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Abstract 

In this study, eye tracking metrics and visual saliency maps 
were used to assess analysts’ interactions with synthetic aperture 
radar (SAR) imagery. Participants with varying levels of 
experience with SAR imagery completed a target detection task 
while their eye movements and behavioral responses were 
recorded. The resulting gaze maps were compared with maps of 
bottom-up visual saliency and with maps of automatically detected 
image features. The results showed striking differences between 
professional SAR analysts and novices in terms of how their visual 
search patterns related to the visual saliency of features in the 
imagery. They also revealed patterns that reflect the utility of 
various features in the images for the professional analysts. These 
findings have implications for system design and for the design and 
use of automatic feature classification algorithms. 

Introduction 
Human visual processing is guided by two parallel processes: 

bottom-up and top-down visual attention, also known as stimulus-
driven and goal-oriented attention [1]. Bottom-up visual attention 
is captured automatically by the physical properties of a stimulus 
(e.g. contrast, color, motion) while top-down visual attention is 
allocated voluntarily and is driven by the viewer’s goals and 
expectations (e.g. what information the person is looking for and 
past experience with where to find that information [2]). The 
cognitive processing underlying visual search is thought to have 
two main processes. In the first stage, which happens very rapidly 
when a person first sees an image, the visual cortex of the brain 
pre-attentively filters the stimulus, identifying the most visually 
salient regions (the regions with high bottom-up saliency). The 
information obtained at this stage of processing is then used to 
guide top-down visual attention, in which the viewer processes 
information serially by moving his or her eyes from one region of 
interest to another [3]. Regions with high bottom-up saliency may 
or may not be relevant to the viewer’s task and goals, so there is a 
constant interplay between the two neural systems that guide visual 
attention and eye movements [4]. 

Since the brain is so highly attuned to processing visual 
information, most human-computer interfaces rely heavily on the 
capabilities of the human visual system. A great deal of effort is 
devoted to finding ways to visualize information so that humans 
can understand and make sense of it. This is particularly 
challenging when the information is multidimensional, such as in 
visualizations with a temporal component. Once a visualization has 
been developed, assessing its utility for a human analyst can prove 
to be even more challenging than developing the visualization 
itself. Ideally, a visualization should draw the viewer’s attention to 
the information that is most useful to the viewer’s task. In other 
words, there should be overlap between the features that are 
visually salient and those that are most important from a top-down, 
goal-oriented perspective. 

In this paper, we describe a study in which we assessed the 
utility of images by comparing viewers’ eye movements to maps of 
visual saliency and image features. The project focused on 
Synthetic Aperture Radar (SAR) and Coherent Change Detection 
(CCD) imagery. SAR is used in a variety of surveillance and 
mapping applications and the radar data is converted into a two-
dimensional image (see Figure 1) for use by human analysts [5].  
 

  
Figure 1. Synthetic Aperture Radar (SAR) image of a baseball diamond. 
Image courtesy of Sandia National Laboratories, Airborne ISR. 

CCD images (Figure 2) are created by co-registering SAR images 
of the same scene and measuring changes in coherence that can 
reveal changes that have taken place in the scene over time [6].  
 

  
Figure 2. Coherent Change Detection (CCD) image highlighting several 
changes between images taken of the same scene at two different times.  
Image courtesy of Sandia National Laboratories, Airborne ISR. 
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Applied Studies of Imagery Analytic 
Workflows 

The work described in this paper is part of an interdisciplinary 
family of research activities, in which Sandia National 
Laboratories researchers are examining how computational 
technologies influence the performance of professional imagery 
analysts. In this context, imagery analysis describes the perceptual 
and cognitive work of evaluating features of interest captured in 
two-dimensional images generated from remotely sensed data.   

