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Abstract 

The capability for improved image and video reproduction 
quality is notably growing. For example, augmentation of 
resolution and dynamic range allows for a markedly transformed 
viewer experience. These can influence a viewer’s experience of 
content in a manner not captured by standardized methods of 
subjective quality assessment. Changes in viewer experiences may 
include elevated arousal, enhanced emotional impact, and 
increased engagement. Here we describe objective methods and 
data metrics allowing for the assessment of individual responses to 
high-dynamic-range (HDR) and wide-color-gamut (WCG) motion 
imagery using electroencephalography (EEG) measurements.  

All test content was mapped from a HDR/WCG source, with 
the HDR/WCG content mapped to the parameters of the stimulus 
display (0.005-1000 cd/m2

 dynamic range, DCI P3 color space). 
Comparison baseline content was mapped to the parameters of a 
standard consumer TV (0.05-100 cd/m2

 dynamic range, Rec. 709 
color space). The difference between viewing the HDR/WCG 
content and baseline content was captured using EEG to probe 
modulation of visual cortical drive, elicited with a fixed-frequency 
reversing checkerboard stimulus. These metrics are combined with 
a broader set of measures to collectively quantify content- and 
dynamic range-dependent impacts of engagement and attentional 
processing. 

Introduction 
 

Motivations for physiological testing of motion imagery 
 
There is a long history of studies that assess changes in image 

quality1 resulting from display design parameters and image 
processing algorithms [1]. The majority of this work has 
considered the assessment of still images and made use of 
behavioral forced-choice testing methodologies that include side-
by-side and sequential comparisons. Subjective metrics of image 
quality (such as threshold detectability of changes in perceptual 
parameters, suprathreshold differences in appearance, and viewer 
preferences) can inform algorithmic design development or 
targeted business strategies. The revival of 3D displays and 
popularity of streaming video have expanded the subject of image 
quality into the broader topic known as quality of experience 
(QoE) [2, 3].  Here we describe a methodology (and supporting 
results) for QoE assessment of high-dynamic-range (HDR) and 
wide-color-gamut (WCG) motion imagery that aims to mitigate 
                                                                 
 
 
1 In this article we will use ‘image quality’ as a superset of still-image 
quality and motion imagery quality.  

many of the problems typically associated with QoE assessment 
and the experience of dynamic content.  

 

Limitations of side-by-side comparisons  
 
While many studies of still image quality exist, QoE for 

motion imagery is not well understood. In addition to difficulties 
relating to content selection and acquisition, there are many 
experimental challenges that must be solved. For example, popular 
still-image testing approaches using side-by-side comparisons have 
been shown to produce significantly lower response variability 
than those using sequential comparisons. This has been shown for 
reporting of image features such as color and tone assessment [4]. 
However, side-by-side empirical methodologies are not optimal for 
assessment of motion imagery. Limitations in the viewer’s time-
dependent foveation ability paired with inherent frame dependency 
of image distortions introduce notable problems in producing 
directly comparative data. By the time the viewer notices a 
distortion or improvement in one image and then foveates to the 
paired side-by-side image, one or more frame cycles have elapsed, 
and the viewer is unable to make a direct comparison of 
corresponding frames. To address this, studies of motion imagery 
have employed tools for side-by-side methodological design (e.g. 
‘butterfly’ or ‘mirrored’ comparisons). Nonetheless, these methods 
often introduce additional problems such as nausea and discomfort, 
resulting from general changes in the overall looming and receding 
optical flow. In comparison, single-screen real-time objective QoE 
assessment methodologies as described in this paper avoid these 
well-known limitations in data acquisition. 

 

Contextual exposure can influence QoE 
 
Another notable issue in motion imagery testing is the impact 

of content narrative and expertise on the viewer response. Typical 
motion imagery content includes conveyance of an experiential, 
time-dependent, contextually relevant story. Experts and 
professionals working in the production of movies and video are 
attuned to small differences in image quality that non-expert 
viewers may not be trained to focus on. To them, the various 
subtleties that they work to achieve as artistic craft may not be 
describable or explicitly noticed by non-experts, but will have an 
intended effect on the viewer’s emotion, engagement level, 
immersion, or ‘suspension of disbelief’.  According to this line of 
thinking, improvements that viewers are unable to describe may 
still have an effect on the overall impression of the video’s 
narrative, by assuming non-actionable or subconscious processes 
and biases.    
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Undesired effects of comparison and rating tasks 
 
