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Abstract 

Current automated visualization techniques use only a small 

set of basic guidelines, mostly based on perceptual principles. Yet, 

in literature a broad set factors are discussed for effective 

visualization design. In this paper, we analyzed principles and 

guidelines extracted from academic papers, books, and blogs and 

examined factors that influence visualization design to aid the 

design of automated visualization systems. We used grounded 

theory to code and examine concepts and relationships extracted.  

We found a variety factors, including domain, semantics, user 

tasks, insight, and display characteristics and found a variety of 

interactions between these factors including causal, contextual, 

and logical relationships.  Our findings suggest that automatic 

approaches need to handle not only broader set of factors but also 

complex interactions among them. Furthermore, several factors 

such as domain and semantics are likely to gain even more 

importance, necessitating flexibility in terms the specification of 

design know-how as input to automatic visual analytics systems. 

Introduction 
In science and in business, there are increased demands for 

open analytics platforms to support collaborative exploration and 

analysis of data to accelerate discovery. A major challenge is to 

design tools that effectively support data visualization needs for a 

broad range of users, tasks, and devices. Automatic or semi-

automatic visualization are promising but current techniques are 

limited in that they only a small set of basic guidelines, mostly 

based on perceptual principles, and match the data to known set of 

visualizations, rather than generating visualizations that takes into 

account diverse set of factors, typical on open analytics platforms. 

To inform the design of automatic data visualization 

techniques for open analytics platforms we conducted a grounded 

theory study to examine the language and content of data 

visualization principles and guidelines. We extracted guidelines 

from books, papers, and blogs on data visualization and examined 

factors and relationships among them that influence effective 

visualization design. We found a variety factors, including data 

domain and attribute semantics, user perception, user tasks, insight 

type, and display characteristics, among many other factors, and 

found a variety of interactions between these factors including 

causal, contextual, and logical relationships.  

In this paper, first we describe our study method and 

resources. Next, we present our findings, particularly patterns of 

form and content in data visualization guidelines. Then, we discuss 

our findings, particularly as they relate to the design of automatic 

visualization techniques. We also discuss gaps we found in 

literature, particularly on interaction and collaboration; data 

domain and semantics; and scalability and complexity.  

Based on findings from our studies, we argue (1) for an 

optimization-based approach to automatic visualization, (2) driven 

by a visual design language, capable of expressing a large number 

of factors and complex relationships, where by (3) optimization 

techniques are decoupled from design guidelines via (4) design 

guideline repositories, for specific application domains, which can 

grow as the know-how on effective visualization design expands.  

Related Work 
Many visualization principles and models have been proposed 

to guide the generation of useful visualizations. One of the most 

frequently used principles is Shneiderman’s Visual Information-

Seeking Mantra, “Overview first, zoom and filter, then details-on-

demand”,  describing a recipe for efficient design steps for users to 

transform the data to useful visualizations [1][2].  

There are several other principles and guidelines, which focus 

on different factors, such as data, interaction, users, tasks, and 

domain, and have different strengths and weaknesses 

[3][4][5][6][7][8][9][10][11]. Carr, for example, analyzed different 

areas of information visualization and suggested seven general 

guidelines for designing information seeking applications [3]. 

Conati and Maclare found individual differences, such as user's 

cognitive abilities, to be an important factor in visualization 

effectiveness [4]. Munzner’s nested model emphasizes the problem 

domain and suggests designers to characterize the task and data in 

the vocabulary of the problem domain and design visual encoding 

and interaction techniques, and algorithms accordingly. 

However, very few studies connect these guidelines with the 

context of use, especially when applied to automatic visualization 

systems. Dias et al. analyzed visualization rules using grounded 

theory techniques over five different parameters: data type, task 

type, scalability, dimensionality, and positioning of attributes and 

characterized several visualizations based on these parameters 

[12]. While similar in method in spirit our present study goes much 

further, covering not only broader set of concepts but also deeper 

in regards to details of concepts and their interactions. 

