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Abstract 
The HTTP Adaptive Streaming (HAS) technology allows 

video service providers to improve the network utilization and 
thereby increasing the end-users’ Quality of Experience (QoE). 
This has made HAS a widely used approach for audiovisual 
delivery. There are several previous studies aiming to identify the 
factors influencing on subjective QoE of adaptation events. 
However, adapting the video quality typically lasts in a time scale 
much longer than what current standardized subjective testing 
methods are designed for, thus making the full matrix design of the 
experiment on an event level hard to achieve. In this study, we 
investigated the overall subjective QoE of 6 minutes long video 
sequences containing different sequential adaptation events. This 
was compared to a dataset from our previous work performed to 
evaluate the individual adaptation events. We could then derive a 
relationship between the overall mean opinion score (MOS) and 
the MOS from shorter sequences. The aforementioned empirical 
dataset has proven to be very challenging in terms of video quality 
assessment test design, thus deriving a conclusive outcome about 
the influence of different parameters have been difficult. The 
second contribution of this study is considering how objective 
characterizations of adapted videos can improve the 
understanding of the subjective ratings. 

Introduction 
Video delivery accounts for the major share of nowadays 

Internet traffic. A large portion of this traffic is delivered through 
HTTP server-based streaming services such as YouTube, using 
TCP as underlying transport protocol. In contrast to more 
traditional video delivery methods over UDP, TCP’s packet 
retransmission property prevents audio/video distortions. However, 
the delivery channel throughput may vary strongly. When the 
available bandwidth falls below the video bitrate, the client buffer 
depletes and the playback is interrupted, resulting in video stalling. 
To avoid the negative impact of buffering/stalling events on users’ 
Quality of Experience (QoE), streamed videos have to be either 
encoded at very low bitrates or adapted dynamically to the 
available bandwidth. 

A popular method of video delivery today is online streaming 
of videos using HTTP Adaptive Streaming (HAS). In this setting, 
different quality representations of the media is available at the 
server and partitioned into segments of typically 1 to 10 sec. 
Depending on the current network throughput, the video playback 
client chooses the next segment from the available quality 
representations of the media aiming to reduce the risk of buffer 
depletion, and therefore stalling events. Nevertheless, switching 
between different representations will result in a video playback 

with time-varying quality, which might in itself give rise to a new 
type of visual degradation. 

Bitrate adaptation can be done through different strategies. 
However, to provide an optimal viewing experience for the end-
user, it is crucial to understand the QoE impact of quality variation 
due to adaptation. The ultimate goal for service providers is to 
optimize the QoE of an entire viewing session that could be 
anything from a few minutes up to maybe 1-2 hours. Despite this, 
the research on the relationship between the overall QoE of (long) 
HAS video sequences and the perceptual quality of individual 
adaptation events has not received much attention yet and is 
remaining an open research question.  

On the other hand, evaluation of such a long video sequence 
is challenging as the existing testing methods are designed for the 
short test stimuli up to one minute and not being appropriate to 
evaluate the video quality varying over a longer time. This makes 
the full matrix design of the experiment on an event level hard to 
achieve. 

As an alternative, one can turn to objective Video Quality 
Assessment (VQA) methods to get estimations of the video quality 
of HAS videos. In order to understand the overall subjective results 
and eventually build a good objective quality estimator, a good 
understanding of the factors influencing the subjective quality is 
required. The idea here is that the subjective data can be compared 
to  data objectively characterize the video sequences, at least with 
objective metric building blocks, e.g. spatial and temporal 
information, contrast sensitivity and masking, blockiness, blur, etc. 
This could give valuable insight into how an effective metric 
should be constructed. 

Objective VQA methods can be divided into the following 
three main categories: Full-Reference (FR), Reduced-Reference 
(RR) and No-Reference (NR) quality assessment. In the FR 
scenario, the original video is available for measuring along with 
the distorted version. In the RR scenario, only a limited set of 
information about the original video is available. Typically, 
relevant parameters are computed and transmitted of the original 
and or the distorted video. Finally, in the NR scenario no 
information about the original video is available.  

Objective NR VQA methods are very useful since no 
additional data is transmitted along with the video signal. Thus, the 
algorithms can be carried out solely at the receiving end and 
without affecting the encoding or the amount of transmitted data. 
Objective VQA of HAS videos are still very much an open 
problem and even more so if the method is required to be a NR 
method. 

The contribution of this study is two-fold. First it investigates 
the relationship between the QoE of long video sequences 
including sequential adaptation events and the perceptual quality of 

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.16HVEI-105

IS&T International Symposium on Electronic Imaging 2016
Human Vision and Electronic Imaging 2016 HVEI-105.1



 

 

containing individual adaptation events. This is done through 
subjective evaluation of 6 minutes long video sequences including 
different adaptation events and comparing the obtained results to a 
dataset from our previous study which targeted the QoE of 
containing individual adaptation events. The second contribution 
of the paper is to investigate the relationship between the objective 
characterization of adaption events and the corresponded 
subjective ratings.  

Related Works 
Through an extensive literature review presented in surveys 

[1], [2] the factors influencing the QoE of HAS services have been 
presented. For instance, many studies have shown that gradual 
quality variation is preferred over abrupt one. The frequency of 
quality representation switches negatively impacts the experienced 
quality. People seem to prefer constant over time-varying quality, 
unless the average quality is too low—in that case, any switch to a 
higher quality is better. Also, it is generally agreed upon that any 
kind of stalling must be avoided.  

In spite of presenting the aforementioned findings, the authors 
of [1] also address many questions which have remained open or 
not appropriately solved due to (i) a limited number of tests 
conducted to address a question, (ii) shortcomings of the reported 
studies (such as missing information in the respective publication), 
or evident limitations in the considered set of test conditions, (iii) 
methodological shortcomings in terms of how tests have been 
conducted, or (iv) contradictory outcomes with respect to identical 
research questions. 

