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Abstract 

We describe a method for representing and manipulating the 
color gamuts used by different artists to explore how the color 
schemes employed by artists might appear to the artist or to others. 
The method involves modeling the visual response to color and 
then adapting that response to simulate how color percepts change 
across different states of adaptation. Analyses of paintings and 
nature photographs suggest that there are both important 
differences and regularities in the color palettes of artists and that 
these regularities reproduce prominent characteristics of the 
natural color environment. In particular, the works of many artists 
include a bluish-yellowish bias that is also a distinguishing feature 
of both the color statistics of natural images and of the neural 
coding of color. The algorithm adjusts the colors in an image so 
that they are equivalent to the colors that would be experienced by 
an observer adapted to a different environment, or for two 
observers with different spectral sensitivities but who are adapted 
to the same environment. This provides a novel method for 
visualizing how the colors in artwork are experienced by an artist 
or an audience, and could be generalized to explore similar 
questions for visual attributes beyond color. 

Introduction   

The relationship between visual art and visual perception has 
attracted the enduring fascination of many vision scientists [1-4]. 
On the one hand, how art is portrayed and interpreted must 
obviously be shaped by the processes underlying the perception of 
all images, and thus knowledge about these processes are likely to 
inform our understanding of artistic principles. Thus basic 
mechanisms of contrast coding may explain how and why artists 
exploit and portray contrasts in their work [5]. On the other hand, 
analyses of art can provide important insights about sensory 
mechanisms. For example, the use of color has been taken to 
reveal fundamentals of color coding such as complementary 
colors, color contrasts, and opponency [6]; pictorial cues highlight 
the information we use to recover depth and interpret retinal 
images [7]; and the properties of portraits hint at the possible 
attributes and processes underlying face recognition [8, 9]. 
Moreover, important clues to perceptual processing can also be 
gleaned from analysis of the failures of artists to capture the 
physical properties of scenes. For example, errors in how they 
depict certain aspects of lighting and shade suggest that the visual 
system itself is insensitive to many properties of the lighting 
geometry [10, 11]. 

One recent interest in the visual science of art is whether and 
to what extent art incorporates and reproduces regularities in the 
visual environment [12]. The visual diet of both natural and 
carpentered scenes is often highly constrained, in ways that are 
thought to have fundamentally shaped the neural mechanisms of 
visual coding. For example, the images of most scenes we 
encounter have a roughly 1/f amplitude spectrum, such that 
contrast varies inversely with scale. Natural images also have a 
fractal geometry in which similar structure occurs at different 

scales. Artists may consciously or unconsciously exploit these 
statistics. For example, the abstract drip paintings of Pollock 
mimic the fractal dimensions typical of natural scenes [13], while 
the works of many artists conform to the amplitude spectra and 
luminance distributions expected from the visual environment [14, 
15]. Moreover, audiences are sensitive to these statistics, and how 
natural an image’s properties are can strongly influence artistic 
preferences. Thus while Pollock’s paintings may appear random 
they are preferred to paintings with unnatural fractal dimensions 
[16]. Similarly, deviations from natural amplitude spectra, such as 
increasing the relative energy at the middle spatial frequencies that 
we are most sensitive to, can predict why some artists’ works are 
perceived as more uncomfortable or stressful to view [17-20]. 

A further recurring interest in art is the possibility that an 
artist’s style or techniques might reflect unique characteristics of 
the artist’s own visual system, and potentially point to specific 
deficits in their vision [21]. For example, analyses of self-portraits 
and photographs of many artists suggest that as a group, artists 
have a higher tendency for strabismus and thus stereoblindness, 
and this has been confirmed in comparisons of stereoacuity in 
professional artists versus lay persons [22]. The loss of binocular 
vision could conceivably make them more sensitive to the 
monocular depth cues available in paintings. Similarly, many 
conjectures have been made about the color vision of artists from 
the colors in their palette. The strong saturation of van Gogh’s 
paintings have suggested that he might have a color deficiency, 
while the yellow bias in many of his works has been attributed to 
xanthopsia (an insensitivity to blue) owing to the yellowing of his 
lens (possibly as a toxic side effect of digitalis prescribed for his 
heart condition) [23]. A number of studies have also explored 
changes in artists’ work over their lives to examine the 
consequences of visual aging or disease. Thus Monet’s final works 
may reflect the progression of his cataracts and vision loss [24]. 