Study 

Method 
We employed grounded theory [13] as the primary method of 

analyzing our data. Grounded theory is commonly used in social 

sciences to develop a theory based solely on data. It is based on 

iterative multi-level coding, where concepts emerge from analysis 

of the data. In our case, our purpose was not to develop a theory, 

but the iterative coding and the data-driven concept development 

process of grounded theory was what we needed. 

Resources 
We used 5 books and 18 papers as resources for our analysis. 

Books chosen were specifically intended for effective visualization 

design and included Beautiful Visualization by Steele and Illinsky 

[14], Data Points by Yau [15], and Wall Street Journal Guide to 

Information Graphics by Wong [16], and [17][18]. Papers included 

work on automatic data visualization, visualization in knowledge 

discovery, visualization recommendations for science, and visual 
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Figure 1. Frequency of 1st-level concepts, aggregated 

analytics, such as [19][20][21][22]]. In addition, we also examined 

a visualization blog (School of Data, schoolofdata.org) and a 

documentation of a visualization product. Overall, we extracted 

about 550 guidelines, ranging in length from 5 to 140 words. 

Analysis 
In grounded theory there are three stages of coding: Open 

coding is the first level of coding, in which concepts, properties, 

and dimensions are identified at the desired level of granularity. In 

the second level, axial coding, the goal is to relate concepts, and 

identify context of these relationships. In the last level, selective 

coding, the goal is to integrate all these to form a larger theoretical 

scheme. Since our goal in this study was not to develop a theory 

we only performed open coding and axial coding of our data.  

We used iterative coding in which we selected a small subset 

of the guidelines and two researchers coded it independently. We 

then gathered together and resolved issues in our coding scheme, 

and coded a different set of guidelines. Codes used in our iterations 

emerged from the data, as it should in grounded theory analysis. 

After a couple of iterations each researcher felt comfortable with 

the scheme and coded the rest of the guidelines independently.  

Our coding scheme was hierarchical. We identified 5 1st level 

codes, relating to Data, Visualization, and User. Each level 

described more detailed sub-concepts. For example, Data/Attribute 

was a 2nd-level concept, Data/Attribute/Measurement was 

identified as a 3rd-level concept. We coded varying instances of a 

concept in parenthesis, for example, nominal measurement as 

Data/Attribute/Measurement (nominal).  

In total, we derived 515 concepts at several levels, including 

all the varying cases. On average, each guideline was coded with 6 

(hierarchical) concepts, and the longest guideline contained 17 

concepts. In guidelines we examined 3% contained 1st-level, 56%  

2nd-level, 30% 3rd-level, and 10% higher level concepts. See 

Table A and B for a detailed description of the coding scheme. 

Limitations 
While we did our best to reach a high-level of validity of our 

findings, we acknowledge several limitations. First, we could only 

analyze a limited set of resources, given the level of detailed 

coding that we needed to develop a deep understanding of the 

guideline content and structure with all their complexities. We 

tried to cover as many varieties of resources as possible from 

general public books, to highly academic papers, to visualization 

blogs so that we get a balanced representation. With more data, 

distribution of the concepts would change to some degree but even 

with limited resources we identified complexity beyond what is 

used in automated techniques. Our goal in this paper was focused 

on the structure of guidelines, i.e. examination of the various 

patterns and concepts and how they related to each other.  

Secondly, given the scale of data and depth of the analysis not all 

guidelines were double-coded but we did random sampling to 

verify consistency. After several iterations, during the development 

of coding, we reached a consensus on the coding scheme, each 

coder worked on a different set of guidelines.  

Findings 
Below, we present our findings from analyzing the 550 

guidelines we identified from our data. First, we will describe the 

high-level concepts and relationships that exists among these 

concepts. Then, we will examine the key patterns we observed, 

particularly in conditional, ranking, and explanation type 

guidelines. 

Concepts 
During our iterative coding, five high-level concepts emerged 

from our data:  Data, Visualization, User, Insight, and Device. We 

also identified a refining/contextualizing concept called Qualifier. 