On the other hand, there are some new research questions, 
especially in regard to testing methodology to evaluate the QoE for 
HAS long sequences.  The only standardized method aimed at long 
sequences, Single Stimulus Continuous Quality Evaluation 
(SSCQE) from ITU-R Rec. BT.500 [3], requires the user to focus 
on both rating and watching at the same time. However, the 
recency and hysteresis effect of the human behavioral responses 
while evaluating the time-varying video quality would lead to an 
unreliable evaluation through this methodology [4]. 

In fact, research on new methodologies to improve the current 
subjective testing approaches has been already started. For 
instance, a new approach for immersive evaluation of audiovisual 
content was proposed in [5]. This method is based on the use of 
long test stimuli to encourage the observers’ engagement with the 
content and simulating real situations of using audiovisual 
applications. In this work, not only longer sequences are 
recommended for evaluating video quality, but also using test 
sequences with audio (in spite of traditional standard 
recommendations). This recommendation makes sense since 
video-only presentations poorly represent the users’ experience of 
an audiovisual application, as people rarely watch videos without 
audio. 

Another new approach was presented in our previous work 
[6], in which the evaluation of set of subsequent adaptation 
scenarios was made using long sequences (around 6 minutes). The 
idea behind designing this method, which has been named 
Content-Immersive Evaluation of Transmission Impairments 
(CIETI), was to simulate realistic viewing conditions by using 
longer sequences so the observers become more engaged to the 
content as they would be in real life, rather than focusing on 
detecting impairments, which can happen using traditional 
methodologies with the short test videos. Nevertheless, the voting 
period in this approach is intrusive and may prevent the user from 
fully immersing into the content. Thus, understanding the 

relationship between the QoE of individual adaptation event 
evaluated during the voting time and the whole video sequence 
including subsequent adaptation events would be challenging. 

There are only few contributions in the field of objective 
Video Quality Assessment (VQA) research that specifically targets 
QoE in HAS. As shown in [1] distortion-generic state-of-the-art 
Image Quality Assessment (IQA) and VQA methods does not 
achieve very good performance when applied directly to HAS test 
sequences. The authors of [1] also outline an objective VQA 
method based on time and frequency of buffering events, the video 
quality level, frame rate, and the Mean Opinion Score (MOS) of 
the video streams at the encoder side. In [8] a No-Reference (NR) 
QoE estimation method for H.264/AVC HAS videos based on 
quantification of buffering events, the quantization, and mapping 
by a neural network is presented.  

The performance of different temporal pooling methods with 
the IQA methods Peak Signal-to-Noise Ratio (PSNR) and 
Structural SIMilarity index (SSIM) on HAS videos is presented in 
[9]. Similarly, initial work on a Full-Reference (FR) objective 
VQA method based on pooling of IQA scores, but also considering 
different bitrate information is presented in [10]. 

Despite the promising results in the previous work, good 
performance on a more realistic HAS dataset can be hard to 
achieve. Motivated by this, work on objective characterization of 
HAS videos is presented in this paper, which can be used in the 
development of more robust objective VQA methods for HAS. 

Study Description 
Taking the open questions from previous studies [1], [2] into 

account, following factors about adaptation behaviors were 
considered for further investigation: 

• What is the perceptual effect of technical switching 
parameters, specifically, abrupt vs. smooth switching and 
chunk size when decreasing and increasing the video quality? 
 

•  What is the influence of content type on perceptual quality of 
switching strategies? 

 
• Is it better to switch the quality level or try holding a certain 

(even low) quality level to minimize the impairment caused 
by the switching itself? 

 
• What is the proper methodology to subjectively evaluate the 

adaptive streaming strategies? What is the influence of audio 
presence on evaluation of video-related impairments? 

To study these research questions, we previously performed 
three subjective experiments considering various adaptation 
scenarios and using different testing methodologies to evaluate the 
individual adaptation events [11]. In current study, we conducted a 
new experiment to evaluate the overall QoE of the whole long 
video sequence. This experiment is presented in the section of 
Subjective Experiment in the following section.  

In the design of our previous study, special care was taken in 
order to provide a realistic HAS system environment. 
Nevertheless, due to the high number of sequences and their 
duration, applying all test scenarios on each video source was not 
possible which made it difficult to determine whether the 
difference in subjective scores arises from the different type of 
distortions or the different video sources. Therefore, in this study, 
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we consider objective characterization of the video content to get a 
better understanding of the dataset.  

Subjective Experiment 

Test Materials and Conditions 
Among commercial content, seven source video sequences 

(SRC) of approximately 6 min long were chosen as listed in Table 
1. The spatial and temporal activities of the content, which was 
determined using the metric provided by [18], covered a large 
portion of SA-TA plane. 

Table 1:  Characterization of Source Video Sequences (SRC) used in the 

experiments 

Code Type Format Description 
P Movie 1080p 

24fps 
Action, with some scene in smooth  
motion, some with group of walking people, 
 some with camera panning 

S Movie 1080p 
24fps 

Drama, romance, mostly with the 
smooth motion in the static background,  
some scene with group of dancing people in 
bright ambient 

D Movie 1080p 
24fps 

Action, Si Fi, with the rapid changes in some 
sequences, cloudy atmosphere 

C Documentary 1080p 
50fps 

Sport documentary, mostly with handheld 
shooting camera 

F Sport 1080p 
50fps 

Soccer, average motion, wide angle camera 
sequences, uniform camera panning 

N News 1080p 
50fps 

Spanish news, some scenes with static 
shooting camera with one/two 
standing/sitting people; some outdoor scenes, 
other scenes with camera pan 

R Music 1080p 
50fps 

Music concert, high movement of the singer 
with some sudden scene change 

 
 The video representations were provided considering the 

compression domain as switching dimension and quality range 
used in practice for the living-room platform. For each SRC, four 
quality levels from 600 kbps to 5 Mbps were produced using 
Rhozet Carbon Coder with the setting summarized in Table 2. It 
was assumed that the network bandwidth varies along these levels. 

