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Abstract
In the area of Quality of Experience (QoE), one challenge is

to design test methodologies in order to evaluate the perceived
quality of multimedia content delivered through technical sys-
tems. Traditionally, this evaluation is done using subjective opin-
ion tests. However, sometimes it is difficult for observers to com-
municate the experienced quality through the given scale. Fur-
thermore, those tests do not give insights into how the user is
reacting on an internal physiological level. To overcome these
issues, one approach is to use physiological measures, in order to
derive a direct non-verbal response of the recipient. In this paper,
we review studies that have been performed in the domain of QoE
using physiological measures and we look into current activities
in standardization bodies. We present challenges this research
faces, and give an overview on what researchers should be aware
of when they want to start working in this research area.

Introduction
Today’s wide variety of online services leads to a huge

amount of data which has to be delivered via the internet where
bandwidth is one of the limiting factors. Especially, in the case
of video streaming, these limitations become very obvious. How-
ever, due to the significant competition between different video
streaming services, service providers cannot allow themselves to
transmit their content at an unacceptable quality, as customers
would abandon their services. In subjective quality tests, it can
be determined which technical settings lead to an acceptable per-
ceived quality. However, the ecological validity of the current
subjective testing methodologies has been questioned [1]. Thus,
methods that could be used in the user’s normal environment, with
as little interruptions as possible of the used service and prefer-
able non-intrusive towards the user, would be a preferred testing
methodology. Additionally, sometimes it is difficult for an ob-
server to communicate the level of experienced quality through
the rating scale presented to them, and consequently not all rele-
vant responses can be collected using subjective ratings. This will
require developing methods that can estimate quality with other
means than explicitly asking the user. Here, (neuro)physiological
measures may be helpful to overcome these challenges as they can
be taken directly and non-verbally from the observer. Although,
these measures are more difficult to gather, they measure directly
a response of the observer which may even detect subtle differ-
ences that are not noticeable on the behavioral level, i.e. the level
of the conscious opinion ratings.

Due to chemical and physical processes within the brain,

electrical activity is being elicited that can be recorded from the
scalp’s surface using electrodes; for example, by an electroen-
cephalogram (EEG). These electrical responses are directly due
to neural activity and can be recorded at a very high temporal
resolution. Thus, early responses can be detected [2], in com-
parison with hemodynamic measures, which analyze changes in
blood flow and which take a few seconds until a response can be
recorded [3]. Also, the apparatus’ expenditure is much higher for
those measures. Therefore, this paper focuses mostly on studies
using EEG.

The analysis of EEG data can be performed in two differ-
ent ways. Firstly, data can be analyzed concerning a short and
distinct event that elicits an event-related potential (ERP). Here,
the amplitude of the ERP’s component can vary with the level of
quality perceived by the user. Secondly, data can be studied us-
ing an analysis of the frequency band power. This is especially
interesting, when drawing conclusions about the mental state of
participants, or to describe the change in the mental state between
conditions.

The topic of using neurophysiological assessment in the do-
main of quality of experience (QoE) is rather young, and only a
very limited number of research has been conducted in this area.
Still, there are some commonalities that will be brought together
and summarized within this paper.

The basis for analyzing neurophysiological reactions to-
wards changes in the experienced quality in audio and speech sig-
nals has been performed in studies from Miettinen [4] and Antons
[5]. Based on these fundamentals, studies that have been per-
formed in the area of video and image quality assessment using
mostly measures of EEG, but also different other physiological
techniques (such as near-infrared spectroscopy or electrocardio-
gram) will be described in detail.

This paper will give a general introduction and an overview
into the topic of (neuro)physiology in QoE including, studies that
have been performed. It will summarize their results and based
on previous given recommendations, present tips and tricks for
researchers who are new in this field. The paper is structured as
follows. First, an introduction to traditional approaches in quality
of experience is given, followed by an introduction into different
aspects of physiology. Afterward, an extensive review on existing
work combining QoE and methods of physiology is given. Fol-
lowing this, a section on tips and tricks when working in this area
are given. At the end, an outlook towards future work concerning
research and standardization bodies is given.
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Figure 1: Illustration of (a) ACR test procedure and (b) corre-
sponding rating scale, as well as sequence of (c) DCR test proce-
dure and (d) their corresponding scale. Figures taken from ITU-T
Rec. P.910 [6].