Below we explain each of these concepts in detail: 

Data (D): Data covers all aspects related to information, 

including its attributes, schema (e.g. hierarchical), operations (e.g. 

aggregation), domain (e.g. business) and issues related to domain 

such as trust, privacy, validity, etc. Most of these aspects constitute 

second level concepts, with further sub-concepts. For example, 

Data/Attribute concept was further refined regarding data size, 

semantics (e.g. time), role (e.g. measure), measurement (e.g. 

nominal, ordinal), distribution (e.g. sparse, normal), etc. 

Visualization (V): Visualization captures all aspects related to 

representation and interaction of information, such as elements 

(e.g. bar), attributes (e.g. length), components (e.g. legend, axis), 

class (e.g. scatter plot), operations (e.g. group), and interaction 

(e.g. zoom). As in Data, each of these have further sub-concepts. 

For example, Visualization/Attribute further contains various 

visual attributes such as size, position, color, etc. 

User (U): User entails all aspects related to human viewing 

and interacting with visual representation of data, including tasks 

(e.g. compare, communicate), (dis)abilities (e.g. read, recognize, 

recall), and social aspects (e.g. conventions).  

Insight (I): Insight represents all intuition, understanding, and 

knowledge to be gained from data visualization. Insight is related 

to user task. Insight is the outcome, task is the process. Insight 

includes sub-concepts such as trends, outliers, relationships, 

variance, extrema, ranks, etc.   

Device (M): Device covers the physical aspects of the 

visualization medium, particularly related to display and 

interaction capabilities.  

Qualifier (Q): Qualifiers serve to refine and contextualize 

quality and quantity of concepts. For example, it may refer to a 

specific quantity, such as “two nominal attributes”, or refer to a 

less well-defined quality such as “large data” or “dirty data”.   We 

identified over 35 such qualities in our data. Qualifiers may also 

refer to computed aspects of concepts such as “length of the 

labels”. 

Table A lists descriptions of the concepts identified. Figure 1 

shows frequency of 1st level codes in our data, aggregating any 

sub-concepts. Figure 2 shows the top 20 ranked codes that occur 

most frequently in our data. Our analysis of frequency conforms to 

Zipf’s law, as it should [23], where frequency is inversely 

proportional to rank.  
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Figure 2. Frequency of top concepts, not aggregated.  

Figure 3. Top 20 pairs of co-occurring concepts with significance (p < 0.002) 

Relationships 
In order to express the relationships among (groups of) 

concepts, we created an Expression concept, which entails logical 

(e.g. and, or), (in)equality (e.g. more than), similarity, existential 

(e.g. contains at least 2, many), rank (e.g. top among), and 

prepositional (e.g. in, with) relationships. In addition, groups of 

concepts might also be related in the way guideline is formed 

structurally representing conditional (e.g. if then), copulative (e.g. 

and, furthermore), causal (e.g. due to), adversative (e.g. but), and 

supportive relationships. Detailed description of the Expression 

relationship is in Table B. 

We also analyzed pair of codes that have a strong association 

through co-occurency (Figure 3). The strength of association is 

calculated using the G-test [24], which is equivalent to the chi-

squared test for goodness of fit, but it is more accurate for small 

sample sizes. Figure 3 shows the top 20 pair of codes that have low 

p-values. Some associations identified were expected codes are 

clearly related such as: V/Component/Axis(h) and 

V/Component/Axis(v),  but others point to interesting patterns 

such as D/Attribute and E/Conditional suggesting attributes where 

commonly used with conditionals. 

Patterns 
In our data we found three forms of guidelines: (1) 

Imperatives, (2) Declaratives, and (3) Conditionals. 

Imperatives are basically guidelines that provide an essential 

direction to follow, typically the do’s and don’ts in visualization 

design, for example, “Don’t create shadows behind bars”, “Always 

extend bar charts to zero baseline”, or “Reveal data at several 

levels of detail”. Overall we found that 11% of the guidelines were 

imperatives.  Imperatives tend to be shorter in description and 

frequently have a negative form (e.g. “Do not...”, “Never...”). 