Table 2: Transcoding parameters of adaptive streams' quality levels 

Code Frame rate Resolution Target bitrate (kbps) 
Q1 24 720p 600 
Q2 24 720p 1000 
Q3 24 720p 3000 
Q4 24 720p 5000 

Video: H.264, high profile, closed GoP, disabled scene change detection 
Ref. frame: 2, B frame: 2, Constant Bitrate Coding (CBR), Adaptive QP 

Audio: AAC, 192 Kbps 
 

For each of the status when client should request from the 
server lower bitrate chunk (down-switching) or higher bitrate 
chunk (up-switching), four Hypothetical Reference Circuits (HRC) 
were constructed including abrupt and smooth switching each 
using two different chunk lengths. For the comparison of abrupt 
versus smooth switching strategies, the two video sequences to be 
compared against each other shared the same lower, Qi, and higher 
quality level, Qi+k, (cf. code in Table 2), with i indicating the lower 
quality level of the respective sequence and k indicating the 
number of quality level change for reaching to the higher one. In 
the case of abrupt switching, the quality change occurred in the 
middle of sequence duration, whereas for the smooth switching 
after every chunk one quality change took place until reaching to 

the target level. Since human perception of quality switching can 
be different with respect to the switching direction, abrupt and 
smooth switching test sequences were constructed for both up and 
down-switching directions. For each of these switching behaviors, 
two chunk size, 2 sec and 10 sec length, were considered to be 
inline with current HAS solutions. To study the perceptual quality 
of adaption streams in different content, four HRCs were 
considered representing the constant quality level. The list of all 
HRCs is presented in Table 3. 

Table 3: List of the test adaptation Strategies (HRCs) 

Status Possible Behavior Code 
Increasing 
quality 

Gradual 
change 

10 s chunk IGR10 
2 s chunk IGR2 

Rapid 
change 

10 s chunk IRP10 
2 s chunk IRP2 

Decreasing  
quality 

Gradual 
change 

10 s chunk DGR10 
2 s chunk DGR2 

Rapid 
change 

10 s chunk DRP10 
2 s chunk DRP2 

Constant 
quality 

Whole sequence at 5 Mbps N5 
Whole sequence at 3 Mbps N3 
Whole sequence at 1 Mbps N1 
Whole sequence at 600 kbpd N600 

 
To produce the test sequence (TS), each SRC was segmented 

following the pattern shown in Figure 1. Because of the session 
time limitation and high number of SRCs and HRCs, the full 
factorial design was not feasible. To respect the ITU recommended 
test session length [3], four out of seven SRCs (P, S, F and C 
content- cf. code in Table 1) were selected to be prepared in two 
different variants. By means of these two variants (called as 
‘content code’-V1 and ‘content code’-V2 in the Results section), 
relevant switching behaviors (i.e. comparing GRx and RPx) as 
well as the constant quality HRCs with potential non-perceivable 
difference (i.e. comparing N3 and N5, as well as N600 and N1) 
were compared in an identical segment of the aforementioned 
content. As a result, 11 TSs, i.e. for each HRC, 11 different 
individual segments (4x2+3), and consequently the total of 132 
Processed Video Sequences (PVS) (11x12) were generated for 
evaluation. Length of the PVSs was variable depending on the 
HRCs: 40 sec for those considering the quality switching with 10 
sec chunk (cf. xGR10 and xRP10), and 14 sec for rest of the 
HRCs. 

 
Figure 1: Format of test sequence (TS) according to CIETI methodology. PVS 
and VS stand on ‘processed video sequence’ and ‘voting segment’ in order. ‘0’ 
printed in the corner of the first segment’s frames has no degradation 
indicating the start of the test. In the test session, randomized order of test 
sequences were presented to the subjects. 

Evaluation Approach 

Previous study 
In our previous study presented in [11], three experiments 

were conducted in different environments and through different 
testing approaches to evaluate identical PVSs. 

The first experiment was conducted in Acreo Swedish ICT's 
lab (denoted as `Acreo' experiment). The randomized order of all 
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the PVSs (cf. PVS in Figure 1) were presented to the test subjects 
following the Absolute Category Rating (ACR) methodology 
adapted from ITU-T Rec. P.910 [18]. After presentation of each 
PVS, the test subjects were asked to answer two questions pop-up 
on the screen: overall quality of the PVS (rating on the _five-
graded ACR scale (Bad, Poor, Fair, Good and Excellent which was 
later mapped to the scores 1, 2, 3, 4 and 5 respectively), and if they 
perceived any change in the quality (options: Increasing, No 
change, Decreasing). 

The other two experiments were carried out in the 
Universidad Politécnica de Madrid's (UPM) lab using CIETI 
method: one by presenting only the video stimulus (denoted as 
`UPM-NoAudio' experiment), and the other one in the presence of 
audio in constant quality (denoted as `UPM-Audio' experiment). In 
the test session, the 11 TS each including 12 sequential PVS-VS 
pairs (cf. Figure 1) were presented in a randomized order. For the 
evaluation, the test subjects were asked to answer the same 
questions as in the Acreo experiment and using identical rating 
scales but on paper questionnaires instead. As a new task, after 
evaluating the 12 PVSs of each TS, there was another question in 
the questionnaire asking about the overall quality of the whole 
sequence. 40 sec after terminating the evaluation of each TS, the 
next one was played. 

In order to allow for cross-lab comparison, the ambient and 
all the hardware and software in Acreo were adjusted similar to the 
UPM complying with the ITU-R Rec. BT.500-13 [3]. A 46” 
Hyundai S465D display was used with the native resolution of 
1920 x1080. The resolution of the TV was set to 1280x720 to 
present the video in full screen, thus scaling was performed by the 
TV. The viewing distance was set to four times the display height. 
The TV’s peak white luminance was 177 cd/m2 and the 
illumination level of the room was 20 lux. 