Quality of Experience
According to [7], Quality is the result of an internal compar-

ison between desired and perceived quality features. Whereby, “a
quality feature is the perceived characteristics of an entity that is
relevant to the entity’s quality.” To understand this relation vari-
ous methods have been developed. Most of them are based on the
presentation of stimuli and asking the observer to give a response,
e.g. on a rating scale. In standard procedures recommended by
the International Telecommunication Unit (ITU), stimuli are usu-
ally presented individually, one by one (Absolute Category Rat-
ing, ACR), or in pairs, two subsequent stimuli (Degradation Cate-
gory Rating, DCR), to the test participant. After presentation, the
observers have to judge the quality on a scale depending on the
paradigm used, as shown in Fig. 1. The averaged judgment for
one condition over all participants, in ACR tests is the so-called
Mean Opinion Score (MOS), and in DCR tests the DMOS.

Unfortunately, MOS or DMOS values obtained in these tests
usually do not give any information about the insights into the
observers’ state. To overcome this issue, measures which can be
taken directly from the participant receive more attention. In this
case, without explicitly asking the participants, information can
be obtained which is potentially related to the perceived quality.

Neurophysiology
In the case of subjective opinion tests, the internal judgment

of the observer somehow has to be encoded onto the scale that is
given to the participant. It is a challenge in the design of these
tests to select a good scale, and to make the observer understand
it through the instructions given. On the other hand, physiologi-
cal measures are derived directly from the participant and do not
directly undergo this encoding process; thus, they may give a less
biased result which is free e.g. of personal preferences or misun-
derstanding of the used scale.

The electroencephalogram (EEG) may be used for assessing
quality related processes [5]. The EEG measures voltage variation
due to neuron activity in the brain. It can be recorded by attaching
electrodes to the scalp of a subject. Since its discovery by Berger
in 1929, it has become a widely used method for investigating
physiological correlation between perceptual and attentional pro-
cesses [9] [10]. This measure has a rather limited spatial resolu-
tion – based on the fact that the brain is a wet conductor the signal
recorded by one electrode is a mixture of all existent sources – but

Figure 2: Example of an ERP; taken from [8]

at excellent temporal resolution with a precision of milliseconds.
The corresponding data can mainly be analyzed in two different
ways: on the one hand by having a closer look at the spectro-
gram of spontaneous activity, and on the other hand by analyzing
so called Event-Related-Potentials (ERP) which are a time-locked
reaction to an external stimulus in terms of a voltage change [11]
(see Fig. 2 for an example ERP). The latter approach can be used
to analyze cortical potentials as well as voltage differences evoked
in the brain stem. The focus of this review will be on the corti-
cal brain activity because research on brain stem level is not yet
fully usable in QoE-research and only very limited work has been
performed here.

In addition to the relevant information – brain activity – other
unwanted information is recorded as well, e.g. voltage changes
due to eye-movement, body movement and other unrelated sig-
nal sources. Due to high noise present in the EEG signal, it is
important to create highly controlled experimental setups. Clini-
cal research guidelines for experimental designs already exist and
carry important implications for research in the domain of Quality
of Experience based on them [10].

The equipment that is used in EEG research typically is very
expensive and in case of using wet electrodes also challenging to
attach to the participant. Lately, new low-cost EEG devices have
appeared on the market, such as the Emotiv-EPOC 1 and Neu-
roSky MindWave 2 headsets. While these consumer products are
comparably inexpensive and easy to attach, the data quality, i.e.
precision and noisiness of the signal, using those products is ex-
pectedly less reliable to the devices used in clinical applications.
However, these products have shown to capture useful informa-
tion in the context of QoE-related research.

For the analysis of ERPs, a small set of electrodes can be suf-
ficient, usually up to 8 electrodes; they should be distributed along
the central line following the 10/20 system [12], and for hemi-
spheric differences equally distributed electrodes over the right
and left hemisphere are advisable. More electrodes are needed
for the analysis of more complex patterns e.g. spatial pattern dis-
tribution.

