

Directly probing specific human interpretive predictions may
be virtually impossible, as many of the interpretive steps may oc-

cur at infinitesimal timescales. Here, it will be important to de-
sign clever laboratory tasks that manipulate the features of the
presented artworks without altering the art too artificially and
seeing how interpretations differ across conditions. Interviews
will be useful for uncovering subjects’ interpretations, although
more precise methods are desirable. Some possibilities here are
priming methods analogous to those used to probe musical ex-
pectations [28, 30], or measuring correlates such as emotional re-
sponse, again using galvanic skin response. [39]

We have seen that the Bayesian brain hypothesis (and partic-
ularly the predictive coding instantiation of it) has the potential to
explain visual art perception, although empirically testing the hy-
pothesis in this domain may prove particularly difficult. I have
additionally argued that historical, sociological, linguistic, and
neurobiological evidence warrants a unified theory of art cogni-
tion that explains both visual art perception and music perception
with the same principles. The Bayesian account I have presented
provides such a theory. Furthermore, it explains individual dif-
ferences in both domains and makes empirical predictions at the
neurophysiological level (predictive coding).

5. Discussion
As I stressed in the introduction, the above remains in solely

theoretical territory – more work is required to refine these ideas
into specific testable predictions and to verify these predictions
experimentally. By the nature of the theory, this will require
a computational modelling approach. It is of course desirable
to develop experiments showing that music perception is gov-
erned by musical expectations and that visual art perception is
governed by interpretive decisions and attention. But ultimately
what will be needed to verify the Bayesian brain hypothesis in
this context is evidence that these expectations and interpretive
decisions are being computed in a Bayes–optimal manner. This
inherently requires constructing mathematical models that define
what it means to be Bayes–optimal, and testing human behavior
to verify that it agrees with the models.

It is worth noting that the theory I have proposed here (par-
ticularly in its predictive coding instantiation) satisfies each of the
three criteria Ramachandran & Hirstein (1999) state are necessary
for a good theory of art:

“Any theory of art (or, indeed, any aspect of human nature) has to
ideally have three components. (a) The logic of art: whether there are
universal rules or principles; (b) The evolutionary rationale: why did
these rules evolve and why do they have the form that they do; (c)
What is the brain circuitry involved?”

The Bayesian brain hypothesis proposes answers to each of these
questions. Importantly, it does so in an explicit way by formally
specifying the computations underlying art cognition. Such an
understanding of art cognition is desirable, as the language of
computation can bridge explanations across the Marrian levels [2]
and provide a common terminology to relate art-related cognitive
processing to the rest of cognition. Moreover, like language, art
cognition is exclusively human, putting it in a unique position to
inform our understanding of general computational properties of
the human brain that make us different from other animals.

I now go on to summarize the answers the Bayesian theory of
art I have presented gives to each of Ramachandran & Hirstein’s
(1999) three questions:
(a) The logic of art. The underlying universal principle of
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Bayesian art cognition is the optimal integration of perceptual
information with prior knowledge. Such prior knowledge may
consist of statistical regularities of a given style (e.g. I follows
V7), explicit rules (e.g. voice-leading rules), or meta-information
about the given artwork being experienced (e.g. Picasso was de-
pressed when this work was made). Bayes’ rule provides a way
of integrating this knowledge with the incoming perceptual in-
formation from the artwork being viewed or heard to produce a
meaningful prediction of what the work is about, or, in a temporal
context (as in music), of what will come next. Bayesian infer-
ence can thus account for the fact that different people can experi-
ence the same artwork differently – a characteristic feature of art.
Furthermore, several perceptual phenomena have been shown to
arise from Bayesian computation [3, 6, 7], so the Bayesian frame-
work provides a means to explain art cognition using the same
principles underlying sensory perception. Given the intimate re-
lationship between these two processing domains, this is desir-
able. Lastly, I have shown that these principles may underlie both
music and visual art perception. As reviewed in §4, a theory of
art cognition that predicts a computational overlap in music and
visual art perception is warranted by several observations: paral-
lel historical trends (from predictable to unpredictable), linguistic
overlap (we use similar language to describe both), and shared
neurobiological substrates. [37]
(b) The evolutionary rationale. The evolutionary origin of art is
one of the most difficult and mysterious questions in art cognition,
since art does not seem to directly fulfill any survival needs. The
Bayesian theory of art cognition, however, inherits all the evo-
lutionary arguments for the Bayesian brain hypothesis, which is
firmly grounded in evolutionary theory. [47] Provided the multi-
tude of ways in which predictions about the world can aid in sur-
vival, we would expect the human brain to have evolved to com-
pute these accurately. Bayesian inference is the mathematically
optimal way of doing so, so it is easy to see how natural selection
would give rise to brains that perform it.9 Should art cognition be
a product of Bayesian inference, the argument for why it evolved
is straightforward: the human brain evolved to perform Bayesian
inference and Bayesian inference leads to art cognition. In other
words, art cognition is a byproduct of the natural selection for
optimal probabilistic inference.
(c) The neurobiological substrates. The Bayesian brain hypothe-
sis makes several empirical predictions about the underlying neu-
robiology of art cognition. One of the most promising proposals
in this respect is that of predictive coding. [9, 16] Aside from
this, some more modest claims that fall out of the Bayesian the-
ory of art cognition are that the neural circuits involved must en-
code probabilities or probability distributions in some way, and
must have a means of manipulating them [3] (see also [10] for
an interesting proposal of how this could be done under certain
conditions).