The notion of whether art can reveals the artist’s eye has been 
famously debated in the context of the “El Greco fallacy,” in which 
the elongated figures in El Greco’s paintings have been attributed 
to astigmatism and thus a distortion in his retinal image [25]. The 
fallacy is that in order to replicate the world as he saw it, the 
painted figures should have the same physical proportions as the 
subjects so that they are distorted in the same way (though this in 
fact requires compensation for the effects of blur at different 
distances [26]). Similarly, the argument that van Gogh’s work 
overemphasized yellow or saturations, to make up for anomalies of 
his color vision, faces the problem that the colors in his paintings 
would not match his perception of the colors in the world. Thus to 
the extent that artists are trying to recreate their visual impressions, 
the stimulation provided by the world and canvas should match. 

However, there is another important sense in which artists 
might not depict their visual characteristics, because these 
characteristics may be discounted from their perceptual experience. 
Specifically, visual perception is often compensated for the 
sensitivity limits of the observer, such that the individual is 
potentially unaware of their own visual properties or capacities. 
For example, as the lens ages it becomes increasingly yellower, yet 
older individuals continue to see or describe stimulus spectra in 
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ways that match the percepts of younger observers, suggesting that 
their color vision has adjusted for the lens brunescence [27]. In the 
same way, observers may be compensated for the blur introduced 
by the eye’s optics, such that the world appears in focus even when 
the retinal image is strongly degraded [28-30].  

An important mechanism contributing to this compensation is 
visual adaptation. The visual system is continuously recalibrating 
to match visual coding to the current visual stimulus, and these 
adjustments affect most if not all perceptual judgments, from the 
hue of a patch to the attractiveness of a face [31]. Moreover, these 
adjustments provide a fundamental link between the observer and 
the environment, because they adjust percepts according to the 
environment. Consequently, two observers exposed to the same 
world should tend to perceive the world in similar ways, even if 
their visual systems (e.g. spectral or spatial sensitivities) are 
inherently different. Similarly, adaptation should tend to maintain 
perceptual stability as some aspects of their visual system change 
over time, such as a gradual change with aging or an abrupt change 
with a spectacle correction or cataract surgery [32]. In other words, 
the reason young and old see colors the same is plausibly because 
they are adapted to the same world.  Conversely, the same observer 
should perceive the world differently when it is the world that 
changes, for the visual system is now tuned to a different diet. For 
example, colors vary with the environment or the seasons [33, 34], 
and color percepts may track these changes [35]. 

How the visual system adapts to color is reasonably known in 
principle [36], and thus it is possible to theoretically model how 
colors should look to an observer under different adaptation states. 
In previous work we have used this approach to predict the 
properties of color appearance in different color environments or in 
different observers, by rendering images to incorporate visual 
adaptation [37-39]. This technique has the advantage that it allows 
modeling very long-term states of adaptation that are difficult or 
impossible to test by instead adapting observers. It also has the 
advantage that the adaptation effects can be pushed to their 
theoretical limit, allowing tests of the functions and consequences 
of adaptation for perception and performance [40]. Finally, we 
have argued that incorporating adaptation in this way is an 
important but often overlooked facet of simulating how the world 
appears to others [39]. Specifically, many attempts have been 
made to illustrate how an image might look to someone with a 
visual deficit or varying visual sensitivity. However, these 
simulations are typically performed by filtering the image 
according to the sensitivity losses of the observer, and thus do not 
take into account the probable compensations for these losses. The 
simulations therefore portray what information is lost to the 
observer, but not how the world actually “looks.” In this study we 
apply this approach to examine art through the eyes of the artist.  