Additionally, time-dependent task interference can confound 

image quality testing. The temporally sequential act of comparing 
image differences followed by a motor response can influence the 
data in an undesirable manner. For example, one artifact 
introduced by time-dependent exposure is accommodative 
hysteresis [5] and load when the displayed imagery and the 
response interface are presented at different distances. This can be 
mitigated by placing the visual response interface within the same 
display, as done in the SAMVIQ method [6], or by placing it at the 
same distance when it is on a separate display [7].  Nonetheless, 
even if this problem is avoided, the task of image comparison for 
motion imagery deviates notably from natural viewing. For motion 
imagery, iconic memory is a key limitation in side-by-side 
comparisons, while visual short-term memory is a limitation in 
magnitude estimation for both side-by-side and sequential viewing.  
Long-term memory becomes an issue with attempts to compare 
overall quality using categorical ranking approaches. Rating 
(Likert) scales with descriptive responses (e.g., ‘excellent’, ‘good’, 
‘fair’, ‘poor’, and ‘bad’) are frequently used and suffer from these 
unsolicited influences. Additional deviations from natural viewing 
are also expected to occur in comparison or rating tasks: eye 
movements are altered, attention is taken away from the narrative, 
and the viewer is necessarily placed in an analytical state, all of 
which serve to lessen the emotional and visceral impact of the 
content and to influence state-dependent responses.  

 
In summary, there is an immediate need for alternative testing 

methodologies in QoE assessment of motion imagery content. New 
developments in professional and consumer technology enable 
significant changes in both the dynamic range and color gamut of 
motion imagery. The impact of these technological developments 
on the user experience of content has to date had limited study, 
despite the numerous venues for content consumption. Here, we 
discuss single-screen real-time methods for collecting objective 
physiological metrics pertaining to QoE. Such methodologies 
circumvent the many limitations associated with dual-screen 
viewing environments and allow for more direct study of the 
content and technologies underlying viewer experience. For 
example, what type of content is most impacted by HDR and 
WCG? Is there an interaction with these technologies and the 
content that influences the emotional impact and arousal of the 
viewer, depending on the length of the temporal viewing window? 
   

Physiological approaches to image quality testing 
 
One issue with traditional assessment tools (such as the rating 

scales previously mentioned) is that results can be influenced by 
subjective interpretations of the quantity or quality of the reported 
response. As an alternative, physiological measurements recorded 
from an individual are constrained by biological properties that are 
not subjective. One such measure is the electroencephalogram 
(EEG), which measures small electrical currents on the scalp 
generated by populations of neurons in the central nervous system. 
EEG has been used extensively to study the basic neural 
mechanisms underlying both perceptual and cognitive processes. 
We set out to explore EEG responses under viewing conditions 
that we expect will elicit notable changes in physiological state, in 
order to understand how the physiological metrics may augment 
traditional approaches to assessment. 

 

There is some history of physiological monitoring for motion 
imagery in the 20th century [8], but the majority of studies were 
done for marketing purposes without corresponding technical 
publications. There has been a recent resurgence due to the 
increasing ubiquity of non-invasive physiological sensors, as well 
as advances in neuroscience. EEG has been used in countless 
studies in which visual stimuli are used to evoke event-related 
potentials (ERPs). For example, Bentin [9] used the N170 
component of the ERP to study face-recognition during still-image 
viewing. Still images have also been used to manipulate the 
viewer’s emotion, which can then be classified into affective states 
using facial thermal imaging [10] among other techniques.  

 
Recently, EEG has been increasingly used to measure various 

aspects of image quality. Palmateer proposed using the steady-state 
visual evoked potential (SSVEP) and QEEG (quantitative EEG) 
techniques in assessing display quality and tested the concept for 
display rate flicker [11].  Several EEG studies have used evoked 
potentials to characterize still image compression [12,13] and 
video compression [14,15]. Depth-related aspects of perception 
have been studied for stereoscopic (3D) displays: in comparison to 
2D [16], as well as characterizing crosstalk in 3D displays [17], 
both using EEG to identify differences in ERP topography. Video 
frame rate differences have been studied with EEG frequency 
power spectra using Canberra distances [18]. More basic research 
has used ERPs and eye movements to study visual target search 
[19]. Most of these studies, however, were focused on perceptual 
visibility and did not pursue  higher-level cognitive processes.   

 
Recently, studies aimed at entertainment media have used 

physiological monitoring to assess higher-level aspects of 
perception, rather than visibility. These include the use of 
functional magnetic resonance imaging (fMRI) to understand 
audience preferences for television content [20] and to characterize 
cortical activity while reading literature with different levels of 
engagement [21], as well as the use of electrocorticography 
(ECoG) to understand spatial attention [22].   

   
Our goal is to develop methodologies and data analyses for 

EEG in an image quality application that assesses viewer 
engagement. The present study is aimed at narrative video content, 
and we seek to determine if new improvements in imaging can 
cause higher levels of viewer engagement, regardless of whether 
the improvement is explicitly noticed by the viewer. A secondary 
goal is to emulate natural viewing circumstances and avoid 
excessive repetition of stimuli while maintaining a good signal-to-
noise ratio (SNR). 