Current study 
The current experiment was conducted in  Acreo’s laboratory 

under the same settings as previous experiments but the test stimuli 
to be evaluated was considered the entire 6 min video sequence 
including the individual adaptation events (see Figure 1). 

30 test subjects participated in the Acreo experiment. There 
were 20 male and 10 female test subjects with age range of 12 to 
63, with various backgrounds. All test subjects had English as 
second language, their mother tongue varied between Swedish and 
various languages. However, the majority had Swedish as their 
native language. The written instructions, voting scale and pre- and 
post-questionnaires were given in English. The conversation and 
questions between test leader and test subject were either Swedish 
or English depending on the preference of the test subject. 

On arrival, the test subjects were handed the written 
instructions and when they had been carefully read. A visual test 
was then performed for visual acuity (Snellen) and color vision 
(14-plate Ishihara). Their performances were noted down. Nobody 
was screened based on this. All participants except one had at least 
0.8 on at least one eye and perfect color vision (all plates correctly 
answered on our Ishihara test). No test subject was screened from 
the test. The test subjects were then given some time to complete a 
pre-questionnaire. Before the actual test a training session was 
performed to familiarize the test subjects with the procedure and 
the range of qualities. There were four training videos containing 
short pieces from two of the full length videos (S and F). The 
training video did not contain any audio. The test leader was 
available during training session and answered questions if 
something still was unclear. Then the main part of the experiment 

commenced. 
The main part of the experiments contained the eleven 6 

minute long videos (cf. TS in Figure 1) with audio, divided into 
two sessions with a break after five or six video, depending on the 
play list. There were four different playlists prepared with different 
playing orders of the videos. They were not completely random. 
The same content (variant 1 or 2) was not played in the same 
session. Two playlists had six videos before the break and the other 
two had five videos before the break. In the break the test subjects 
were encouraged to go out of the Lab and possibly have some 
refreshments.  

After the main part a post-questionnaire was filled in and then 
the experiment was finished with that the test subjects were 
thanked for their participation with a cinema ticket and a cinema 
gift card of 100 SEK. 

Objective Characterization 
In order to identify the video (PVS) characteristics influential 

on QoE of adaptation, different NR metrics that measures different 
types of video artifacts, such as blockiness, blurring, and noise, 
were calculated. Since the NR measures are frame based, different 
temporal pooling techniques such as averaging, standard deviation, 
Minkowski, and weighted average are tested. The results 
subsequently were compared to the MOS results from our previous 
study [11] (cf. section Subjective Experiment). 

 For comparison and to better understand the dataset we also 
consider two state-of-the-art FR VQA methods, which are all 
presented in the following. 

No-Reference Objective Characterization Tools 
To measure different video characteristics in a NR setting we 

rely on a selected subset of the algorithms described in [11], [13]-
[14] that are publicly available at [15]. The flickering metric from 
[16] was also considered initially, but due to low performance it 
was discarded for the final results. Additionally, we also consider 
how well the bitrate can be used for objective characterization. The 
chosen measurements are briefly outlined in this Section. All the 
algorithms output a single measurement per frame, except the 
Temporal Activity (TA) measure that outputs a single 
measurement for each consecutive pair of frames. 

Blockiness: The metric to measure the blocking artifact is 
calculated for pixels at boundaries of N×N blocks. It is based on 
the magnitude of Luma differences at the block’s boundary and the 
picture contrast near boundaries. Since the size of the Macro 
Blocks (MB) in our dataset is 16×16, this is also the maximum size 
of the transform blocks. We therefore set N=16 when calculating 
the blockiness with this approach. 

Blur: The metric to measure blur is based on the width of sharp 
edges in the image. The edges are produced by Sobel-filtering and 
the amount of blur is defined as the average width of the resulting 
edges. 

Brightness: The brightness metric is based on the mean value of 
the average luminance level in the brightest and darkest blocks of a 
grayscale image.  

Contrast: The metric to measure contrast is based on the 
assumption that the visible contrast is related to the so-called root-
mean-square contrast defined in [17]. 
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Noise: The metric to measure noise is based on calculations of 
local variance in areas with low spatial complexity. 

Bitrate: The bitrate is not a metric, but is also used for objective 
characterization in this work, due to the relation between bitrate 
and video quality. Like the other measurements it is calculated per 
frame, so it can be calculated over the whole video with different 
temporal poolings. 

Spatial Activity: The Spatial Activity (SA) measure is based on 
the spatial perceptual information measure from [18]. 

Temporal Activity: The Temporal Activity (TA) measure is 
based on the temporal perceptual information measure from [18]. 

Full-Reference Tools 
For comparison to the NR tools and in order to better 

understand the dataset we also consider a state-of-the-art FR VQA 
method as briefly described in this Section. Besides the VQA 
method described below, the Visual Difference Predictor (HDR-
VDP-2) presented in [19] in low dynamic range mode was tested. 
However, due to poor results it was excluded in the initial testing 
phase. 

The Video Quality Model with Variable Frame Delays 
(VQM-VFD) presented in [20] is an improved version of the Video 
Quality Model (VQM) [21], but unlike VQM it does not include 
color parameters and it belongs to the FR category of quality 
assessment. The VQM-VFD model is otherwise partly based on 
parameters similar to those of VQM and partly based on new 
parameters. In VQM-VFD a neural network is used to map the 
values of the total eight parameters to an overall measure of 
distortion. The parameters are presented along with a brief 
description of the kind of distortion they measure: 

 
• si_loss: Blurring. 
• hv_loss: A shift of edges from horizontal/vertical orientation 

to diagonal orientation. 
• hv_gain: Tiling or blocking. 
• si_gain: Edge sharpening. 
• ti_gain: Transient distortions. 
• RMSE_gain: Root MSE (RMSE) in space-time blocks. 
• VFD_Par1: Frame freezing. 
• VFD_Par1 × PSNR_VFD: The product of temporal and 

spatial distortions. 
 