Visual inspection of imagery is an important component of 
work in a wide range of domains, from medical diagnostics to 
tactical military planning. However, the technologies used in 
imagery analysis have changed dramatically over the past couple 
of decades.  Even as recently as the 1990s, “hardcopy” imagery 
and light tables comprised the major tools of imagery analysts.  
Importantly, the standards that express nominal thresholds for the 
detectability of feature classes in image products are rooted in 
psychophysical studies with imagery analysts using the hardcopy 
tool suite [7].   

These days, however, computational or “softcopy” platforms 
are the main tools of imagery analysis.  In many government 
workplaces, for example, light tables have disappeared as 
organizations have wholeheartedly embraced desktop computing 
systems and imagery analytic software.  In a complementary 
fashion, computers have facilitated the development of image 
processing algorithms that can highlight or emphasize different 
features in a scene; for example, by exploiting changes in 
waveform characteristics to reveal ground changes in a scene- 
something that CCD imagery does very well.   In short, the entire 
technological suite of imagery analysis has evolved dramatically 
over the past twenty years, with a wide array of electronic 
platforms and new image products available to support analytic 
workflows.   

The imagery analytic revolution has raised questions about 
the functional equivalence of hardcopy vs. softcopy imagery for 
human visual detection tasks. A related issue is assessing the 
degree to which emerging image products might be used to support 
particular analytic workflows or feature detection goals.   Finally, 
the rapid evolution of softcopy imagery also creates opportunities 
to examine how people interact with various types of image 
products as they are performing the visual cognitive work of 
professional imagery analysis.  Of particular importance is the 
acquisition of perceptual skills, as people learn to “read” different 
types of imagery.  We are particularly interested in understanding 
how imagery analysts learn to focus on the most valuable regions 
of an image product in relation to top-down analytic goals; and 
how these top down goals interact with bottom-up sensory and 
perceptual events driven by qualities of a given image product.  
Understanding these micro-processes is critical if we are to 
understand how people interact with imagery to establish a 
plausible narrative about the meaning of events captured in an 
image - for example, the import of footprints and tire tracks 
indicative of human activity in a rural area.  

Current Research 
The objective of this project was to identify which features in 

SAR and CCD imagery drew the attention of experienced and 
novice analysts during a visual search and decision making task. 
Our aim was to inform system design by identifying differences in 
search patterns between groups with varying levels of experience 
and relating those patterns to features in the imagery and their 
visual saliency.  

SAR imagery is well-suited for this type of investigation for 
several reasons. First, SAR and CCD images are superficially 
similar to optical imagery, but extensive training is required for 
analysts to learn to interpret SAR phenomenology correctly. This 
creates unique advantages for studying the influence of experience 
and top-down visual attention on visual search behavior. 
Professional imagery analysts who work with SAR perform visual 
search tasks using SAR and CCD images on a daily basis, 
developing extensive expertise and efficient visual search and 
decision making strategies. At the same time, there are many true 
novices who have never seen SAR or CCD images, yet the 
similarity between SAR imagery and optical images enables 
novices to complete visual search tasks despite their lack of 
domain-specific experience. Second, several feature detection 
algorithms have been developed for SAR and CCD images. These 
algorithms can identify specific terrain features and image regions 
that are particularly useful (or not useful) to the visual search task. 
This allows us to map the participants’ gaze patterns against image 
features with high or low importance from the perspective of top-
down attention. Finally, prior research has shown that visual 
saliency maps designed for optical imagery, such as the tool 
developed by Itti and Koch [8], are also applicable to SAR and 
CCD images because of their scene-like properties [9]. This allows 
us to contrast the participants’ gaze maps with maps of the bottom-
up visual saliency of the images. All of these characteristics make 
SAR a particularly useful domain for studying differences in visual 
search between experienced and inexperienced viewers, and how 
those differences relate to properties of the images. 