Imperatives were about 52.5% shorter than declarative forms and 

about 41.0% were expressed in negative form.  

Declaratives are statements regarding a design rule, principle, 

or opinion often with an explanation. They were by far the most 

common form of guidelines, constituting about 73% of the 

guidelines we examined. 

Conditionals are guidelines that state a condition and a 

consequence, which holds true only if the condition is satisfied. 

We observed several patterns both in the condition and 

consequence parts. Conditionals made up about 16% of the 

guidelines. 

Whether specified in conditional, imperative, or declarative 

forms, guidelines provides 1) instructions, describing what should 

be done and how, 2) rankings (or comparisons), stating preferences 

of one concept over others, and 3) explanations, providing a 

reasoning beyond the suggested action or statement. Below, we 

provide our analysis of the patterns identified in the form and 

content of the guidelines.  

Instructions 
Instructions make up the core part of the guideline, they 

express what actions to take and how. Instructions constitute the 

bulk of the content in imperative and declarative forms. In 

conditionals, instructions only exist in the consequence part (i.e. 

not in the condition part). 

Instructions typically involve a data segment, which refers to 

a sequence of data attribute, schema, size, etc., optionally with data 

operations and qualifiers, and/or a visual segment, which refers to 

a sequence of visualization attribute, element, component, or type, 

optionally with one or more visual operations and qualifiers. 

Simple instructions include either a data  or a visualization 

segment, e.g. “group data into bins”, coded as D/Operation/ 

Aggregate(bin), or “use a bar chart”, coded as V/Class (bar), 

respectively.  
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Figure 4. Top patterns used in segments of Instructions by percent frequency. 

More complex instructions involve several segments, often 

with a logical expression (e.g. “two measures and a lot of data 

values”, coded as Q/Existential(2), D/Attribute/ Role(measure), 

Expression/Logical (and), Q/Qualitative (large), D/Size). Other 

expressions such as (in)equalities (e.g. “median is a more robust 

measure than average”, coded as D/Operation/ Aggregation 

(median), Expression/ Inequality(more), Q/Qualitative (robust), 

D/Operation/ Aggregation (average)), similarities (e.g. “keep axis 

ranges similar”, coded as V/Component/Axis/Range, Expression/ 

Similar, V/Component/ Axis/Range), prepositional or possessive 

expressions such as “in”, “with”, and “of” (e.g. “labels in graphs”, 

coded as V/Element/Label, Expression/Preposition(in), V/Class 

(graph)), and other expressions that requiring a computation (e.g. 

“legend separated from the line”, coded as V/ Component/Legend, 

Expression/Spatial/Distance(far), V/Element/ Line).  

In our data we found 70.4% of the guidelines to be in simple 

form. Even so, 42.8% of these simple forms included one or more 

visual or data operations. On the other hand, 22.3% of the 

guidelines contained one, and 7.3% two or more expressions. 

Logical expressions are used in 9.9% of the guidelines, while 

in(equalities) and similarities were included in 4.2% and 1.1% of 

the guidelines, respectively. Prepositional expressions were used in 

9.0%. Other expressions (e.g. Spatial) were used rarely, i.e. 0.2%. 

Qualifiers existed in about 47.2% of the guidelines, of these 68.2% 

only one, 20.5% two, and 11.2% three or more. 
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Figure 5. Patterns in the condition part of a conditional guideline 

 

Figure 6. Patterns used in ranking relationship (Concept vs. Concept) 

Figure 7. Patterns used in explanations  

 

In Figure 4, we list the common 

patterns in data and visual parts of the 

instructions. Note that the patterns here 

can be combined with others to make up 

the guideline through. 

Conditions  
In our data, we found that data and 

visualization concepts are heavily utilized 

in the condition part of the guidelines 

with 69% and 25% coverage respectively, 

while on the other hand user, insight, and 

device concepts are rather underutilized, 

with 9%, 6%, and 3% coverage 

respectively. 