 
Several properties of the EEG signal can be used to study 

attention, a key component of engagement. A large body of 
scientific literature studying the basic neurophysiological 
mechanisms underlying the allocation and dynamics of attention in 
and across different sensory modalities has established metrics that 
can be derived from EEG data. The present study will focus on 
three of these measures: EEG power in the 8-12 Hz range (the 
‘alpha’ band) measured using scalp electrodes in the posterior 
region of the head, amplitude of SSVEPs elicited under different 
stimulus conditions, and a time-locked component of the ERP 
known as the ‘P300 response’. 

 
Alpha-band activity was first described in the pioneering EEG 

research done by Hans Berger in 1924, and is one of the strongest, 
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most readily observed components of the EEG signal. Current 
theories propose that alpha activity reflects the functional 
inhibition of sensory processing, such that increased alpha power 
reflects reduced sensory processing [23]. In the visual domain, 
increased alpha power has been shown to predict reduced 
performance in signal detection tasks [24]. Thus, it can be 
predicted that there will be a negative correlation between EEG 
signal power in the alpha band measured over visual cortex and the 
level of visual engagement. 

 
SSVEPs are a type of evoked response elicited by visual 

stimuli which repeat at a characteristic frequency. At each visual 
stimulus onset, a visual evoked response is observed, such that the 
individual responses overlap with one another to produce a time-
locked oscillatory pattern in the data. This oscillatory response can 
be observed in the frequency-domain representation of the EEG 
data as a spectral peak at the stimulus’ characteristic frequency 
[25]. Importantly, the amplitude of the SSVEP is modulated by 
visual attention [25], and can potentially index differences in visual 
engagement with the content immediately preceding the eliciting 
stimulus.  

 
The P300 component of the ERP is another well-established 

marker of attention that is elicited by ‘pop-out’ sensory stimuli, 
either due to their salience or context-dependent value [26]. It is 
typically observed as a relatively high amplitude (> 5 µV) positive 
peak in the ERP, reaching maximum amplitude between 300-600 
ms after the appearance of the eliciting stimulus at central 
electrode locations near the crown of the head [27]. Crucially, its 
amplitude is known to vary depending on the allocation of 
attentional resources to secondary tasks unrelated to the eliciting 
stimulus [28, 29]. As such, a salient ‘pop-out’ stimulus can be used 
to probe the depth of attentional allocation in a secondary task.     

 

High Dynamic Range and Wide Color Gamut  
 
The particular image quality improvement being studied here 

is the result of a combination of high dynamic range (HDR) and 
wide color gamut (WCG), as well as the necessary bit-depth 
increase.  HDR and WCG involve major improvements in the 
image capture, signal formatting, and display capabilities. By 
combining the luminance range description (HDR) with the 
traditional 2D color gamut description, a color solid results, and 
the size of the color solid is described by the overall color volume. 
Color volume can be used to describe the overall color and 
luminance capability. This is illustrated in Figure 1, using a 
vertical luminance axis. The particular parameters of improvement 
that we will study are shown in Figure 2, where the ‘SDR’ 
(standard dynamic range and gamut) volume is determined by Rec. 
709 primaries, a maximum luminance of 100 cd/m2, and a 
minimum luminance (black level) of 0.05 cd/m2, for a total 
dynamic range of 2,000:1.  The improved color volume (referred to 
in this paper simply as ‘HDR’, even though the color gamut has 
also improved) has the digital cinema primaries (referred to as P3), 
a maximum luminance of 1000 cd/m2, and a minimum luminance 
of 0.005 cd/m2, for a total dynamic range of 200,000:1. 

 
    

  
 

Figure 1. a) Traditional 2D color gamut. b) A 3D color volume. c) New 
capability achieved by HDR. d) Example HDR image. 

The visible advantages of HDR and WCG are numerous, and 
are described in several books [30, 31, 32]. Some of the more 
interesting advantages include better renditions of specular 
reflections and emissive colors, and the ability to portray both 
indoor and outdoor scenes in a single image (looking outside from 
within a room). In addition, there have been descriptions of the 
differences in terms of visceral reactions by the consumer 
electronics and professional imaging press [33]. Recent demos 
have used maximum luminance levels of 4000 to 8000 cd/m2 and 
achieved easily visible dramatic effects. However, the level of 
HDR and color volume tested here is on the lower end of HDR 
improvement [4]. For these luminance levels, the differences are 
obvious in side-by-side comparisons, but in sequential 
comparisons, it can be difficult for non-experts to notice the 
difference. 
 