In the study, we collected behavioral and eye tracking data 
from three groups of participants with varying levels of experience 
with SAR imagery, ranging from true novices to professional SAR 
imagery analysts. The participants completed a visual search and 
decision making task in which they were asked to search SAR and 
CCD images for targets. The targets were specific types of changes 
within the scenes. The gaze maps collected from the three groups 
of participants were then contrasted with visual saliency maps and 
with maps of automatically segmented terrain features. We also 
conducted an exploratory analysis in which the gaze maps were 
compared to a metric of change susceptibility within the scenes, 
described in more detail below. 

We hypothesized that in situations where the decision-
relevant information was not the most visually salient information, 
novice viewers would be more likely to get distracted. In contrast, 
experienced analysts are likely to have developed strategies to 
discount salient but irrelevant visual features. We predicted that the 
experienced analysts would focus on the most task-relevant regions 
of the images, regardless of their visual saliency. Comparing the 
performance and eye movements of groups with varying levels of 
experience allowed us to investigate the influence of top-down 
visual attention on task performance and to explore the interplay 
between expertise and image utility. 

Eye Tracking Study 
Method 
Participants 

Twenty-four participants completed a target detection task 
using SAR images while their eye movements were recorded at 60 
Hz using the FaceLab 5 Standard system and EyeWorks software. 
Eight of the participants were professional SAR analysts who 
conduct visual search tasks using SAR imagery on a daily basis. 
Eight were non-analysts who work with SAR images regularly, 
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typically on a weekly basis. They had extensive knowledge of the 
domain, but do not typically engage in visual search tasks using the 
imagery. Most of the participants in this group were radar 
engineers who design and test SAR systems. We refer to this group 
as the “experienced non-analysts.” The remaining eight 
participants were novices with no prior exposure to SAR imagery. 
All participants gave their written informed consent before 
participating in the study. 
Materials 

Participants completed a target detection task using 20 pairs 
of images. Each pair consisted of a SAR image and a CCD image 
of the same scene. The CCD image was created by co-registering 
SAR images of the same scene over time and measuring changes 
in coherence that can reveal temporal changes [6]. Essentially, the 
SAR image provided viewers with contextual information about 
the scene and the CCD image provided viewers with information 
about the presence or absence of targets in the scene. 

Half of the 20 image pairs contained a target and half did not. 
The targets were the same types of targets that the professional 
SAR analysts look for in their daily work. The experienced non-
analysts were also familiar with the nature of the targets and view 
them frequently, although not in the context of a visual search task. 
The novices were not familiar with the domain, so they were 
shown examples of targets before beginning the experiment. They 
received instructions about what to look for to determine whether 
or not a target was present in the scene. 
Procedure 

The participants completed a battery of general cognitive and 
visual search tasks in addition to the target detection task using 
SAR imagery [10]. In the target detection task, they were asked to 
stare at a fixation cross in the center of the computer screen. The 
cross remained on the screen for one second, and then one of the 
image pairs appeared on the screen. The SAR image was shown to 
the left of the fixation cross and the CCD image of the same scene 
was shown to the right of the fixation cross.  

Participants were instructed to search the images for targets 
and to use a 1-4 scale to record their assessment of whether or not 
each scene contained a target. A response of “1” indicated that they 
were sure that there was not a target in the scene. A response of 
“2” indicated that they thought there was no target, but they were 
unsure. A response of “3” indicated that they thought there was a 
target present, but were unsure. A response of “4” indicated that 
they were sure that there was a target present. The SAR and CCD 
images remained on the screen until the participants responded or 
until 45 seconds had elapsed. The participants did not receive 
feedback about their answers until after the experiment was 
completed. 

Results 
Behavioral Results 

The behavioral results showed that the professional imagery 
analysts were able to detect the targets more accurately than the 
novices and faster than both the novices and the experienced non-
analysts. The analysts responded correctly to 74.4% of the trials, 
on average, with an average reaction time of 9.5 seconds. The 
experienced non-analysts responded correctly to 70.0% of the trials 
with an average reaction time of 14.5 seconds. The novice 
participants responded correctly to 56.9% of the trials with an 
average reaction time of 22.4 seconds. 