Overall patterns in the condition part 

are of the form: (1) Concept/*, which 

states that a certain concept is valid, for 

example, “hierarchical schema”, coded as 

D/Schema(hierarchical), (2) Concept/* (-- 

Q/*), which states a specific concept, 

with a certain qualifier, for example, 

“large number of bars”, coded as 

V/Element/Bar--Q/Qualitative(many), (3) 

Concept/* -- Expression/* -- Concept/*, 

which states an expression or operation 

applied on concepts, for example, “data 

contains time”, coded as Data -- 

Expression/Existential -- 

D/Attribute/Semantics (temporal), and (4) 

Operand -- Expression/Logical(*) -- 

Operand,  a logical expression composed 

of above primitive forms. We found that 

in our data only 12.6% is in the first 

primitive form, while 19.4% in the 

second form, and 37.9% and 27.6%  in 

third and fourth form, indicating the 

complexity of the condition part of the 

guideline. 

In Figure 5, we list frequently 

observed patterns (ordered from most 

frequent to least) in the condition part, 

along with examples and coverage, 

indicating % of conditions in which 

pattern occurred. At the top of the figure 

are mostly data concept related 

conditions, e.g. whether a data attribute 

of certain measurement, semantics, range, 

distribution quality is satisfied. On the 

other hand, interaction 

(Visualization/Interaction/*) and data 

domain (Data/Domain/*) concepts (not 

listed) came at the bottom, with 1.2% 

each. 

Rankings 
Rankings are statements that 

indicate a preference between two or 

more concepts in a guideline. Rankings 

can be relative in which two or more 

concepts are compared, and given a 

relative ordering. They can be absolute, 

suggesting one or more concepts are 

given a fixed rank independently. 
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Guidelines can also talk about changes in ranking in response to a 

specific choice in the guideline. In our data about 5% of the 

guidelines contained a ranking. (Figure 6).  

We also analyzed rankings to see whether a cause or 

supportive argument is made or not and examined the arguments. 

About 74% of the rankings contained a cause or supportive 

argument.  Insight and user ability/task related concepts (> 80%) 

are identified as top concepts as part of the arguments. It is also 

interesting to note that 16.7% of the supportive argument is made 

in negative form. 

Explanations 
Explanations are basically parts of the statements that provide 

reasoning in support of the guidance. In our data, about 45.3% of 

the guidelines contained either a cause (E/Cause) or supportive 

(E/Supportive) argument.  

Figure 7 shows a breakdown of the content of the 

explanations. At the top are insight, user ability, and user tasks, 

optionally qualified by qualitative attributes. Next come 

explanations that indicate support for a particular visualization 

aspect, followed by data aspects, in general. Then, we saw insight, 

user ability, and user’s tasks with additional context provided in 

reference to a specific visualization or data aspect. We saw little 

use of visualization interaction as a cause. Device characteristics, 

data size, privacy, etc. were very rarely specified as argument for 

the explanation. 

Discussion 
Visualization design is not a simple task. Our grounded theory 

analysis reveals that there are many including aspects of data, 

visualization, users, insight, and devices, and relationships among 

these. Of these, not surprisingly, visual aspect came at the top, 

followed by data. Aspects related to user and insight combined 

were also nearly as significant as that of data aspects. Interestingly, 

device related aspects came last by a significant margin.  

Perhaps more strikingly, relationships among these basic 

concepts were as frequent as the top factor, visual aspects. These 

were the expressions that connected basic and more complex 

concepts through logical, causal, supportive, and adversative 

relationships. Similarly, data and visual operations also connected 

basic concepts. Of these relationships, supportive expressions 

came at the top. Along with causal expressions, which were also 

significant, indicate that many of the guidelines came with 

explanations. Explanations not only serve to help the designer 

understand but also allow them to make the proper trade-offs when 

considering a number of design options. We also observed 

significant presence of conditional, copulative, and adversative 

expressions suggesting that guidelines were expressed in detail 

with many statements combined to contextualize and support a 

design guideline. Prepositional expressions were lower in 

frequency but they existed in many guidelines and helped properly 

describe the intended relationships of concepts in the guideline. 