As evoked potentials depend on an exact timing, it is impor-
tant that triggers are exactly synchronized to be able to average
the signal while keeping the temporal information intact. ERPs

1http://www.emotiv.com/
2http://www.neurosky.com/
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cannot be observed in the raw EEG as they are overshadowed by
other, unrelated activity, which is smoothed out when averaging
several trials of single ERP recordings.

Usually 20–30 trials at minimum are needed for an average
ERP per stimulus class; a baseline corrected signal uses the aver-
age value of the voltage in the interval of up to 200 ms before the
stimulus. This rather high number of trials compared to standard
quality tests also explains the typically small number of subjects
used for EEG-studies.

The aforementioned averaging methods are performed of-
fline and as an average over a group of subjects. This average
over all subjects is the grand average, and is the result which is
often plotted in these studies, see Fig. 2. Using classification
techniques this can be transferred to online analysis of incoming
physiological signals, such as deciding whether the brain activ-
ity of the proceeding stimulus was evoked by one special class of
stimuli [13]. To address this in the case of Quality of Experience
an exemplary class of degradation can be used. With classifica-
tion as a measure of separability, it can be distinguished between
perceived stimulus classes. For a tutorial on single-trial ERP clas-
sifications see [14].

In the continuous EEG, five main different frequency ranges
are ascribed to specific states of the brain: delta band (1–4 Hz),
theta band (4–8 Hz), alpha band (8–13 Hz), beta band (13–30
Hz) and the gamma band (36–44 Hz) [15]. The delta band is
present during deep sleep, the theta band occurs during light sleep
and is an indicator for decreased alertness. Activity in the alpha
band is related to relaxed wakefulness with eyes closed and de-
crease in alertness. Beta and gamma band are ascribed to high
arousal and focused attention [11].

Analyzing the power in the before mentioned frequency
bands is widely done for assessing the cognitive state of car
drivers. Lal et al. for example showed that fatigued drivers had an
elevated power in the delta and theta bands [16]. Correlation be-
tween weighted combinations of the power in different frequency
bands with subjective fatigue ratings was shown in [17].

Another reason to use frequency bands is to estimate the
emotional state of subjects. Therefore, alpha values from frontal
electrodes are being extracted. The asymmetry index is one way
to obtain this information. It shows that higher values in the asym-
metry index are the result of higher left frontal activity which is
due to rather negative emotional processing [18].

Neurophysiology in Multimedia Quality Per-
ception

In all areas where the classical QoE research is active, studies
have been conducted which use a variety of physiological method-
ologies. In this review mainly neurophysiological measures are
being focused on. First studies by Mietnnen have used audio stim-
uli and MEG [4]. Later, Antons et al. used audio stimuli and EEG
[19], and from there on several different groups investigated inde-
pendently different multimedia material using mostly EEG. An
overview on the different studies can be seen in Table 1.

In the following, we review work related to the two main
paradigms as defined earlier: ERP and spectral analysis.

ERP
A first study using classes of degradations that are of interest

for research in the telecommunication industry was conducted by

Miettinen et al. (2010) using magnetoencephalography (MEG),
where they could show a significant increase in the measured am-
plitudes for distorted stimuli [37].

The following sections are based on the work of [5]. One of
the first studies using EEG for quality assessment were conducted
by Antons et al. in the auditory domain, where signal-correlated
noise was introduced into the stimuli and the signal-to-noise ratio
was the independent and scalable variable [19]. Here, participants
had to judge after each presentation whether they perceived a dis-
tortion in the current stimulus or not. The first paradigm using
EEG in a QoE context was derived starting with meaningless syl-
lables and developing the stimulus up to random words. In each
of the experiments it could be shown that the elicited P300 be-
comes significantly higher the more distorted the stimulus is [21].
Additionally, the P300 occurs earlier with stronger distortions.
Furthermore, it could be shown that stimuli that were perceived
as undistorted by the participants, but were distorted on the signal
level, had a similar trend in the ERP as trials rated by the partici-
pant as distorted. Thus, high machine-learning classification rates
for these trials could be obtained and it was concluded that these
degradations are presumably processed non-consciously as they
do not penetrate up to the subjective behavior [19]. Aim of clas-
sification was to identify trials in which the participant was not
able to detect a degraded stimulus, although an activation pattern
similar to conscious detection was present. Linear Discriminant
Analysis (LDA) with automatic regularization of the estimated
covariance matrix was applied.