One-way ANOVAs showed that the groups differed 
significantly in both their average accuracy (F(2,21) = 4.62, p < 
0.03) and their average reaction times (F(2,21) = 11.98, p < 0.001). 

Post-hoc t-tests showed that the analysts had significantly higher 
accuracy (t(14) = 2.95, p < 0.01) and faster reaction times (t(14) = 
4.34, p < 0.001) than the novices. The experienced non-analysts 
also had significantly higher accuracy (t(14) = 2.14, p < 0.03) and 
reaction times (t(14) = 2.57, p < 0.02) than the novices. The 
accuracy of the analysts and experienced non-analysts did not 
differ significantly (t(14) = 0.73), but the analysts had significantly 
faster reaction times (t(14) = 2.93, p < 0.01). 
Eye Tracking Results 

Two participants, one from the novice group and one from the 
experienced group, were excluded from the eye tracking data 
analysis due to noisy data. A region of interest (ROI) was  
 

 
Figure 3. Gaze maps for each of the three groups of participants with the ROI 
indicated in red. 
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demarcated around each target that contained the target itself plus a 
buffer intended to represent a person’s useful field of view 
(approximately 90 pixels on each side of the target). 

The time to first fixation in the ROI was calculated for each 
trial in which a target was present. The average time to the first 
fixation in the ROI was 5.3 seconds for novices, 3.0 seconds for 
experienced non-analysts, and 2.1 seconds for analysts. The 
difference between groups was significant (F(2,19) = 9.21, p < 
0.01). Post-hoc t-tests showed that the experienced non-analysts 
and the analysts were both significantly faster than the novices 
(t(12) = 2.41, p < 0.02 and t(13) = 4.36, p < 0.001, respectively). 
However, the experienced non-analysts and the analysts did not 
differ significantly from one another (t(13) = 1.53, p = 0.08). 

For each trial, we calculated the percentage of total fixations 
that occurred within the ROI. On average, 17.4% of the novice’s 
fixations were in the ROI, compared to 25.3% for the experienced 
non-analysts and 38.9% for the analysts. The difference between 
groups was significant (F(2, 19) = 8.08, p < 0.01). Post-hoc t-test 
showed that the experienced non-analysts had a significantly 
higher percentage of fixations in the ROI than the novices (t(12) = 
2.47, p < 0.02) and the analysts had a significantly higher 
percentage of fixations in the ROI than the experienced non-
analysts (t(13) = 2.13, p < 0.03).  

Discussion 
Working within their domain of expertise, the SAR imagery 

analysts and experienced non-analysts were both more accurate in 
their responses than the novices, who had not viewed SAR 
imagery before taking part in the experiment. In addition to their 
high accuracy, the analysts were faster than experienced non-
analysts and novices, both in terms of overall task reaction time 
and in terms of the time to first fixation in the ROI. The analysts 
were highly efficient in their ability to identify the ROI, typically 
fixating in the ROI within two seconds of stimulus onset. They 
devoted a higher proportion of fixations to the ROI than either of 
the other groups. 

The efficiency of the analysts indicates that their visual search 
performance is driven by top-down visual processing. The analysts 
were able to rapidly triage the information in the imagery, zeroing 
in on the task-relevant information in the ROIs. In the analyses 
described below, we contrasted the gaze maps of the analysts and 
novices with other information about the content of the scenes, 
including bottom-up visual saliency and automatically detected 
terrain features. These analyses allowed us to further tease apart 
the contributions of bottom-up and top-down visual processing to 
the participants’ visual search performance. 

Comparison of Gaze Maps to Saliency Maps 
In order to compare the visual search patterns of the 

participant groups to visual properties of the imagery, gaze maps 
were created for each stimulus using each group’s tracking data.  
Following the approach of Wooding [11], the gaze maps were 
constructed by pooling the raw eye tracker samples over all 
subjects in each group (i.e. analysts, experienced non-analysts and 
novices) and accumulating a two dimensional Gaussian function at 
each point. The standard deviation of the Gaussian function was 
defined to equal a two degree field of view (90 pixels) at the 
average viewing distance. 