Significant presence of expressions suggests that there is a lot 

more complexity that goes into the visualization design than 

considering basic guidelines alone. There are significant 

interactions among factors and design without considering such 

interactions is likely to result in failure. Furthermore, qualifiers 

that bring about further attributes of the concepts surfaced 

significantly in the guidelines, in fact more than user and insight 

aspects combined. These included qualitative attributes, such as 

efficiency and importance, as well as computed attributes such as 

size, length, distance, etc. The significant emergence of qualifiers 

not only further adds to the complexity argument but also brings 

up another argument, the qualitative and judgmental aspect of 

design. 

Our hierarchical coding of concepts allowed us to examine 

factors and interactions among them at several levels. Our analysis 

suggests strong relationships among integration task and 

composition insight. Similarly, other interactions among several 

visual attributes, components, and types of visualizations, such as 

between position attribute and 2d plots, length attribute and bar 

element, size attribute and shape elements.  

Examining the content and form of the core part of guidelines 

(i.e. instructions) reveals further insight into visualization design. 

From Figure 4, we again see significant presence of visualization 

related concepts. Visual operations came at the top, followed by 

classes of visualizations, then by combinations of several 

visualization concepts, particularly of visual attributes, elements, 

and components, in order of frequency. Color emerged as the most 

discussed visual attribute, in fact color palette was also significant.  

After visual aspects came data related aspects. Specifically 

data attribute was amount the top concepts, particularly its 

measurement type. Nominal was the most commonly referred 

measurement type. Attribute semantics also played a key role in 

design guidelines, particularly temporal semantics. Attribute role 

was also important but not as important as attribute measurement 

or semantics. 

We saw several patterns that combined visual and data 

aspects along with data and visual operations. Visual operations 

topped the list, mapping operation was the most significant, 

followed by aggregation and order. Among data operations group 

and aggregation operations were common though we observed 

others such as data reorganization (e.g. slice) and transformation 

operations. 

Examining the conditional guidelines, we again see 

significant use of the visualization and data concepts, perhaps not 

surprisingly, in the condition part. On the other hand, user, insight, 

and device concepts were rather low. Our data suggests that close 

to two-thirds of the conditions were complex, involving one or 

more expressions. For example, existential expression, requirement 

related to existence of a particular type of attribute, was the top 

expression used, particular as it related to measurement types, 

followed by semantics, and role. Qualitative qualifiers were also 

significantly used in the conditions. Consequence part of the 

conditionals exhibited similar patterns frequencies, with 

combinations of visual aspects coming at the top, followed by data 

related aspect. Again, data schema and domain aspects were not to 

be ignored. 

In rankings, we see that visual aspects were compared mostly, 

particularly, visualization class, attribute, operation, and element in 

order of frequency. We also noted comparisons between intended 

insight and qualitative aspect of visualizations, and among 

qualitative aspects, suggesting descriptions of trade-offs between 

alternatives. 

In summary, we believe three themes emerge from our 

analysis: (1) complexity of visualization guidelines in form and 

content, particularly important as it relates to big data and broader 

use of analytics, (2) importance of qualitative aspects of 

visualization design, particularly relevant as visualizations 

becoming more a commodity for data analysis in several domains, 

and (3) relatively low utilization of some concepts, such as 

interaction and collaboration. 
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Complexity, Scalability, Automation 
As big data becomes a major topic in enterprise analytics and 

consequently as the user base of analytics broadens, automating the 

design of effective visualizations (along with the underlying data 

and analytics pipeline) is now more critical than ever. This has 

several implications. 