Due to the good performance of the NR blockiness measure 

in our initial test phase, the hv_gain parameter from VQM_VFD, 
which is a FR blockiness measure was also extracted and used as a 
measure in the results. 

Temporal Pooling 
Since the NR objective characterization measures are frame 

based, techniques for temporal pooling are presented in this 
Section. In total 10 temporal pooling techniques are tested. 

A simple temporal pooling is calculating the average: 

𝜇 = 1
𝑛𝑓
∑ 𝑚𝑖
𝑛𝑓
𝑖=1    (1)  

where 𝑛𝑓 is the total number of frames and 𝑚𝑖 is the value of a 
measure for frame 𝑖.  
        Since frames with low perceptual quality can influence the 
overall quality perception of a video clip more than the rest of the 
frames, we also calculate the average temporal pooling with a 
subset of frames 𝐹𝑙 that corresponds to 10% of the frames with the 
lowest measured values: 

𝜇𝑙 = 1
𝑛𝑙
∑ 𝑚�𝑗
𝑛𝑙
j=1    (2)  

where 𝑛𝑙 is the total number of frames in the subset 𝐹𝑙 and 𝑚�𝑗  is 
the value of a measure for frame 𝑗 in the subset.  
        Since it is not clear for all measures what the influence factor 
of the values on the quality perception is, i.e. whether they can be 
regarded as a measure of distortion or of quality, a similar measure 
as (2) but with a subset of frames 𝐹ℎ that corresponds to 10% of 
the frames with the highest measured values is also calculated.  
        As a simple way to test the impact of part of the temporal 
aspect on the quality perception, such as the forgiveness effect, 
three other temporal pooling algorithms where the average of a 
subset is calculated similar to (2) are computed. The subsets are the 
frames corresponding to: the start of the video (first 2 seconds) 𝐹𝑠, 
the end of the video (last 2 seconds) 𝐹𝑒, and the union of those two 
sets 𝐹𝑠𝑒 = 𝐹𝑠 ∪ 𝐹𝑒 .  

Another simple temporal pooling is given by the standard 
deviation: 

𝜎 = �
1
𝑛𝑓
∑ (𝜇 − 𝑚𝑖)2
𝑛𝑓
𝑖=1    (3) 

This temporal pooling calculation is sensitive to many and/or 
large variations in the measured quality values.  

Minkowski summation as detailed in [22] can also be used for 
temporal pooling. This technique will put emphasize on larger 
values if the value of Minkowski exponent parameter is higher. In 
this work the Minkowski summation is used with the Minkowski 
exponent fixed to 2 giving a little higher importance to larger 
values: 

𝑀𝑖𝑛𝑘𝑜𝑤𝑠𝑘𝑖 = �
1
𝑛𝑓
∑ 𝑚𝑖

2𝑛𝑓
𝑖=1   (4) 

An asymmetrical temporal pooling is introduced by Ninassi et 
al. in [23] that consists of adding the average of the measured 
value and a term representing the variation over time that favors 
the distortion decrease (compared to distortion increase). 

Finally, due to the sensitivity of the human visual system to 
changes in quality and the forgiveness effect we also calculate a 
weighted average: 

𝜇𝑤 = ∑ 𝑤𝑖𝑚𝑖
𝑛𝑓
𝑖=1    (5)  

where 𝑤𝑖 is the weight for frame  𝑖. 𝑤𝑖 is given by a modified 
cosine function: 

𝑤𝑖 = norm �cos �2𝑖𝜋
𝑛𝑓
� + 𝑖

𝑛𝑓
+ 2 + 𝑠𝑖� (6)  

where norm[∙] is the function of normalization such that 
∑ 𝑤𝑖 = 1𝑛𝑓
𝑖=1  and 𝑠𝑖 are local cosine waves placed in alignment 
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with the bitrate steps, such that more weight is put on measurement 
values close to a bitrate step. An example for 𝑤𝑖 is given in Figure 
2. 

 
Figure 2. An example of the weighting function 𝑤𝑖 from (6) for a sequence with 
336 frames and in total three bitrate steps at frame locations: 100, 168, and 
238. 

Results 
In this section we present our results using the methodologies 

outlined in the previous Sections for the subjective analysis and the 
objective characterization. 

Subjective Analysis 
The results from the Acreo subjective test was compared with 

the overall opinion scores collected at the earlier experiment at 
UPM. Figure 3 shows the MOS from the Acreo study for TS (cf. 
Figure 1) with 95% confidence intervals (blue bars) and the overall 
MOS from the UPM experiment (red bars) when the audio was 
presented to the subjects as well. An independent two-sample 
Student T-test, compensating for multiple comparison using 
Bonferroni correction [24] by setting alpha to 0.05/11 = 0.0045, 
gives the results’ comparison in F_V1 and R to be statistically 
significantly different with p = 0.0040 and p = 0.00037. 

 

 
Figure 3: Comparison between the MOS obtained at the experiment 
conducted at Acreo and the overall scores collected at UPM containing audio. 
Error bars illustrates 95% confidence intervals. 

Figure 4 shows Acreo’s MOS scores compared to the UPM 
no-audio MOS. It can be noted that difference between the results 
is less in this case and there was no statistically significant 

difference. This is also illustrated with the scatter plots shown in 
Figure 5, where the Acreo MOS values are compared to the overall 
UPM audio MOS to the left and the no-audio MOS to the right. 
The Acreo MOS values are plotted along the x-axis and the MOS 
at UPM along y-axis. The correlation values are also clearly 
different between these two cases with 0.79 for Acreo and UPM 
audio and 0.93 for Acreo and UPM no-audio. 

 

 
Figure 4: Comparison between the MOS obtained at the experiment 
conducted at Acreo and the overall scores collected at UPM containing no-
audio. Error bars illustrates 95% confidence intervals. 