A series of studies using short (audio)visual stimuli snippets
was presented by Arndt et al. [38] which consisted of five indi-
vidual experiments. In this series the same video was used for
all studies. The video consisted of a speaker uttering the syllable
/pa/. The video was presented with different levels of quality, and
while test participants were watching those videos an EEG was
recorded. The quality degradation was achieved by using differ-
ent levels of inserted artificial blockiness, ranging from hardly no-
ticeable up to very annoying. The procedure for one trial was that
first the standard (undistorted) video was shown, followed directly
by a possibly distorted variant of the video. In the first study only
the video was presented to the participants (Video Experiment).
In a follow-up study half the trials were presented with accompa-
nying audio, and all the remaining studies were presented with an
audio track. Here, either audio, video or both modalities were dis-
torted. For the distortion, artificial blockiness was introduced for
the video which was generated as described in ITU-T Recommen-
dation P.930 [39]. For the audio distortion, signal-correlated noise
was generated using the modulated noise reference unit (MNRU)
that is described in ITU-T Rec. P.810 [40]. In the final experi-
ment, an actual codec, namely the H.264 in the x264 implemen-
tation, was used as realistic degradations. For analysis of the
recorded EEG data, time-locked epochs around the beginning of
the video snippet were extracted. The main component which
was being investigated was the P300. In these experiments, it was
shown that the P300 was larger for low quality stimuli (i.e. larger
blockiness artifacts) compared to higher quality stimuli where the
degradation was less visible. In the paper, it is argued that this is
due to higher cognitive processing in case of low-quality presen-
tations.

In work conducted by Lindemann et al. [32], static JPEG
compressed images were presented to the subjects. Four dif-
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Figure 3: Path of stimulus presentation and EEG data analysis. The subject is listening to audio samples, the EEG is recorded simulta-
neously (the red line indicates stimulus onset). Stimulus presentation and EEG recording are repeated several times within one session,
then the recorded EEG data is averaged and plotted (description from left to right).

Author Study Media Type Artifact (#Distortion Levels) #subjects EEG Feature
Acqualagna Texture Images [20] Image HM 10.0 (7) 16 SSVEP
Antons Phoneme [21] Speech MNRU (4) 10 P300

Word [19] Speech G.722.2 (4) 9 P300
Sentence [5] Speech reverberation (3) 22 P300
Audiobook I [22] Speech G.722.2 (2) 18 alpha
Audiobook II [23] Speech G.722.2 (4) 12 alpha

Arndt Video Experiment [24] Video artificial blockiness (6) 10 P300
Audio /on/off [25] (Audio)visual artificial blockiness (4) 10 P300
Audiovisual Exp 1 [26] Audiovisual artificial blockiness/MNRU (8) 13 P300
Audiovisual Exp 2 Audiovisual artificial blockiness/MNRU (8) 12 P300
x264 Experiment Audiovisual x264 codec (4) 10 P300
AV-Documentary - Audio [27] Audiovisual x264 codec (2) 12 alpha, theta
AV-Documentary - Speech [28] Audiovisual x264 codec/GSM1.60 (4) 24 alpha, theta
TTS [29] Speech synthetic speech (4) 14 alpha, P300

Beyer Cloud Gaming [30] Games x264 (2) 32 alpha
Kroupi 2D vs 3D [31] Video 2D vs 3D (4) 16 frequency
Lindemann compressed images [32] Image JPEG compression (7) 10 P300

zooming [33] Image different colored block (3) 8 P300
Moon HDR videos [34] Video HDR vs LDR (2) 5 frequency
Mustafa Video Artifacts [35] [13] Video popping/blurring/ghosting (6) 8 P300, alpha
Nunez Castellar Flow Experience Games game level (3) 22 P300
Scholler Chess Grid [36] Video HEVC (6) 9 P300