Our work had three aims. The first was to sample the color 
gamut of different works and artists to explore how they vary and 
the extent to which they might provide a defining signature of 
different artists. The second was to examine how these gamuts are 
related to the color distributions typical of the natural world. 
Despite the extensive analyses of the visual properties of art, the 
color statistics remain relatively unexplored, and thus it is not clear 
whether artists apply their palette to match the world in ways that 
parallel their spatial compositions to match the spatial structure of 
the environment [12]. Our third aim was to use adaptation to 
simulate how paintings might appear to the artists themselves, by 
simulating adaptation to their own palette. Artists often spend days 
or months composing a work and thus are exposed to their 
creations in ways that most other viewers can never be. It is 

reasonable to expect that this exposure alters their perception 
through adaptation. For example, portrait artists may adapt to faces 
as they depict them, losing sensitivity to asymmetries in the face 
(leading to the practice of viewing a mirror image of the painting 
in order to detect the asymmetries) [41]. Here we explore how the 
colors in different paintings might vary in artists or observers 
adapted to the same or different worlds or art collections. 

Methods   

Image Sets 
Paintings were sampled from a variety of artists. For this 

exploratory study the sampling was largely arbitrary, and most 
were collected by undergraduate students who were asked to find 
examples from their favorite artists. Table 1 lists the primary artists 
examined. In a second set we also collected images from 
professional nature photographers. All of the images were taken 
from the internet and thus were uncalibrated.  To assess and 
partially control for variations in the renderings, for most images 
we obtained three versions of the same work. However, we 
emphasize that the present study represents analyses of images of 
artwork as they are reproduced for public consumption, rather than 
directly of the original or calibrated versions of the works. 

Table 1: The list of artists sampled and the number of their 
works. Typically three versions of each image were included to 
partially offset variations in the color rendering. 

Artist  Number of Works 
Mary Cassatt 9 
Edgar Degas 9 
Frida Kahlo 17 
Henri Matisse 12 
Claude Monet 21 
Rembrandt 9 
Diego Riviera 17 
Vincent Van Gogh 9 
Photographers Number of Photos 
Alain Briot 15 
Burrard-Lucas 12 
Robert Glenn Ketchum 12 
Thomas Mangelsen 14 
David Muench 13 
Eliot Porter 12 
Galan Rowell 11 
Camille Seaman 12 

Color Statistics  
For each image we sampled the RGB values over a regular 

array of up to 256 by 256 pixels, averaging blocks of pixels so that 
the images were all effectively of the same resolution (Figure 1). 
The RGB values were converted to luminance and chromaticity 
with the reference triplet of 128 set to a fixed luminance and the 
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chromaticity of Illuminant E. Individual values were then 
represented as contrasts in a cone-opponent space defined by three 
dimensions corresponding to LvsM, SvsLM, and achromatic axes 
[42]. Contrasts along the axes were scaled based on previous 
studies to roughly equate sensitivity to the different dimensions 
and to allow comparison with our previous measurements of 
natural color distributions. The scaling corresponded to: 
 

LM = 1955 * (lmb - 0.66563) 
S = 6537 * (smb – 0.015446) 
LUM = 70 * (luminance - Lumavg) / 128 

 
Where lmb and smb are the coordinates of the MacLeod-Boynton 
chromaticity diagram [43]. 

In the analyses we first examined the mean image color and 
the distribution of color contrasts. Images were then adjusted for 
the mean (equivalent to von Kries adaptation) with the contrast 
distributions again evaluated. These distributions were summarized 
by calculating the three orthogonal principal components of the 
color gamut, with each representing a vector whose angle 
corresponds to the direction of variation in the color-luminance 
space and whose length corresponds to the variance of the color 
signals along the axis. We also analyzed the color distributions by 
calculating the average responses along different directions in the 
color-luminance space. These were sampled at intervals of 22.5 
deg within the chromatic or color-luminance planes. The mean 
responses in each corresponded to the dot product of the pixel’s 
color vector and the sampled direction. These sampled values 
correspond to the mean responses in the contrast mechanisms 
described in the adaptation simulations. 