The explanatory power of the Bayesian brain hypothesis is
demonstrated by its ability to provide answers to each of these
questions (however, the fact that it can account for so many broad
phenomena may also be its greatest weakness [15]). It is thus
essential that we empirically test whether Bayesian computation
indeed plays such a crucial role in art cognition. If it does, art
cognition would hold as another piece of evidence supporting
the strongest claim of Bayesian brain hypothesis, namely that the
whole brain is built to compute probabilities in a Bayes–optimal

fashion. It could also provide support for other related large-scale
theories of neural computation (e.g. the Free Energy Principle,
[9]). It is important to note here that it could be the case that art
cognition is the product of Bayesian computation but not along
the lines of the inferences I have proposed here. In this vein, it
is important that more theoretical work continue to develop the
ideas I have outlined and propose other possible probabilistic in-
ferences that may play a role in art cognition (see, for example,
[26]).

It should be noted as well that, even if art cognition is indeed
fraught with Bayesian inference, Bayesian computation may only
account for one component of art cognition. The arguments I have
put forth suggest that this component would be the the most cru-
cial to music and visual art perception, but there may be others
that also contribute to experiencing art. For example, associations
in long-term memory by themselves can give significance to a
work of art (e.g. if you grew up on a farm, Monet’s Haystacks
paintings may bring back memories from your youth).

A related problem that must be taken into account when con-
sidering the present proposal is the scientific bias inherent in its
Western origins. Visual art and music can take drastically dif-
ferent forms from culture to culture [33], but the ideas presented
here, while presented objectively, are grounded in a Western mu-
sical education and a Western conception of art. Other concep-
tions of art may not fit in with the proposals I have made. How-
ever, even if it turns out that the theory only holds for Western
music, it will may still have interesting implications. Such a result
would mean that the appreciation of Western music is an entirely
distinct cognitive process from the appreciation of other types of
music. In that case, the theory should make substantial predictions
about the artistic differences between Western and other cultures.
Such factors are important to consider and illustrate the impor-
tance of anthropological work to the study of art cognition (e.g.
ethnomusicology).

Before concluding, a significant philosophical implication of
the Bayesian theory of art should be mentioned. The idea that
art is first and foremost a phenomenon arising from integrating
perceptual information with prior knowledge raises the issue of
whether music and visual art perception are instances of cogni-
tive penetration. Cognitive penetrability is the idea that percep-
tion could be affected by higher cognition (e.g. explicitly known
facts, beliefs). At first glance it seems that my account of art
cognition is indeed an illustration of this. Empirically, this may
be problematic, as several recent studies have refuted that cogni-
tive penetration happens, even in canonical demonstrations of it
[48, 49]. However, the present proposal need not be interpreted in
a way that necessarily implies cognitive penetration. Even though
the Bayesian account intimately intertwines music and visual art
perception with sensory perception, the experience of art may still
arise without altering the sensory percept whatsoever. Expecting a
given chord to come next, for example, won’t necessarily change
what the next chord sounds like, it might just change how you
feel when you hear the next chord. Seeing sad faces in a painting
might make you expect and look for the color blue, but it won’t
necessarily make the colors in the painting look ‘bluer’. Alto-
gether, the Bayesian theory remains agnostic as to whether cog-
nitive penetration occurs when experiencing art. It is important
to note, however, that certain instances of it – predictive coding
[16] and the Free Energy Principle [9], for example – certainly do
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imply cognitive penetration.

6. Conclusions
I propose that art cognition fundamentally consists of inte-

grating perceptual information with prior knowledge, and that this
computation is governed by Bayesian inference. This proposal
makes testable predictions at behavioral and neurobiological lev-
els, which should be empirically verified. The Bayesian theory of
art cognition holds great promise because it can parsimoniously
explain perception, visual art, and music with the same computa-
tional principles. Furthermore, it offers an evolutionary rationale
for the uniquely human ability to create and enjoy art.

Importantly, the current treatment demonstrates the powerful
computational mechanisms that may underlie art cognition. As a
result, art cognition has the potential to shed light on some of
the most complex computational processes implemented by the
human brain. This fact highlights the paramount importance of
investigating the computational substrates of art cognition. Art
cognition can serve as a powerful probe into the inner workings
of human cognition, but only with a computational understanding
of it.