First, as discussed earlier, visualization design is a complex 

task, requiring consideration of several factors at once. Simple 

matching between data attribute characteristics and a set of 

visualizations may not do justice to represent the complexity of 

visual analytics. For big data, the situation is worse, as data must 

be carefully transformed and organized before even visualization is 

considered. Interactive visualization of big data is even harder. In 

our analysis, we found relatively lower use of data operations, 

particularly as they related to visualization and interaction with 

data. We need to systematically identify patterns of visual 

interaction with big data that exhibit high utility. Secondly, we 

argue that visualization and analytics should be considered, and 

optimized, in an integrated manner, to increase the overall 

effectiveness of the whole process. This requires a systematic 

approach in which data and visual operators are represented on 

equal terms, potentially requiring visual analytics algebra and 

language to define data, visualization, and interaction altogether, 

that can be optimized (as in relational algebra), as such making 

automatic visualization not a matching problem but rather an 

optimization problem 

Table A. Concept-related codes and their sub-concepts (in capital-case), along with instances (in lower-case) 

Concept  Sub-concept(s) and instances 

Data/Schema(*) 2d, 3d, multid, multivariate, mixed, sequential, hierarchical, graph 

Data/Attribute/* Value (low, high, avg), Size (large, small), Semantics (temporal, spatial, geographical, temperature, 
percentage, count), Unit, Role (measure, control), Measurement (nominal, ordinal, interval, ratio, numeric, 
continuous, discrete, cyclical), Distribution (sparse, dense, uniform), range (wide, narrow) 

Data/Operation/* Aggregation (spatial, average-mean, average-median, sum, min, max), Outlier, Sort (increase, decrease, 
alphabetically), Union, Annotate, Explain, Slice, Filter, Simplify, Group (small, range, type, region, time), 
Transform (text-numeric, text-abbreviation), Fit (line, curve), Ratio, Round, Reduce 

Data/Domain(*) geography, business, politics, it, survey, science, technology, media, sports, meteorology 

Data/* Size (large, small), missing, incorrect, new, privacy, trust, precision, related (time), context, source, selection, 
organization 

Visualization/Element point, line, shape (circle, rectangle, cube, sphere, 2d, 3d, fill), bar, pie, text, node, edge, glyph, error bar 

Visualization/Attribute/* size, radius, position, color (hue-bright/dark/red/gray, saturation, brightness-light/dark), length, area, angle, 
direction, orientation, pattern, shape, label, weight, texture, closure, connection, volume, transparency, style, 
typography 

Visualization/Operation/* label, mapping, projection (3d, row, column), aggregation (stack, cluster, overlay), nesting, order (top-bottom, 
clockwise, time-incr, cyclical), rearrange, distortion, highlight (color, multi), group (bottom-N, 3, 5), scale, 
position (x, y, start, end, middle, below, aligned, left-aligned, right-aligned, center-aligned, baseline-aligned, 
point-aligned) 

Visualization/Component/* Background, Title, Axis (negative, h, v, tick, range), Grid, Label, Legend, Color palette (redgreen, lightdark, 
warm, cold, alternating), Shape palette, Description, Source, Thumbnail, Table (row, column, cell) 

Visualization/Coordinate cartesian-scale (double, range-small/baseline, numeric-linear/log, categorical), polar, geo (projection-
mercator/albers) 

Visualization/Class XY, scatter, bar, list, table, graph, 2d, 3d, map, pie, donut, radial, calendar, histogram, hierarchy, abstract, 
boxwhisker, symbols, line, area, cycle, treemap, mosaic, star, contour, choropleth, cartogram, heatmap, 
aparallelcoords, dot, density, surface, pictogram, graphical 

Visualization/Interaction(*) change metaphor, filter, pan, rotation, scroll, select, zoom (multiple), link to source, annotate, explain, 
overview, detail, sort, split, animation, highlight, style (direct manipulation) 

Visualization/* Standards, Organization, Size (small, large), Aspect, Layer (map), Multiple, Aesthetics 

User/Task process, context, goal, reflect, emotion, perspective, comparison, integrate, search, describe, communicate, 
find, browse, explore, analyze, present, explain, monitor, decision making, classify 

User/Ability Attention, perceive (differentiate, order, measure, change), understand, recognize, read, learn, retain, recall, 
locate 