Table 1: Overview on studies analyzing quality aspects using measures of EEG. The table shows a summary of the media types used,
induced artifacts, distortion levels, number of participants, and considered EEG feature.
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ferent images were presented at seven different levels of JPEG-
compression. In each trial, first the undistorted image was shown
(standard stimulus) and subsequently the possible distorted image
(target stimulus). Event-related potentials around the presenta-
tion of the target stimulus were extracted from the EEG record-
ings. The recorded ERP responses showed that lower quality
compressed images elicited a stronger P300 component compared
to higher quality images. In a second study [33], a different set of
three images was used. To avoid sudden onset effects, zooming
into the picture’s center was emulated. During this zoom-in, two
possible artifacts were inserted, one rather obvious (a magenta
block) and one less obvious (a blurred block) distraction. For the
EEG data, ERPs were extracted around the onset of the artifact.
The data shows a stronger P300 peak for the obvious artifacts and
a lower deflection for the less obvious one; this is in line with the
previously reported results. In addition, classification on the EEG
data was performed using support vector machine (SVM). Clas-
sification between trials with artifacts and trials without artifacts
yield a high accuracy of up to 80% while classification between
all trials show good classification rate for no-artifacts (75%) but
poor for trials with artifacts (54%).

A study performed by Scholler et al. [36] used synthetic vi-
sual stimuli (with a duration of 8 s), which consisted of a chess
grid with water rings on top. The video was distorted using a
codec similar to the HEVC and introduced six different levels of
distortion. One trial consisted of one video with the inserted dis-
tortion starting randomly between 2 s and 6 s. The participant’s
task was to report after each trial whether they perceived a degra-
dation or not. The ERP was extracted around the onset of the
inserted distortion. It was shown that stronger degradations lead
to a larger P300 amplitude. Subsequently, classification was per-
formed on the ERPs using LDA (linear discrimination analysis).
In the case of trials which were correctly identified by the test
participants (i.e. of either containing degradation or not), the
strongest distortion levels were classified almost perfectly with
an AUC (area under the curve) of close to 1. In the case of less
obvious levels of degradation, the AUC decreases. For trials that
were not identified correctly by the participants (i.e. videos that
contained an impairment which was not recognized) classification
was only for a few participants above chance.

In Acqualagna et al. [20], a set of six different images
with gray level texture was selected. Each image was presented
at seven different compression levels produced by the HM10.0
HVEC codec (including one reference condition). The images
were presented using 3Hz flickering between the uncompressed
and the distorted image. In contrast to the other studies presented
in this section, the authors evoked a steady state visual evoked
potential (SSVEP) which is a response being elicited by the vi-
sual cortex when presenting flickering visual stimuli [41]. The re-
sults show that the obvious compression levels lead to an increase
in the modulated frequency power (i.e. 3 Hz). When applying
LDA classification, the classification accuracy AUC is well above
chance for the obvious compression levels, but not for the less
distorted stimuli.

The overview of studies shows that they were carried out at
different labs, using different video material as well as different
EEG equipment (all clinical, though). In most studies, a compari-
son between stimuli was the task for the test participant, to decide
whether they perceived a distortion between the standard and a

possibly degraded stimulus. This is a modification of the oddball
paradigm which is one of the standard paradigms in neuroscience
in order to elicit a P300 response, but is much more difficult to
implement in the domain of quality research, and thus may bring
less obvious results than it would in the original paradigm. It can
be seen that the P300 component is most variable with differently
degraded visual stimuli. In Arndt’s studies both modalities were
presented to the subject and were varied in their quality. Here,
it was shown that the presented effect is stable across modalities.
Additionally, all of these studies have in common that they use
very short video stimuli for their experimental paradigms, as well
as lots of repetitions (which is mostly due to the nature of an ERP)
and thus do not conform with standard quality recommendations
[6] [42] nor with realistic settings. In the study of Acqualagna
[20], the SSVEP, a different feature of the EEG signal, was used
and could confirm prior results. As for SSVEPs, a lower number
of repetitions necessary for this paradigm might be better suited
for quality assessment of still images.

Spectral Analysis
Due to the possibility that more natural stimuli in terms of

stimulus length can be used, it is possible to examine the effect of
longer duration media stimuli (>10 min) on the recipients. In this
section studies that used longer lasting stimuli are mentioned.

In studies by Antons et al., participants were exposed to high
quality and low quality sequences of longer auditory material.
Their only task was to rate the content on a scale every few min-
utes, and in the rest of the time they should focus on the presented
content. Higher values in the alpha band power were observed
when being exposed to low quality stimuli compared to higher
quality stimuli, which is ascribed to fatigue and impaired infor-
mation processing [22]. In an additional study, results assessed
the impact of a high quality audio segment (5 min) inserted in
a low quality audio stimulus (15 min). Participants were less fa-
tigued due to the better audio quality as indicated by a lower alpha
band power [23].