 
 

Figure 2. Color volumes used in this experiment. Inner solid is max. lum. = 
100, min. lum. = 0.05, and color gamut = Rec. 709 (referred to as simply 
‘SDR’ in this paper). Outer mesh is max. lum. = 1000, min. lum. = 0.005, and 
color gamut = P3 (referred to as simply ‘HDR’ in this paper). All luminance 
units in cd/m2.  
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Methods 
 

Subjects and Data Collection 
 
Nine subjects participated in the study (7 right-handed, 4 

females and 5 males, mean age: 33 years, range: 21-47). All 
subjects reported normal hearing and normal or corrected to 
normal vision, with the exception of one subject with partial color-
blindness. Subjects were recruited from a pool of external listeners 
employed part-time by Dolby and were paid hourly for their 
participation in the experiment. All subjects had no history of 
photosensitive epilepsy and were shown a preview of the flashing 
checkerboard stimulus to gauge visual discomfort before deciding 
to proceed with the experiment. 

 
EEG was recorded from 32 active dry-sensor g.Sahara 

electrodes with a g.Nautilus wireless headset/amplifier (g.tec 
medical engineering GmbH, Graz, Austria). Electrodes were 
positioned according to the modified 10-20 system at the following 
locations: Oz, PO7, PO3, PO4, PO8, P7, P3, Pz, P4, P8, CP5, CP1, 
CP2, CP6, T7, C3, Cz, C4, T8, FC5, FC1, FC2, FC6, F7, F3, Fz, 
F4, F8, AF3, AF4, FP1, FP2. Reference and ground electrodes 
were placed on the right and left earlobes, respectively. Data were 
recorded with a 250Hz sampling rate and the sensitivity of the 
active system set to +/- 750mV.  

 

Stimuli and Procedure 
 
Testing was done in the Physiology Lab at Dolby’s 1275 

Market headquarters, with room lights turned off. Visual stimuli 
were presented using Adobe Speedgrade (Adobe Systems, San 
Jose, CA) on a 42-inch Dolby Professional Reference Monitor 
PRM-4200 that was modified to reach a maximum luminance of 
1000 cd/m2 with a minimum luminance of 0.005 cd/m2 and a P3 
color gamut. Viewing distance was approximately three picture 
heights from the 42-inch-diagonal display image, set by chair 
position without a chin rest in order to keep viewing as natural as 
possible.   Due to the limitations of Speedgrade, each movie clip’s 
audio was presented as a stereo downmix, on ATC SCM11 
speakers (ATC Loudspeakers, Gloucestershire, UK).  

 
Stimuli consisted of two 22-minute segments, each containing 

three movie clips. The clips were excerpts from action movies, 
each approximately 6 minutes in duration. These clips were 
selected due to their visually engaging action sequences, which 
featured bright explosions, dark detail, and imagery that took 
advantage of HDR and WCG. An additional criterion was that the 
clips were engaging without the context of the entire movie, since 
most subjects had not seen the movies before. The clips had been 
originally graded for presentation on a 4000-nit high-end reference 
display, and an internal display-mapping algorithm was used to 
adapt the clips for the present experimental parameters. The 
mapping algorithm has been used in other psychophysical quality 
studies involving HDR [4,34]. Rather than simply compress the 
luminance linearly in a luminance or gamma domain, it tends to 
preserve the mean level while more severely compressing the 
highlights. Each clip was shown twice, once in an ‘HDR’ 
condition, which used the full dynamic range of the modified 
PRM-4200 display, and once in an ‘SDR’ condition, which 
emulated a typical consumer display. The display matching 

parameters for each condition are shown below, and illustrated in 
Figure 2. 

Display Specifications for Test Clip Conditions 

 HDR Condition SDR Condition 

Maximum brightness 1000 cd/m2 100 cd/m2 

Minimum brightness 0.005 cd/m2 0.05 cd/m2 

Color space DCI P3 Rec. 709 

 
Both HDR and SDR conditions were presented on the same 

PRM-4200 display using the Dolby PQ electro-optical transfer 
function (EOTF), with a resolution of 1920 by 1080 pixels, 12 
RGB bits/pixel, and at 24 frames per second. Clip order was fixed 
within each of the two sessions, while condition order alternated 
between HDR and SDR throughout both sessions to avoid 
habituation effects, with the starting condition randomized across 
subjects.  

 

Figure 3. Experimental design. A) Two video sequences were presented to 
each subject in counterbalanced order. Each contained interleaved HDR and 
SDR versions of 3 cinematic clips. ‘Bright’ (light blue, mapped to HDR range) 
and ‘dim’ (dark blue, mapped to SDR range) checkerboard stimuli were 
alternately presented at 25-second intervals throughout both sequences. B) 
Peak luminance over time for each sequence. 