  
Figure 5: Scatter plots with trend lines for the MOS at Acreo compared to 
UPM audio MOS in graph to the left and no-audio to in the graph to the right. 
Acreo MOS are plotted along the x-axis and the MOS at UPM along y-axis. 

One of the purposes of doing the experiment at Acreo was to 
compare different ways to aggregate the MOS for individual 
adaptation events with the overall impression MOS. In Table 4 the 
Pearson correlation are shown between the Acreo MOS and the 
overall MOS, mean MOS of last 5 adaption events (Last 5), MOS 
of last (Last) and the mean MOS of all adaption events (Mean) for 
both the audio and the no-audio case. Note, the high values for the 
mean. This is inline with the earlier finding when comparing these 
values in the UPM experiment, where we got 0.97 for the audio 
case and 0.99 for the no-audio case [11]. 

Table 4: Pearson correlation between Acreo overall MOS and UPM overall 

and aggregated MOS.  

 

Objective Characterization 
Initially, it was found that three sequences from the dataset 

had low MOS scores compared to similar content and quality 
levels. One of these sequences mostly consisted of content that can 
be regarded as advertisement. The two others had abrupt scene 
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changes within the first few frames, such that the beginning of the 
sequences looks much more distorted than they are. Therefore, 
these three sequences were excluded from the rest of the 
experiments. 

A heatmap showing the Spearman Rank Order Correlation 
Coefficient (SROCC) between measurements and the MOS with 
different temporal pooling techniques is shown in Figure 6. In 
general, it appears that the correlation is very low. The best 
correlation obtained is 0.46 and -0.46 for the blockiness measure 
with the average pooling of the 10% lowest values and the 
standard deviation, respectively. The brightness, noise, and TA 
measures have negative correlation with the MOS, while contrast 
and bitrate have positive correlation with the MOS for most 
pooling methods. Blur and SA seems to be rather inconsistent and 
generally only low correlation with MOS were obtained for these 
measures. In comparison the correlation obtained by the FR metric 
VQM_VFD and by the FR measure hv_gain were 0.68 and 0.44, 
respectively. 

 
Figure 6. SROCC values between NR objective measurements and the MOS 
using the selected temporal pooling techniques. 

The different content in the dataset has different 
characteristics and therefore the SROCC was also calculated for 
subsets of sequences categorized by content. The results can be 
seen in Figures 7 and 8 with average pooling and average pooling 
of the lowest 10% of the values for the NR measurements, 
respectively. As expected, this clearly improves the correlation 
with the MOS for most measurements and subsets. It can also be 
seen that quality prediction seems to be especially difficult for two 
subsets, the two versions of the Football content. This content 
generally has high temporal complexity and for one version the TA 
measure is actually the measurement with best SROCC to the 
MOS. The SROCC for the NR and FR blockiness measure is also 
lower for this content, which is limits the effectiveness of 
VQM_VFD. On the other hand, the noise measure has higher 
SROCC values for this content. Interestingly, in some cases there 
also seems to disparity in the SROCC between measurements and 
MOS for the two versions of the same original content. This is also 
pronounced for the Football content.   

The oddities with the Football content could be due to fact 
that the content is a mix of e.g. scenes with the football game itself 
with high spatial and temporal complexity, scenes showing the 
audience of the match, and scenes with lower complexity showing 
trainers and players. The disparity in the performance of the 
measures between the two versions of the Football content, seems 

to be due that the type of scenes described above has very different 
impact on the video coding, therefore leading to less or more 
artifacts in the different versions.  

 
Figure 7. SROCC values between NR and FR measurements divided into 
subsets of content. Average pooling was used for the NR measurements. 

 
Figure 8. SROCC values between NR and FR measurements divided into 
subsets of content. Average pooling of the lowest 10% of the values was used 
for the NR measurements. 

As a step towards using objective characterization to improve 
quality prediction, we performed clustering in the space of spatial 
and temporal complexity as expressed by the SA and TA values. 
The result of this is shown in Figure 9. Each cluster includes 
several different content. The obtained SROCC values in each of 
the clusters were 0.42, 0.57, 0.82, and 0.71 for average pooling of 
the lowest 10% of the NR blockiness values. All of these values, 
except one (cluster 1), are much higher than without clustering. For 
the one exception, other measures than blockiness might be more 
relevant for this part of the SA/TA space. Similar results were 
obtained for the SROCC in clusters for the FR blockiness measure. 

The results presented in this Section are a selection of the 
findings with objective characterization for adaptive streaming 
videos. Other results that might also be relevant, but need further 
investigation, such as the impact of scene changes on the perceived 
quality, is left for future work. 
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Figure 9. Clustering of the dataset into four clusters based on the SA and TA 
values.  

Discussion 
The subjective experiment conducted at Acreo showed some 

interesting differences with earlier results conducted at UPM. One 
of the reasons for doing the experiment at Acreo was to investigate 
whether the test subjects at UPM when giving the overall scores 
were affected by rating the individual events. The differences 
found could to some extent be attributed to this fact. However, 
there were other important differences as well such as language 
and cultural. We chose to present exactly the same videos at Acreo 
as were used in the previous experiment at UPM. The sound track 
contained therefore both Spanish and English language. Especially 
at the Spanish language videos we found big differences (P and F). 
The test panel in Sweden did understand the English soundtrack 
but in most cases not the Spanish. The test panel in Spain 
understood probably the Spanish soundtrack better than the 
English. Exceptions that could not be explained by this was N 
(news content) which was in Spanish (very little difference) and R 
(music concert) which was in English (biggest difference).  

If we compare the overall scores collected at Acreo with the 
no-audio scores at UPM, then there is a clearly higher similarity. It 
seems like the test panel at Acreo focused more on the visual 
quality despite that the audio was present. This could have been 
reinforced through the fact that some of the videos had unfamiliar 
language emphasizing that the visual aspect was the main target. In 
the post-questionnaire question about if the test subjects thought 
that the language has had an impact on their scoring 86 % 
answered that it had not, confirming that they had focused on the 
visual quality. 