Arndt et al. [43] conducted two studies in which longer stim-
uli that were equivalent to documentaries have been used; the doc-
umentaries showed sea life scenes. In the first study, for the audio
only scene-related background noise was present. One half of the
audiovisual material was presented in high-quality video and the
other half in low-quality video. The second study had an accom-
panying background narrator that was constantly talking. Here,
both modalities were presented in their original quality as well
as in reduced quality, either only one or both modalities were dis-
torted, leading to four different quality levels. Within both studies,
the state of the test participants and how it changed with present-
ing different quality levels was analyzed. For the EEG data, a
frequency power band analysis was performed. In both studies,
it could be shown that an increase in alpha and theta level is the
result of a reduction in quality. Compared with standard litera-
ture in neuroscience this increase is due to an increased level of
fatigue and/or drowsiness. In both studies, several other physi-
ological measures have been recorded additionally. For the first
study, blink duration was one parameter which had been analyzed
in more detail. It could be shown that for the low-quality sequence
the blink duration was longer compared to the high-quality ver-
sion [44]. This is an additional indicator of an higher level of fa-
tigue. In the second study, several peripheral physiological mea-

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.16HVEI-125

IS&T International Symposium on Electronic Imaging 2016
Human Vision and Electronic Imaging 2016 HVEI-125.5



sures were derived, amongst others electrocardiogram or the level
of skin conductance. However, those measures did not show any
significant change with the change of quality [28].

Mustafa et al. [13] used a 5.6 s long low-complexity video
that showed a person walking. They introduced different kinds
of distortion, such as partial freezing and blurring (on the person,
and on a greater area), ghosting of the movement plus the original
video, resulting into six different video conditions. For the EEG
data, ERPs were extracted as well as performing frequency anal-
ysis. For analysis of the ERPs [35], the data was extracted around
the onset of the distortion. It could be shown that for artifacts that
are on the moving part of the video (i.e. the person) the P300 is
larger compared to distortions that contain a greater area. In ad-
dition, power frequency analysis was performed [13] on the same
data set. When analyzing the frequency range of 10 Hz to 20 Hz,
they could show that artifacts on the person evoke again the great-
est change compared to the reference condition. Classification
on the EEG data using a SVM approach show high classification
results for differentiating between trials containing artifacts and
reference trials (85%). During single-trial classification on a per
artifact basis, classification results only reach up to 70%.

Kroupi et al. [31] analyzed degradation of 2D and 3D videos
where they used seven different one minute long sequences from
a music festival. Each sequence was presented in a high-quality
(HQ) and low-quality (LQ) version in 2D and 3D rendering. The
different power frequency bands from the EEG data were ex-
tracted and correlated with the behavioral quality judgments. The
main finding was that results of the EEG recordings show high
frontal asymmetry in the alpha power band, which reflects emo-
tional affect towards the two different quality levels.

Moon et al. [34] used four different sequences of HDR (high
dynamic range) and LDR (low dynamic range) video content. The
sequences showed different scenes and had a duration of 20 s to
50 s. The frequency power band was extracted from the EEG data
and used for classification, with an accuracy of almost 70% if
only EEG features were used, and improved up to almost 80%
if other peripheral measures were used for classification as well
(e.g. GSR, respiration, Plet, skin temperature). For the EEG,
the gamma band seemed to give the most discriminative results
between conditions.

Moldovan et al. used the features provided by the Emotiv
EPOC System to infer the level of frustration from the human
observer caused by the quality of the played audiovisual excerpt.
This level was determined by using a metric predefined by the
headset manufacturer. In their study, videos with different levels
of quality were used. The level of quality was controlled through
manipulation of the bitrate, frame rate as well as resolution of the
presented video clips [45]. Perez et al. used the NeuroSky Mind-
Wave headset to measure brain activity and used the recorded data
to classify the trials into high and low quality pictures [46].