  
All clips had rapidly flashing checkerboard segments 

interspersed throughout, designed to serve as a ‘probe’ stimulus in 
which the effects of the HDR and SDR contexts could be measured 
indirectly by analyzing the evoked potentials. Flashing 
checkerboard stimuli are known to elicit SSVEP responses, which 
are desirable for their high SNR (providing many stimulus onsets 
in a short period of time). These segments consisted of a full-
screen black-and-white 16-by-9 checkerboard, which inverted its 
colors at 24 frames per second. A constant red dot was overlaid on 
the center of the checkerboard, and subjects were instructed to 
fixate on the dot during checkerboard segments. The checkerboard 
design was chosen in order to elicit maximal SSVEP amplitudes, 
and the 24 Hz frequency was chosen in order to match the movie 
clips and ensure reliable presentation. Checkerboard segments 
were always 5 seconds in duration, and were interspersed 
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following each 25-second period of the movie clips, after which 
the movie clip would resume. No audio was presented during the 
checkerboard segments. The checkerboard segments were 
presented in two conditions, ‘bright’ and ‘dim’, with maximum 
and minimum luminance values identical to the HDR and SDR 
movie clip conditions, respectively. The bright and dim 
checkerboard segments were presented in alternation throughout 
the experiment to control for the contrast difference when 
presented in the context of the two clip conditions. 
 

EEG Data Preprocessing and Analysis 
 
All EEG data processing and analysis was conducted using 

the open source FieldTrip toolbox [35] in MATLAB in 
conjunction with custom scripts. Raw EEG signals were high-pass 
filtered with a finite impulse response filter at 0.5 Hz, and low-pass 
filtered using a Butterworth filter at 40 Hz. Optical trigger signals 
in the unprocessed EEG recordings were then used to segment the 
data into 1-second epochs, which were grouped into sets 
representing the different visual conditions: SDR viewing, HDR 
viewing, and ‘bright’ and ‘dim’ checkerboard stimuli. 

 
An independent component analysis (ICA) was then 

performed using the ‘runica’ method [36, 37], and the data were 
visually inspected to identify components corresponding to muscle 
movement and eye-blink artifacts. These artifacts typically contain 
transient activity orders of magnitude larger than the neural signals 
of interest, and the corresponding components can be readily 
identified based on both their scalp topography and signal 
statistics. Removal of such artifacts through ICA has the benefit of 
preserving data epochs that would otherwise be rejected in 
subsequent artifact removal steps based on the amplitude of the 
measured signals. Following the identification and removal of 
artifactual components, the analysis proceeded in the EEG channel 
space. 

 
Two additional steps were taken to clean the data. First, an 

iterative procedure was used to identify individual EEG channels 
showing poor connectivity. This is typically characterized by an 
overall signal power that is orders of magnitude larger than the 
ongoing EEG signal. EEG recordings made using dry-electrode 
systems will typically contain multiple channels with poor 
connectivity, as there is no additional conductive medium applied 
to the scalp as part of the cap fitting procedure. In each iteration, 
the mean signal power across all data epochs was calculated for 
each EEG channel. Then, based on the median value, any channels 
showing overall signal power more than 2.5 standard deviations 
above the median were marked as bad, and were repaired using the 
mean of all immediate neighbors not also marked as bad. This 
process was repeated until no channels were marked as outliers, or 
until 10 iterations had been completed. One participant’s data was 
excluded from further analysis due to excessive mean signal power 
(> 105 µV2) following bad channel repair. For the remaining 
participants, an average of 11.1 channels were repaired. 

 
Second, signal amplitudes at all 32 channels in individual data 

epochs were checked against a threshold of ± 150 µV, such that 
any epochs exceeding the threshold were marked as bad and 
excluded from any subsequent analyses. On average, 79/2648 data 
epochs, or approximately 3% of the collected data, were marked as 
containing artifacts. 

 

Additional 6-second long data epochs corresponding to a 
checkerboard stimulus and the data in the second immediately 
preceding it were obtained from the raw data and used to calculate 
the ERP for the onset of the checkerboard stimulus, as well as its 
time-frequency representation. From a total of 90 epochs per 
subject, an average of 9.1 epochs, or 10.1% of the available data, 
were excluded from subsequent analyses that made use of these 
longer data epochs. 