 

Figure 1. An example of an image (Van Gogh’s “Irises”) and the computed 
color distribution in the cone-opponent space. The bounding contour shows 
the mean contrast responses along different directions in the chromatic plane, 
while the dashed line shows the principal axis of chromatic variation in the 
image. (Digital image courtesy of the Getty’s Open Content Program) 

Adapting Images  
In the second phase we rendered individual images by 

applying a model of color adaptation in the human visual system 
[39, 40]. The model, which we developed previously, is based on 
simple but plausible assumptions about how color is encoded and 
calibrated, and has two stages, corresponding to the cones and to 
postreceptoral channels (Figure 2). The cones are adapted for the 
average color and luminance in the image by scaling their 
sensitivity so that the responses to the mean of the adapting 
distribution is equivalent to the response to a reference white. This 
implements von Kries adaptation according to the mean of the 
color ensemble. At the postreceptoral stage, the channels combine 
the scaled cone signals linearly to respond to the contrasts along 

different directions in the color-luminance space. As noted above, 
the mechanism sensitivities correspond to the vectors calculated 
above. For the purpose of the modeling, we used a set of 26 
mechanisms tuned to angles at 45 deg intervals in the space. The 
large number of these “higher-order” mechanisms is necessary and 
sufficient to represent the observed selectivity of chromatic 
contrast adaptation for arbitrary directions in color space [44, 45]. 
The number also reflects the fact that each axis is represented by a 
pair of unipolar mechanisms (e.g. the LvsM axis is encoded by two 
channels sensitive to +L/-M and –L/+M). As in the first stage of 
the cones, adaptation at the second stage is achieved by scaling the 
sensitivity of each mechanism independently so that the mean 
response to the current image or color distribution equals the mean 
response to a reference distribution. Thus after adaptation the 
model observer gives the same mean color response to the current 
distribution as they did to a given reference distribution. Finally, 
the colors in the image are rendered by summing the contrasts 
along the three cardinal axes of the space and converting these 
adapted signals back to RGB values for display. 

        

Figure 2. A schematic of the model of color coding and adaptation. (Figure 
reproduced with permission from [46]).  

Results 

Color Distributions 
Figure 3 shows plots of the color statistics of the sampled art 

images. The left panel plots the mean chromaticities in LvsM and 
SvsLM space. The right panel instead plots the dominant angle of 
the color distributions. A conspicuous feature of the variations in 
both the average color and the color contrasts is that they are 
strongly clustered along the negative diagonal (i.e. second and 
fourth quadrant) of the chromatic plane. This is a direction that 
corresponds to bluish and yellowish hues, suggesting that the 

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.16HVEI-144

IS&T International Symposium on Electronic Imaging 2016
Human Vision and Electronic Imaging 2016 HVEI-144.3



 

 

images of the paintings as a whole tend to vary more in bluish and 
yellowish contrasts. Note that the peak axes tend to lie along 
angles of about -40 deg, which are more reddish (orange) and 
greenish (cyan) than a typical unique blue and yellow [47]). 

     

Figure 3. a) Average chromaticities of the art images, plotted in the MacLeod-
Boynton space. b) Dominant angles of the color distributions within the scaled 
LvsM and SvsLM space. 

 
This “bluish-yellowish” bias is further illustrated in Figure 4, 

which plots the mean contrasts along the different directions in the 
chromatic plane. Here each contour represents the responses 
averaged across all of the sampled paintings from a given artist. 
The different artists vary widely in mean contrast, from the fairly 
muted colors used by Degas to the high saturations in the paintings 
of Matisse. However, painters are again similar in terms of the 
biases in the color gamuts, with the contours consistently rotated 
toward the negative diagonal.  

A similar bias in the color gamut is observed in the color 
distributions found for many natural outdoor environments [33, 
34]. Natural scenes include blue sky and brownish and yellowish 
terrains, and thus again have distributions that are rotated toward a 

blue yellow axis, though these can vary with the type of 
vegetation. For example, lush scenes dominated by foliage tend to 
vary more along the S axis of the color space, while arid 
panoramic scenes are more dominated by blue and yellow [33, 48]. 
This suggests at least a general correspondence between the color 
palettes applied by artists and the palettes the world exposes them 
to. 