User/ Disability (colorblind), social (conventions), action (click, move) 

Qualifier/Qualitative good, bad, relevant, easy, accurate, consistent, important, powerful, useful, precise, noisy, simple, fancy, 
informative, novel, efficient, beautiful, successful, appropriate, quick, familiar, redundant, usable, distorted, 
dense, cluttered, lossy, clear, explicit, implicit, flexible, compact, narrow, engaging, different, continuously, 
discretely 

Qualifier/ Numeric (1, 2, 3, 4, 5, ; , N, many, few), Cardinality (N, many, few), rank (N, top, bottom), inequality (more, 
less, N), Existential (many, some, none, only, all, except, emphasis), Logical (not), Temporal (recent), Spatial 
(width) 

Insight/Trend change, past, steady, strength, ragged, change, absolute, time, linear, cyclical 

Insight/ relationship (multi, part-to-whole), correlation (pairwise, multi), composition, variance, extrema, value, 
comparison, distribution, progress, rank, quality, summarization, structure (hierarchy), cluster, causality, 
message, guide, meaning, outlier, gaps, percentage, similarity, pattern, detail, overview, focus 

Device/ Display (size, resolution, aspect, density), Input (mouse, keyboard) 
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Domain, Semantics 
Another implication of the broadening user base is that 

visualization is becoming more a commodity and used in several 

domains. In our data, we see relatively low use of data domain and 

semantics (beyond time) in guiding effective data visualization. 

However, we argue that domain and semantics will be more 

important as visualizations will be used in different domains, as 

part of everyday tools. There are several implications of this.  

First, we need to develop more guidelines that leverage 

domain and semantics. For example, temperature in physics and 

medicine are very different concepts. Though some general 

principles apply, based on the measurement type, much is left to 

design, particularly as it relates to qualitative issues. In different 

domains, possible value ranges are different, more importantly the 

meaning associated with values are different. For example, in 

medicine, the normal body temperature ranges should be 

considered, while in physics, for example, it could be the melting 

point. These impact visual design, choices of colors, axis ranges, 

emphasis on critical points and ranges, etc. 

Secondly, in our data we observed only very little 

consideration of multiple views and datasets. In almost any 

domain, decision making involves consideration of multiple data 

and how they relate to each other. This is clearly another area 

where guidelines need to be developed for effective visualizations.  

Lastly, given the wide range of possibilities to incorporate 

domain and semantics into the equation of visualization design, 

again we may need to consider a systematic approach to design, 

one that involves a language that facilitates specification of 

different considerations. The language should be flexible to 

express different semantics and design know-how. A language 

based approach to automation would support customization quite 

effectively by building different repositories of design know-how 

for different domains and incorporating desired repository into the 

system based on domain of the data analytics problem. 

Interaction, Collaboration, Presentation 
Driven by broader use of visualization in decision-making in 

business and public, we need to support different phases of the 

process, including the analysis phase, which includes a lot of 

interaction with data but also the collaborative aspect of it. A 

critical and often overlooked phase is that of presentation of 

analytics work directly in support of decision makers. 

Unfortunately, we saw few guidelines that incorporated aspects of 

interaction, and almost none that considered collaboration and 

presentation.  

Conclusion 
Our grounded theory analysis of a large set of data 

visualization guidelines suggests that a variety factors are 

considered for effective visualization design, including aspects of 

data, visualization, user, and insight and a variety of relationships 

between these factors including causal, contextual, and logical 

relationships. We also reported gaps and potential directions we 

found in the literature requiring further work on principles and 

guidelines, for example, regarding effective support of 

collaboration and presentation. Our study suggests that, as 

visualization becomes a commodity used in several different fields 

by a variety of users of different backgrounds, we need a 

systematic approach to visualization design. Such an approach 

should preferably be based on a sound algebra and language for 

visual analytics, (1) able to express complex set of guidelines, (2) 

be flexible enough to customize for different domains, and (3) 

allow optimization of the complete pipeline, from data processing 

to visual representation and interaction.   
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