We investigated also different methods to aggregate the 
individual scores to an overall rating. The tested methods were to 
take the MOS of the last adaptation event, the mean of the MOS of 
the last five adaptation events or the mean of all adaptation events. 
From the earlier experiments we found an almost perfect 
correlation (0.94 for audio and 0.99 no-audio) between the mean 
MOS and the overall impression, which could be somewhat 
attributed to that both the individual scores and the overall scores 
had been given by the same test subjects at the same occasions. We 
still find that the mean of MOS of the individual events had a good 
correlation if we compare to MOS obtained at Acreo, although not 
as high (0.81 for audio and 0.9 for no-audio), confirming the 
earlier result. 

On the other hand, due to the difficulty of quality prediction 
of adaptive streaming videos with realistic content, objective 
characterization could very well be vital to improve future video 
quality assessment. In this respect we showed a selection of tools 
that can be used for objective characterization of video content.  
Machine learning techniques can be employed to find the 
contribution of each characteristic on quality perception. 

We also found that the performance of employed tools 
depends on the video type. There was specialy quite low 
performance when on the content of a football match (F) due to the 
characteristics of the original content. 

Conclusions 
The main finding of this paper on the subjective results is that 

mean of the MOS of the individual adaption events is a good 
predictor of the overall MOS for the full length 6 minute video 
sequence. 

The objective characterization of adaptive streaming video in 
our data set had in general low performance with the subjective 
scores. However, the performance could be increased by clustering 
on SA and TA. The FR blockiness was the best predictor 
especially if it were aided. 

Acknowledgement 
The help preparing and conducting the experiment at Acreo 

by Börje Andrén, Anders Djupsjöbacka, Jesus Gutierrez and Kun 
Wang as well as the economic support from VINNOVA (Sweden’s 
innovation agency), EIT Digital, Ministerio de Economa y 
Competitividad of the Spanish Government (project TEC2010-
20412) are hereby gratefully acknowledged. 

References 
[1] M.-N. Garcia, F. De Simone, S. Tavakoli, N. Staelens, S. Egger, K. 

Brunnström, and A. Raake, “Quality of Experience and HTTP 
Adaptive Streaming: a Review of Subjective Studies,” in Proc. Of 
IEEE 6th International Workshop on Quality of Multimedia 
Experience (QoMEX), pp. 141–146, Sep. 2014.  

[2] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hossfeld, and Tran-
Gia P., “A Survey on Quality of Experience of HTTP Adaptive 
Streaming,” in IEEE Communications Surveys & Tutorials, 2014. 

[3] International Telecommunication Union, “Methodology for the 
Subjective Assessment of the Quality of Television Pictures,” ITU-R 
Recommendation BT.500-13, 2012. 

[4] C. Chen, L. Choi, G. de Veciana, C. Caramanis, R. Heath, A. Bovik, 
“Modeling the Time Varying Subjective Quality of HTTP Video 
Streams with Rate Adaptations,” IEEE Transactions on Image 
Processing, vol. 23, no. 5, pp. 2206–2221, 2014. 

[5] M.H. Pinson, M. Sullivan, and A. Catellier, “A new method for 
immersive audiovisual subjective testing,” in VPQM, 2014. 

[6] S. Tavakoli, J. Gutierrez, N. Garcia, “Subjective Quality Study of 
Adaptive Streaming of Monoscopic and Stereoscopic Video,” IEEE 
Journal on Selected Areas in Communications, vol. 32, no. 4, pp. 
684–692, 2014. 

[7] J. Lievens, A. Munteanu, D. De Vleeschauwer, and W. Van 
Leekwijck, “Perceptual video quality assessment in HTTP adaptive 
streaming,” IEEE Int’l Conf. on Consumer Electronics (ICCE), pp. 
72–73, 2015. 

30 40 50 60 70 80 90 100 110 120
0

5

10

15

20

25

30

35
             

SA

TA

 

 

Cluster 1
Cluster 2
Cluster 3
Cluster 4

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.16HVEI-105

IS&T International Symposium on Electronic Imaging 2016
Human Vision and Electronic Imaging 2016 HVEI-105.8



 

 

[8] K. Singh, Y. Hadjadj-Aoul, and G. Rubino, “Quality of Experience 
Estimation for Adaptive HTTP/TCP Video Streaming Using 
H.264/AVC,” in IEEE Consumer Communications and Networking 
Conf. (CCNC), pp. 127–131, 2012. 

[9] M. Seufert, M. Slanina, S. Egger, and M. Kottkamp, “To Pool or Not 
to Pool: A Comparison of Temporal Pooling Methods for HTTP 
Adaptive Video Streaming,” in Proc. of IEEE 5th Int’l Workshop on 
Quality of Multimedia Experience (QoMEX), pp. 52–57, 2013. 

[10] J. Søgaard, S. Forchhammer, and K. Brunnström, ”Quality 
Assessment of Adaptive Bitrate Videos using Image Metrics and 
Machine Learning”, In Proc. of IEEE 7th Int’l Workshop on Quality 
of Multimedia Experience (QoMEX), pp. 1-2, May 2015. 

[11] S. Tavakoli, K. Brunnström, J. Gutierrez, and N. Garcia, “Quality of 
experience of adaptive video streaming: Investigation in service 
parameters and subjective quality assessment methodology,” Signal 
Processing: Image Communication, Special Issue on Recent 
Advances in Vision Modelling for Image and Video Processing, vol. 
39-B, pp. 432–443, Nov. 2015. 

[12] M. Leszczuk, M. Hanusiak, M. Farias, E. Wyckens, G. Heston, 
“Recent Developments in Visual Quality Monitoring by Key 
Performance Indicators”, Springer Multimedia Tools and 
Applications, pp. 1-23, Sept 2014. 