  

 

Figure 4. a) Mean contrast responses along different directions of the 
chromatic plane. Each contour plots the average from all paintings sampled 
for a single artist. b) Mean contrast responses for images from different 
professional outdoor photographers. c) and d) The contours of panels a) and 
b) replotted within a perceptually uniform color space (CIE Lab).  
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To further test this idea we also compared the gamuts from 
the paintings to the color distributions taken from a set of nature 
photographers. Again these images were uncalibrated samples 
from the internet, but in this sense provide an appropriate baseline 
for assessing how images of the actual world compare to images of 
painted renderings. As illustrated in Figure 4b, there is once again 
a clear bias in the color distributions, consistent with the general 
biases observed in measurements of actual environments. (A 
notable exception in our limited sample is the images of wildlife 
photographer Burrard-Lucas, whose images have color gamuts 
stretched along the vertical SvsLM axis. However as noted, such 
distributions are characteristic of scenes with lush foliage and thus 
are within the range of variations found in natural environments.) 

One possible account for these blue-yellow biases is that 
observers – both lay and artists – are adapted over the long-term to 
the color characteristics of the environment. Specifically, they may 
be less sensitive to bluish and yellowish directions because these 
directions have higher stimulus contrasts, so that their color 
percepts are roughly uniform. Consistent with this idea, the relative 
salience of different color and luminance variations are roughly 
predictable from the relative contrasts of the axes in natural scenes 
[49]. Moreover, this bias is a prominent feature of perceptually 
uniform color spaces, in which equal distances within the space are 
scaled to represent equal perceptual steps [50]. When a uniform 
distribution of cone-opponent signals is represented in these 
spaces, the distribution again becomes elongated along bluish-
yellowish axes [50, 51]. This also predicts that the gamut biases we 
found for both paintings and photographs should be removed or 
reduced if the gamuts are instead plotted in a uniform color space. 
This is shown in Figures 4c and 4d, which shows that the contours 
are now more circular when represented by their coordinates in 
CIELAB. To conclude, these analyses suggest two points: first, the 
color gamuts employed by painters and photographers – at least as 
depicted in digital media – show characteristic biases consistent 
with the biases found in natural outdoor environments; and second, 
these biases are consistent with roughly more perceptually uniform 
representations of color, which could reflect an adaptation to the 
natural color environment.   

Adaptation 
Despite these strong regularities, the color composition of the 

images also vary markedly both within and between artists. As 
noted, a further goal of our work was to explore how an image 
from one artist might appear when “adapted” to the colors from the 
palette of a different artist. In this case, we used the values in 
Figures 4a and b to define the reference and test responses for a 
given pair of artists. The mean responses to the test palette were 
then scaled to match the mean responses for the reference palette. 
Figures 5-7 show examples of the images rendered in this way. In 
Figure 5, the paintings from Edgar Degas and Rembrandt are each 
adapted to the average color scheme of the other painter. The upper 
panels show the original images, while the lower panels illustrate 
how the colors might appear to an observer looking at Degas but 
adapted to Rembrandt, or vice versa. In Figure 6, we instead 
compare two images from the same artist, Claude Monet. In this 
case, the panel on the left depicts a work from late in life, while the 
panel on the right depicts the same image adjusted to show the 
average color gamut from body of his sampled work. Finally, 
Figure 7 shows an example where the painting is adapted to the 
range of colors in a typical outdoor environment. That is, in this 
case the mean response to the painting is equivalent to the average 
outdoor response. The changes depict how Cassatt and Van Gogh  

 
 

Figure 5. Comparison of two images, cross-adapted to the palettes of each 
artist. a) and b) paintings by Edgar Degas and Rembrandt. c) and d) The 
same paintings adapted to the estimated palette of the other artist. (Digital 
images courtesy of the Getty’s Open Content Program) 

 

Figure 6. 2 A paint from late in Monet’s career, adapted to his average 
sampled palette. (Digital image courtesy of the Metropolitan Museum’s Open 
Content Program) 

 

Figure 7. A Cassatt or van Gogh adjusted to match natural color distributions. 
(Images courtesy of the Metropolitan Museum’s Open Content Program)  
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might have experienced their own work if they were fully adapted 
to the colors in the painting (and if that adaptation was equivalent 
to the adaptation state induced by the sampled natural world). 