 
The data analysis proceeded along two principal lines: 1) A 

frequency-domain analysis of the EEG power spectra and 
topographies across the different experimental conditions, and 2) 
time-domain analysis of the ERPs elicited by the onset of the 
checkerboard stimuli. The frequency domain analysis was 
performed using a multi-taper method on individual one-second 
data epochs in the 1-65 Hz range with a resolution of 1 Hz and a 
spectral smoothing parameter of ±1 Hz. The ERP analyses made 
use of the six-second data epochs, which were baseline corrected 
using the mean signal value at each electrode in the 200 ms prior to 
the onset of the checkerboard, prior to averaging. An additional 
time-frequency analysis was performed using the six-second data 
epochs as part of the analysis of the neural response to the 
checkerboard stimulus. This was done using a wavelet-based 
method in the range between 18-30 Hz in .33 Hz steps. Individual 
wavelets representing 7 cycles at each of the target frequencies 
were convolved with the time-domain data to obtain an estimate of 
the time-varying signal power at that frequency. Following the 
wavelet analysis, individual data were baseline corrected with 
respect to the time interval from 600 ms to 200 ms prior to the 
onset of the checkerboard stimuli, such that signal power at each 
time-frequency point was represented as the percent signal power 
change relative to the baseline value for the corresponding 
frequency bin. 

Results  
 

Alpha Power Modulation during HDR and SDR Viewing 
Conditions 

 
The first analyses of the EEG focused on the dynamics of 

alpha-band power during HDR and SDR content viewing. For this 
analysis, the continuous EEG data representing the time course of 
the HDR and SDR content viewing was reassembled from the 
individually preprocessed epochs. Epochs corresponding to the 
checkerboard stimuli were not included, while epochs containing 
artifacts were replaced with randomly selected data from the same 
visual condition in order to preserve the overall time course of the 
individual sessions. This time course was band-pass filtered 
between 9-12 Hz using a Butterworth filter, and then squared to 
obtain a power estimate. Finally, the time course was smoothed 
using a low-pass filter at 0.2 Hz.  

 
Next, data from both the HDR and SDR portions of the 

experiment were averaged at the individual and group levels in 
order to estimate the overall grand-average scalp topography of 
peak alpha activity (Figure 4a, left panel). A clear peak over visual 
and parietal cortices was observed, corresponding to the typical 
EEG scalp distributions of alpha power [38]. This topography was 
used as a spatial filter on individual subjects’ continuous data to 
derive a ‘virtual electrode’ representing the summary time course 
of alpha activity in HDR and SDR viewing conditions. From these 
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time courses, the mean alpha power in each condition was 
estimated (Figure 4a, right panel). Relatively higher levels of alpha 
power, indicating reduced visual engagement, were observed in the 
SDR condition. However, this difference failed to reach statistical 
significance.         

 
Figure 4. Alpha-band power dynamics during matched HDR and SDR content 
viewing. A) Grand-average scalp topography and mean power in HDR and 
SDR conditions across subjects. B) Median luminance levels in HDR and SDR 
versions of the first cinematic clip. C) Grand-average time course of alpha 
power for the first cinematic clip. Correlations of the alpha power time courses 
with the luminance time course in panel B are indicated. 

Subsequent analysis of the alpha power dynamics focused on 
their relationship with the luminance changes in the movie content. 
The median luminance levels for both of the visual sequences were 
obtained on a frame-by-frame basis. The data for the first of the 
three cinematic content excerpts are shown in Figure 4b, and are 
illustrative of the increased dynamic range in the HDR condition. 
This plot shows that HDR images are not simply brighter overall – 
they can be darker as well. The benefit of HDR is that the overall 
range of luminance is increased, both spatially within an image, 
and temporally across scenes or frames (as shown in Figure 4b).   
A correlational approach was then taken to relate changes in the 
image dynamics over time to changes in visual processing, as 
indexed by the alpha power time course. The grand-average time 
courses across subjects for both the HDR and SDR versions of the 
first cinematic content excerpt were resampled to 24 Hz to match 

the frame rate of the image data. The time courses for both the 
HDR and SDR conditions are presented in Figure 4c. 

 
The present hypothesis regarding the relationship between 

image dynamics and visual engagement would predict a negative 
relationship between median luminance levels and alpha power, as 
alpha power will be reduced as the level of visual processing 
increases. This is indeed what is observed, with a significant 
negative correlation (p < .001) of median luminance levels and 
alpha power across time for both the HDR and SDR conditions. 
The observed correlation coefficient was substantially more 
negative for the HDR condition (r = -0.17) than for the SDR 
condition (r = -0.05), indicating that visual processing is modulated 
by the image dynamics of the cinematic content to a greater extent 
when presented in HDR.  