Visual saliency maps for each stimulus where created using 
the Itti and Koch model [12] as implemented in Harel’s Graph 
Based Visual Saliency Toolbox [13]. The Itti and Koch model 
decomposes images into three feature sets that are based on 

processes in the human visual cortex: color, orientation and 
intensity. These feature sets are constructed at multiple scales 
using Gaussian pyramids. Areas of the image with the greatest 
differences in features across scales are assigned larger saliency 
values while areas with smaller differences in features across 
scales are assigned lower saliency values. In this study, 
participants were viewing two images placed side by side on the 
screen. Because the two image products have different mean 
intensity levels, we calculated the saliency maps separately for 
each image product to avoid saliency artifacts at the image product 
boundary. 

 

 
Figure 4. The top panel shows the saliency map for one of the CCD stimuli 
used in the study and the bottom panel shows the analysts’ gaze map for the 
same stimulus. The ROI is indicated in red. 

Results 
For each of the 10 stimuli in the eye tracking study that 

contained a target, we calculated the percentage of the overall 
visual saliency that fell within the ROI around the target. Then, for 
each group of participants, we calculated the percentage of gaze 
observations that fell within the ROI for that stimulus. For all of 
the target-containing stimuli, an average of 17% of the total visual 
saliency fell within the ROIs. For the professional analysts, an 
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average of 57% of the gaze observations fell within the ROIs, 
consistent with the behavioral finding that the analysts were very 
efficient in identifying the ROIs. The experienced non-analysts and 
novices had lower percentages of gaze observations in the ROIs, 
with 42% for the experienced non-analysts and 27% for the 
novices. 

Correlations were calculated between the percentage of visual 
saliency in the ROI and the percentage of gaze observations in the 
ROI for each stimulus within each group of participants. The 
results showed that the correlation was significant for the novices 
(R2 = 0.71, p < 0.01) and for the experienced non-analysts (R2 = 
0.52, p = 0.01). However, for the professional analysts, there was 
not a significant correlation between the percentage of saliency in 
the ROIs and the percentage of gaze observations in the ROIs (R2 = 
0.02). 

 

 
Figure 5.The percentage of gaze in the ROI versus the percentage of saliency 
in the ROI for each participant group for every stimulus that contained a 
target. 

As discussed above, we hypothesized that professional 
analysts would rely on their past experience and on top-down 
visual attention to focus on the most task-relevant information, 
regardless of whether or not it was salient from a bottom-up 
perspective. The results of the eye tracking study and our 
comparisons between the gaze maps and saliency maps supported 
this hypothesis. To further explore the relationships between 
terrain features, visual saliency, and visual search, we compared 
the participants’ gaze maps to automatically generated maps of 
image features. We chose to investigate two specific types of 
terrain features: SAR shadows and regions categorized as 
supporting change detection through a method called Index for 
Surface Coherence (ISC). These analyses and the preliminary 
results are described in the sections below. 

Comparison of Gaze Maps and Terrain 
Features 

SAR imagery has unique properties that support a variety of 
methods for automatic feature detection. For example, specific 
terrain features can be detected and labeled by automated image 
processing algorithms such as superpixel segmentation and 
classification [14, 15]. Superpixel segmentation groups pixels by 
capturing image redundancy [16, 17]. A new method known as 
ISC extends this capability by identifying image regions in which 

the terrain features are more or less conducive to change detection 
[18]. 