Notes
1. The terms music perception and visual art perception are thus
defined as individual instances of art perception.
2. The normalizing constant p(D) is constant across different H’s
(hypotheses) being evaluated, so can usually be ignored.
3. An alternative but weaker claim is that the outputs of the brain’s
computations, however they are computed, are in agreement with
the output of a Bayesian algorithm.
4. In Western music theory, the terms tonic and dominant seven
designate the two most important harmonies in tonal music. The
tonic chord defines the key of a piece of music: the pitch space
encompassed by its principal melodic and harmonic components
(deviations from the key are especially salient, e.g. “bluesy” notes
in jazz). This defines the piece’s tonal center – the pitch space a
piece typically begins and ends in. The dominant seven chord
contains the pitches adjacent to those in the tonic chord, thus cre-
ating a tension that is relaxed when a dominant seven chord is
succeeded by a tonic chord (the dominant seven chord is ’drawn’
to the tonic chord). This succession is termed a “full authentic
cadence” and is one of the cornerstones of Western tonal music
(e.g. the transition from “to” to “you” in the last phrase of “Happy
birthday”).
5. Such elaboration effects have been shown to affect the judg-
ment and experience of music as well. [43]
6. This strategy, called the MAP estimate, is often computation-
ally intractable. Other possibilities exist, such as the Maximum
Likelihood (ML) estimate, which takes the value at which the
likelihood distribution peaks (as opposed to the value at which
the posterior distribution peaks). This possibility in fact suits the
proposed mechanism well, as the likelihood function would be the
only required function for the whole computation. Furthermore,
the ML estimate is in fact equivalent to the MAP estimate when
the prior distribution is uniform, which would be a reasonable as-
sumption in the present context (i.e. all interpretations equally
likely a priori).
7. Of course, the selection and evaluation of these hypotheses may
happen at different timescales, with high-level interpretations on

Figure 1. Ecstasy of Santa

Teresa, Gian Lorenzo Bernini

(1947-52)

Figure 2. Haystacks (sunset),

Claude Monet (1890-1)

Figure 3. Les Demoiselles

d’Avignon, Pablo Picasso (1907)

Figure 4. Composition VI, Wass-

ily Kandinsky (1913)

the order of seconds or minutes and low-level interpretations on
the order of milliseconds.
8. Of course, such interpretations exist for music as well. How-
ever, because music unfolds temporally, an interpretation for the
whole piece cannot be arrived at until it is over. In this sense, one
can think of Bayesian inference as playing two roles in music per-
ception: the role of predicting the music as it unfolds and the role
of interpreting the meaning of the piece after you have heard it.
These two processes may inform each other, while neither neces-
sitates the other.
9. A significant caveat here is that the path dependence of natural
selection would likely lead to effective non-optimal solutions to
survival. [15]
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[32] R.L. Gómez & L. Gerken, Infant artificial language learning and
language acquisition, Trends Cogn. Sci., 4, 5 (2000).

[33] S.E. Trehub, J. Becker & I. Morley, Cross–cultural perspectives on
music and musicality, Philos. T. Roy. Soc. B., 370, 1664 (2015).

[34] S. Brown & J. Jordania, Universals in the world’s musics. Psychol.
Music, 41, 229 (2013).

[35] R. Taruskin & C.H. Gibbs, The Oxford History of Western Music:
College Edition, New York: Oxford University Press, 2012.

[36] R. Tansev, F. Kleiner & H. de la Croix, Gardner?s Art Through the
Ages, Harcourt College Pub, 1995.

[37] T. Ishizu & S. Zeki, Toward a brain-based theory of beauty, PLoS
ONE, 6, 7 (2011).

[38] H. Leder, B. Belke, A. Oeberst & D. Augustin, A model of aesthetic
appreciation and aesthetic judgments, Brit. J. Psychol., 95, 4 (2004).

[39] V.S. Ramachandran & W. Hirstein, The science of art: a neurolog-
ical theory of aesthetic experience, J. Consciousness Stud., 6, 6-7
(1999).

[40] K. Millis, Making meaning brings pleasure: the influence of titles
on aesthetic experiences, Emotion, 1, 3 (2001).

[41] P.A. Russell, Effort after meaning and the hedonic value of paint-
ings. Brit. J. Psychol., 94, 1 (2003).

[42] H. Leder, Determinants of preference. When do we like what we
know? Empirical Studies of the Arts, 19, 2 (2001).

[43] A.T. Landau, S.K. Rankin, P. Jiradejvong & C.J. Limb. (2015, Au-
gust) The Prestige Effect: increasing musical appreciation through
extramusical factors. Poster presented at the biannual meeting of the
Society for Music Perception and Cognition. Nashville, TN.

[44] A.S. Winston & G.C. Cupchik, The evaluation of high art and pop-

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.16HVEI-142

IS&T International Symposium on Electronic Imaging 2016
Human Vision and Electronic Imaging 2016 HVEI-142.9



ular art by naive and experienced viewers, Visual Arts Res., 18, 1,
(1992).
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