 

Evoked Responses to Checkerboard Stimuli 
 
Grand-averaged ERPs at the onset of the checkerboard stimuli 

across visual conditions are presented in Figure 5. Figure 5a 
presents the average scalp topography of the response at between 
90-95 ms following the onset of the checkerboard stimulus in the 
left panel, together with the average signal trace from electrode Oz 
for the periods immediately preceding and following stimulus 
onset. The Oz electrode is centered over the foveal region 
representation within primary visual regions (striate cortex). A 
stereotypical visual evoked response was observed, with clear 
negative and positive peaks at approximately 70 and 100 ms, 
respectively, corresponding to the N70 (also known as C1) and 
P100 components generated in striate and extrastriate cortices [39]. 
Additionally, a clear oscillatory response can be observed, 
corresponding to the steady-state visual evoked potential (SSVEP) 
elicited by inversions of the checkerboard stimulus (with an 
interstimulus interval of ~42 ms, corresponding to 24 frames per 
second). 

 
Figure 5. Event-related potentials during checkerboard stimulus. A) Scalp 
topography of P100 response and grand-average waveform at midline 
occipital electrode (Oz). B) Scalp topography of P300 response and grand-
averaged waveform at midline frontal electrode (Fz). 
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The left panel of Figure 5b presents the average scalp 
topography between 330-370 ms following stimulus onset. The 
corresponding signal trace from electrode Fz is shown in the right 
panel, where a clear positive peak corresponding to the P300 
response can be observed (Fz is located immediately anterior to the 
crown of the head). This response provides an index of attentional 
capture of the checkerboard stimulus, which itself is a function of 
the preceding levels of attention directed towards the cinematic 
content. Variability of these responses across experimental 
conditions is further explored in the following sections. 

 
Frequency-domain analyses of the responses elicited by the 

checkerboard stimulus are presented in Figure 6. Figure 6a 
presents the scalp topography of the power spectrum at 24 Hz, with 
a clear peak observed over visual cortices at electrode Oz.  Figure 
6b presents the power spectra obtained across the different 
experimental conditions at electrode Oz. An average peak with a 
magnitude of approximately 2 µV2 was observed in all conditions. 
Statistical tests revealed no differences in power levels for bright 
vs. dim checkerboard stimuli, nor were any differences observed in 
responses following HDR vs. SDR cinematic content. Figure 6c 
presents the average time-frequency representation of the response 
across the entire 5-second duration of the checkerboard stimuli. A 
clear increase in power centered at 24 Hz can be observed relative 
to the baseline period prior to the onset of the stimulus. Thus, it 
can be concluded that checkerboard stimulus reliably elicited an 
SSVEP, but no overall differences in the magnitude of this 
response were observed across the experimental conditions.  

 
Figure 6. Steady-state visual evoked potential (SSVEP) at 24 Hz during 
checkerboard stimulus presentation. a) Scalp topography of 24 Hz response 
during middle portion of checkerboard stimulus (1-4 seconds). b) Power 
spectra of SSVEP during different experimental conditions. c) Grand-average 
time-frequency representation across conditions. 

Relationship between visual engagement and P300 
response amplitude 

 
Individual subjects’ P300 responses in the different 

experimental conditions were captured by first spatially filtering 
the data using the mean individual response topographies in the 
330-370 ms range. The amplitude of the largest positive peak in 
the filtered signal between 300-500 ms in each visual condition 

was submitted to further analysis. Results of these analyses are 
presented in Figure 7. 

 
The first analysis focused on differences in the P300 response 

amplitudes elicited by checkerboard stimuli following either HDR 
or SDR cinematic content excerpts. In Figure 7a, significantly 
larger response amplitudes were observed following SDR content 
relative to HDR content (p < 0.05, non-parametric permutation 
test). This suggests that the attentional capture effect of the 
checkerboard stimulus was enhanced following SDR content 
viewing. 

One possibility is that the relative difference in brightness 
between the two checkerboard stimuli enhanced the P300 response 
following the SDR condition due to lower overall luminance levels 
during content viewing. To assess this, two additional analyses 
were carried out, and are presented in Figures 7b-c. The first 
compared overall P300 response amplitudes for bright and dim 
checkerboard stimuli. Mean amplitudes between the two 
conditions were not significantly different, indicating that 
attentional capture was not principally modulated by stimulus 
luminance.  

The second analysis looked specifically at the P300 response 
amplitudes to dim checkerboard stimuli following SDR content 
relative to bright checkerboard stimuli following HDR content. 
This served as an additional control for the results presented in 
Figure 7a, but focusing only on responses elicited by checkerboard 
stimuli matched to the dynamic range of the preceding content. 
The same general pattern as the initial analysis was observed, 
despite the reduced amount of data available for calculating the 
individual ERPs. This result reached a significance of p=0.06.  