This section shows that there is more variability between
studies compared to the section on ERPs. One approach is to
design setups closer towards realistic stimuli and therefore, rather
research the impact of longer degraded low-quality sequences on
the participant’s state. Other approaches still use rather shorter
stimuli and examine the difference in the cognitive state due to
different media stimuli (2D vs 3D). Also consumer grade prod-
ucts were in use and provided insights into the change of emo-
tional responses in the observer.

Discussion
The number of different studies and the variety of different

labs conducting these kinds of studies show that there is big in-
terest in this emerging research area. Furthermore, the presented
results are in line with each other and with standard neurophysi-
ological literature, which suggests that the measured components
in the recorded EEG data are useful for such an approach. Ob-
viously, the identified components do not solely represent quality
related features, but make use of standard EEG paradigms and
their components coming from psychology. The P300, which is
a measure of difference detection, was used to be elicited when
there was a difference between stimuli which in the context of
this paper were related to quality features. The other major com-
ponent used was the alpha band power that is indicative for higher
levels of fatigue or relaxed wakefulness. In the context of the pre-
sented studies, the manipulation of the material was due to quality
impairments.

As shown in this paper, two completely different approaches
were used throughout a number of studies to analyze influences
of quality degradation on the observer. It can be seen that if short
stimuli are used, analysis of event-related potentials is being ap-
plied. Here, a relatively high number of repetitions has to be per-
formed in order to obtain a smooth and averaged ERP signal. But
if this is achieved, single-trial classification can be applied and
subtle differences can be analyzed much better and in some cases
even more sensitive than in solely behavioral studies. Especially
in these cases the advantage of neurophysiological measures is
striking, as technical settings could be improved using such meth-
ods.

How these short reactions may influence the observer in
longer scenarios was analyzed in the second part of this paper.
Here, the analysis of frequency components of the EEG data, and
with this the approximation of change of the observer’s cognitive
state, was presented. It could be shown that due to quality reduc-
tion a change in the analyzed frequency components was visible.
This change can be ascribed to a reduction of the cognitive state
as mentioned in [43].

The studies mentioned in this paper all were passive exper-
iments; thus, no direct interaction of the test participant was re-
quired. Recently there also have been efforts to use EEG in the
area of gaming QoE. Especially, while games are emerging that
are run over the Internet, classical QoE problems (paired with ad-
ditional problems) evolve. In [30], the authors measured varying
alpha activity with different levels of video compression. In this
study participants played a first person shooter game in a cloud
gaming setup with varying levels of video quality caused by dif-
ferent video compression bitrates. It was found that the video
quality influenced the perceived quality, player experience, the
subjective ratings and the alpha frequency band power. It is shown
that physiological measures capture the influence on the player in
terms of a reduced cognitive state.

Neural Correlates of the Subjective Flow Experience During
Game Play are analyzed in [47]. Brain activity associated with
this subjective experience of the attenional flow state has sparkled
interest recently. A response locked laplacian transformed EEG
data analyses revealed increased activity at fronto-central elec-
trodes (activity maximal at FCz - Cz) around 250ms following
the response-onset to oddball sounds in the flow condition. It
is hypothesized that the medial frontal activity locked to the re-
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sponse onset could reflect increased cognitive control, prompted
by the high attentional demands in the flow condition. Likewise
increased activity elicited after the detection of the novelty sounds
(P300) might be an index of the to re-allocation attentional re-
sources to the primary task.

Current activities and Look-out
Currently no standards on using physiology in the area of

QoE exists. Therefore, this topic has been brought to the ITU
where several contributions on using physiological measures in
QoE have been made [48] [49] [50] [51]. Furthermore, activities
have been initiated to form a recommendation to use physiologi-
cal measures in addition to subjective tests [itupphysio], under the
working item P.PHYSIO. Additionally, the topic was presented to
the European Telecommunications standards institute (ETSI) to
receive more attention[52].

Within the video quality experts group (VQEG), the RICE
project (Real-Time Interactive Communications Evaluation) [53]
picked up this topic. Current activities consist of a study (which
currently is in the planning phase) in which several labs will be
involved. Here, the goal is to test the methodology for its robust-
ness. Within the different labs not only different kind of equip-
ment will be used, but also the effects of experimenters which
may be new to this assessment technique and different cultural
backgrounds will be analyzed.
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