[13] M. Leszczuk, M. Hanusiak, I. Blanco, A. Dziech, J. Derkacz, E. 
Wyckens, S. Borer, “Key Indicators for Monitoring of Audiovisual 
Quality”, Signal Processing and Communications Applications 
Conference (SIU), 2014. 

[14] M. Mu, P. Romaniak, A. Mauthe, M. Leszczuk, L. Janowski, E. 
Cerqueira. "Framework for the Integrated Video Quality 
Assessment." Multimedia Tools and Applications 61, no. 3, pp. 787-
817, 2012. 

[15] Department of Telecommunications, AGH University of Science and 
Technology, “Video Quality Metrics”, URL: 
http://vq.kt.agh.edu.pl/metrics.html 

[16] P. Romaniak, L. Janowski, M. Leszczuk, and Z. Papir, “Perceptual 
Quality Assessment for H.264/AVC Compression,” in IEEE 
Consumer Communications and Networking Conference (CCNC), 
pp. 597–602, 2012. 

[17] E. Peli, "Contrast in Complex Images," Journal Optical Society of 
America A 7, pp. 2032-2040, 1990. 

[18] International Telecommunication Union, “Subjective Video Quality 
Assessment Methods for Multimedia Applications,” in ITU-T Rec. 
P.910, 2008. 

[19] R. Mantiuk, K. Kim, A. Rempel, and W. Heidrich, “HDR-VDP-2: A 
Calibrated Visual Metric for Visibility and Quality Predictions in All 
Luminance Conditions“, ACM Transactions on Graphics (Proc. of 
SIGGRAPH), vol. 30, no. 4, no. 40, 2011. 

[20] M. Pinson, L. Choi, and A. Bovik, “Temporal Video Quality Model 
Accounting for Variable Frame Delay Distortions,” IEEE Trans. on 
Broadcasting, vol. 60, no. 4, pp. 637–649, Dec 2014. 

[21] M. Pinson and S. Wolf, “A New Standardized Method for 
Objectively Measuring Video Quality,” IEEE Trans. On 
Broadcasting, vol. 50, no. 3, pp. 312–322, 2004. 

[22] S. Rimac-Drlje, M. Vranjes, and D. Zagar, “Influence of Temporal 
Pooling Method on the Objective Video Quality Evaluation,” IEEE 
Int’l Symposium on Broadband Multimedia Systems and 
Broadcasting, 2009. 

[23] A. Ninassi, O. Le Meur, P. Le Callet, and D. Barba, “Considering 
Temporal Variations of Spatial Visual Distortions in Video Quality 
Assessment,” IEEE Journal Selected Topics in Signal Processing, 
2009. 

[24] K. Brunnström, S. Tavakoli, and J. Søgaard, “Compensating for 
Type-I Errors in Video Quality Assessment,” In Proc. of IEEE 7th 
Int’l Workshop on Quality of Multimedia Experience (QoMEX), pp. 
1-2, May 2015. 

Author Biography 
Jacob Søgaard received the B.S. degree in engineering, in 2010, and the 
M.S. degree in engineering, in 2012, from the Technical University of 
Denmark, Lyngby, where he is currently pursuing his Ph.D. degree with the 
Coding and Visual Communication group at the Department of Photonics. 
His research interests include image and video coding, image and video 
quality assessment, visual communication, and machine learning in the 
context of Quality of Experience. 

Samira Tavakoli received the Master degree in Telecommunication 
Engineering from the Blekinge Tekniska Högoskola (BTH), Sweden, in 
2010. In 2015, she finished her Ph.D. thesis on "Subjective QoE Analysis 
of HTTP Adaptive Streaming Applications" in the Universidad Politécnica 
de Madrid (UPM), Spain. Since 2010, she is a member of the Image 
Processing Group (GTI) at the UPM. From 2012, she has been working 
with Acreo Swedish ICT AB in the area of subjective quality studies. Her 
research interests include on evaluation of user-oriented techniques in the 
ICT domain and advances in laboratory methodologies. 

Kjell Brunnström, Ph.D., is a Senior Scientist at Acreo Swedish ICT AB 
and Adjunct Professor at Mid Sweden University. He is an expert in image 
processing, computer vision, image and video quality assessment having 
worked in the area for more than 25 years. Currently, he is leading 
standardization activities for video quality measurements as Co-chair of the 
Video Quality Experts Group (VQEG). His current research interests are in 
Quality of Experience for visual media in particular video quality 
assessment both for 2D and 3D, as well as display quality related to the 
TCO requirements. 

Narciso García received the Doctor Ingeniero de Telecomunicacíon degree 
(Ph.D. in Communications) in 1983 (Doctoral Graduation Award) from the 
Universidad Politécnica de Madrid (UPM), Madrid, Spain. Since 1977 he 
has been a member of the faculty of the UPM, where he is currently a 
Professor of Signal Theory and Communications. He leads the Grupo de 
Tratamiento de Imágenes of the UPM. He has been actively involved in 
Spanish and European research projects, serving also as evaluator, 
reviewer, auditor, and observer of several research and development 
programs of the European Union. He was a co-writer of the EBU proposal, 
base of the ITU standard for digital transmission of TV at 34-45 Mb/s 
(ITU-T J.81). He was Area Coordinator of the Spanish Evaluation Agency 
(ANEP) from 1990 to 1992 and General Coordinator of the Spanish 
Commission for the Evaluation of the Research Activity (CNEAI) since 
2011-2014. He was awarded the Junior and Senior Research Awards of the 
Universidad Politécnica de Madrid in 1987 and 1994, respectively. His 
professional and research interests are in the areas of digital image and 
video compression and of computer vision.  

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.16HVEI-105

IS&T International Symposium on Electronic Imaging 2016
Human Vision and Electronic Imaging 2016 HVEI-105.9

http://vq.kt.agh.edu.pl/metrics.html