 

Figure 7. Comparison of P300 amplitudes across experimental conditions. A) 
Mean P300 response amplitudes to checkerboard stimuli following HDR or 
SDR content. B) Mean P300 response amplitudes to dim and bright 
checkerboard stimuli. C) Mean P300 response amplitudes to checkerboard 
stimuli matched to the preceding HDR or SDR content. Statistical 
comparisons were performed using a non-parametric permutation test. 
Asterisk indicates a significant result at the p < 0.05 level.  

Taken together, these results indicate that the checkerboard 
stimuli more effectively captured attention following SDR vs. 
HDR content, independent of the relative brightness of the 
checkerboard stimulus to the preceding content. It has been 
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previously shown that increased attentional engagement in a 
secondary task prior to the onset of a ‘pop-out’ stimulus will 
reduce the amplitude of the P300 response [29]. Applying this 
terminology to the context of this experiment, the secondary task 
corresponds to the viewing of the movie content, and the 
checkerboard is the ‘pop-out’ stimulus. This interpretation suggests 
an overall increased level of engagement during HDR content 
viewing relative to SDR content. This interpretation and its 
relationship to the results of the analysis of the alpha power time-
courses are discussed further below.  

Discussion 
 

 In this study, we explore alpha power, SSVEPs and the P300 
ERP component of EEG signals measured during viewing of SDR 
and HDR cinematic content. The strength of this approach, 
compared to traditional methods like rating scales, lies in the 
viewer’s ability to have a natural and undistracted viewing 
experience of cinematic content, interspersed with collection of 
physiological measurements elicited by a strong artificial stimulus, 
the reversing checkerboard. Interactions between these natural and 
artificial stimuli warrant further investigation. 

 
These methods of signal collection have other advantages in 

that they do not require any knowledge of the experiment on the 
part of the subject, and are therefore not prone to certain bias and 
noise inherent to numerical or adjective-based ratings tests. The 
subject need not even be informed that an experiment is taking 
place. Complete absence of awareness that an experiment is being 
conducted would only be possible with certain types of 
physiological measurement techniques, such as thermal imaging 
and some forms of pupillometry. With most physiological 
measurement techniques, the subject will know that some kind of 
experiment is taking place, but it still possible to not know what is 
actually being studied. For example, in the case of studying a 
subject watching movies while using slightly intrusive equipment, 
such as heart-rate monitors, they will certainly know an experiment 
is occurring, but they will not know what experimental variable is 
being manipulated, or even whether the variable pertains to image, 
sound, content, etc. Thus the act of the experiment will have a 
limited effect on the perceptual responses, and observations can be 
interpreted knowing that certain experimental goals and parameters 
were unknown to the participant.  
 
 Content used for this experiment was mapped either to SDR, 
to simulate typical consumer viewing equipment, or to HDR on a 
stimulus display with a 0.005-1000 cd/m2 dynamic range. While 
this provided a noticeably expanded color gamut and luminance to 
vision experts, surveys of experimental subjects following testing 
revealed that several subjects did not notice significant brightness, 
contrast, or color differences during the experiment. Because HDR 
can easily extend far beyond 1000 cd/m2

, we believe our findings 
represent a lower bound of emotional and attentional states that can 
be evoked by the technology. 
 
 A reduction in alpha-band power is associated with tasks that 
drive attention and engagement. We found that alpha-band power 
in the EEG spectra was inversely correlated to median luminance 
levels, and that the correlation was stronger for the HDR viewing 
condition. This increased modulation may reflect a higher level of 
visual engagement. 
 

 Characteristic SSVEPs elicited by the inverting checkerboard 
stimulus were not found to differ between HDR and SDR contexts, 
or between bright and dim checkerboard stimuli. It is possible that 
the SSVEP is not subject to attentional modulation by the content, 
or that differences in state are obscured by a rapid or strong 
response to the stimulus.  
 

However, the transition from cinematic content to the 
checkerboard stimulus also elicited robust P100 and P300 
responses. We analyzed the P300 response and found it to be 
significantly reduced following HDR content, possibly due to 
increased cognitive engagement driven by the improved display 
parameters. To rule out a direct effect of brightness in the different 
P300 responses, we measured average power of the P300 for the 
dim and bright checkerboard conditions. These did not differ 
significantly, meaning brightness alone could not account for the 
reduced amplitude following HDR viewing. Furthermore, the 
amplitude of the transition from HDR to the bright checkerboard 
trended lower than the SDR-to-dim transition. Although that 
difference was not statistically significant due to the small size of 
the data set, more data that supported the result could be taken as 
additional evidence that the difference observed in P300 responses 
is not due directly to luminance, but rather higher-level attentional 
processes. 
 

Together, these results demonstrate that properties beyond 
effects generated by low-level processing (e.g. visibility and 
brightness) can be measured with EEG. These data support the 
existence of signals that correlate well to modulation of viewer 
engagement and attention by visual stimuli. 
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