Discussion 
 
Our results suggest that the color gamuts employed by artists 

tend to parallel the gamuts typical of the natural visual 
environment, and in particular exhibit the “bluish-yellowish” 
biases characteristic of many natural environments. At some level 
this is perhaps unsurprising, for artists are often trying to portray 
properties of the world in their paintings. However, these 
properties themselves are not fully established, and it is for 
example still uncertain what the dominant color variations in our 
environments are, and how these are related to the dimensions 
underlying visual coding of color. For example, early mechanisms 
appear tuned to the LvsM and SvsLM cardinal axes [42] and thus 
do not appear optimal for representing bluish-yellowish 
distributions, because these distributions produce correlated 
variations along the cardinal axes. However, a number of lines of 
evidence point to blue-yellow biases in color coding, such that 
visual sensitivity is weaker for bluish-yellowish directions 
compared to reddish-greenish directions with the same cardinal 
axis contrasts. For example, achromatic settings show larger 
variability along the blue-yellow axis [27, 52-54], suprathreshold 
blues and yellows appear less salient [55, 56], and neural responses 
in primary visual cortex as measured by fMRI are weaker for blue 
and yellow [57]. Moreover as described above, this bias is in fact 
built into the structure of most uniform color metrics [51, 58]. The 
present results add to this list by showing that blue-yellow biases 
are prevalent not only in the world and the brain, but in artists’ 
portrayals of the world. 

Of course art is often driven by ideals of aesthetics rather than 
reproduction, and our findings also suggest that the color schemes 
employed by artists may in part be seen as more harmonious or 
pleasing precisely because they mimic properties of natural color 
distributions. Juricevic et al. in fact found that when observers 
judged color distributions presented as filtered noise or random 
Mondrians, blues and yellows were rated as more comfortable and 
more aesthetic than other hue axes with equivalent cone-opponent 
contrasts [19]. Recently Nascimento et al. have also observed that 
observers prefer art images when rendered in close to their original 
(intended) colors [59]. The present results suggest that this may 
occur because both artists and their audience prefer natural color 
palettes. In both the Juircevic and Nascimento studies the colors 
were manipulated by rotating the distributions within a color space. 
However, the present approach provides an alternative way to test 
these hypotheses by explicitly rendering an image with natural or 
unnatural color distributions. This could test whether observers 
might actually prefer a painting with a natural color gamut even 
when the artist chose an unnatural color scheme. 

The method we developed for “adapting images” has a 
number of potential applications for the representation and analysis 
of art. First as we have emphasized, adaptation is arguably critical 
to incorporate in simulations that attempt to portray how the world 
might look to others. Our approach allows simulations of how 
artists might experience their own works or each other’s. Further, 
including this adaptation may better simulate the consequences of 
visual deficiencies, and in general help illustrate that an artist’s 
impression of the world is less susceptible to a visual deficit or 
change than their sensitivity alone might predict [39]. The method 
we describe also provides a novel technique for rendering images 

for specific effects or even specific audiences. For example, 
observers living in and adapted to different worlds – or to the same 
world as its colors cycle over the day or the year – may perceive 
color differently [35, 60], and images could be tailored to the 
changes in their adapted states. 

Adapting images in this way is not specific to color, and could 
be generalized to a number of other stimulus attributes. For 
example, face perception may involve similar norm-based coding 
schemes to color, and the norms may also be calibrated by 
adaptation in similar ways [61, 62]. That is, an individual face may 
be represented by how it differs from a prototype, in the same way 
that a hue is encoded by how it differs from gray; and both the face 
and spectral stimulus that appears neutral or gray are likely set by 
adaptation to the ambient social or spectral environment. Average 
faces appear more attractive [63], and it has been suggested that 
when an artist portrays an idealized attractive face they may be 
painting a self-portrait. Such ideas follow naturally from the 
assumption that we are more strongly adapted to our own familial 
or social group’s characteristics and that this can affect judgments 
of attractiveness [64, 65]. As we have shown here for color, 
portraits could similarly in principle be adapted to simulate how 
the faces might appear through the artist’s eyes. 
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