We chose to focus our analyses on two types of automatically 
detected terrain features. First, we contrasted the gaze maps with 
maps of SAR shadows. The shadows in SAR images have 
relatively low importance in target detection tasks, but have high 
visual saliency. We predicted that experienced analysts would 
ignore shadow regions while novices would be more likely to be 
distracted by their high visual saliency. Second, in an exploratory 
analysis, we contrasted the gaze maps with ISC maps representing 
regions of the images that were most supportive of change 
detection. We predicted that the analysts would devote more 
attention to the regions that were most likely to support change 
detection, particularly since they were being asked to complete a 
target detection task in which the targets were changes to the 
scene. In contrast, we predicted that novices would not have the 
experience needed to determine which regions were most valuable 
to completing the task, making them less sensitive to this metric. 

Modulating Saliency Maps Using Terrain Features 
In order to test the analysts’ and novices’ ability to ignore the 

highly salient but low value shadows, we calculated the overlap 
between the participants’ gaze maps and the saliency maps with 
and without the shadows. First, algorithms were used to segment 
[14] the stimuli used in the eye tracking study into superpixels and 
to classify [15] the shadow superpixels. 

 

 
Figure 6. The top panel shows a superpixel segmentation of a scene and the 
bottom panel shows superpixels classified as shadow regions in red. 
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Next, modified saliency maps were created in which the 
superpixels identified as shadow regions were masked out, as 
shown in Figure 7.  

 

 
Figure 7. The top panel shows the visual saliency map created from the SAR 
image in Figure 6. The bottom panel shows the masking of the superpixels 
classified as shadow regions. 

 The gaze maps were compared to the original and masked 
saliency maps using the linear correlation coefficient (CC) metric. 
CC has been used in prior studies to measure performance of 
saliency estimation algorithms by comparing saliency maps to 
human gaze maps [19]. CC is a measure of the strength of a linear 
relationship between a gaze map (G) and a saliency map (S) 

𝐶𝐶(𝐺, 𝑆) =  
𝑐𝑜𝑣(𝐺,𝑆)

𝜎𝐺𝜎𝑆
   .  (1) 

When CC is close to ±1, there is almost a perfectly linear 
relationship between the human gaze map and the predicted 
saliency map. 

A subset of the eye tracking data (three analysts and three 
novices) was used to test the effects of masking shadows out of the 
saliency maps.  For the analysts, masking the shadow regions 
improved CC agreement between saliency and gaze maps by a 
factor of 3.3 times. For the novices, masking the shadow regions 
reduced CC agreement by only 0.95 times. 

These results provide further evidence to support our finding 
that professional analysts successfully relied on top-down visual 
attention, largely ignoring regions that were not relevant to the 
target detection task even if they were highly visually salient. The 
approach developed here could be applied for any other terrain 
features, allowing system designers to conduct a detailed analysis 
of how much experienced and novice users rely on each feature 
when completing a particular task. This could be a powerful 
method for assessing image quality by testing the relative 
contributions of each image feature to both the visual saliency of 
the scene and to the users’ task performance. 

Comparing Gaze Maps to the Index of Surface 
Coherence 

As discussed above, CCD images provide a method for 
observing changes in a scene that would otherwise be undetectable 
to the human eye [20].  By using multiple SAR collects, the 
magnitude and phase difference between each collect can be 
utilized to detect changes in a SAR image. However, the method 
used to calculate this change product is agnostic to the underlying 
terrain on which the calculation is made.  Some features (such as 
walls) are stationary and not susceptible to change, appearing as 
areas that cohere perfectly in the CCD images. Other features, such 
as vegetation, have low coherence due to their random geometries 
and continuously show up as changes in the CCD product. Both 
types of features can be distracting to an analyst or algorithm 
looking for changes of interest (i.e. areas of low coherence in the 
scene that typically have high coherence). Discerning changes of 
interest in natural scenes requires training for human analysts and a 
better understanding of the underlying terrain for algorithms. 

A new method to address this issue creates maps of the Index 
of Surface Coherence (ISC) for SAR images. These maps can be 
used to mask a CCD product and eliminate the areas that do not 
support detection of changes of interest. To create these maps, a 
long-term observation of an area is utilized to acquire the 
underlying nature of the terrain.  With many observations of the 
same area over a period of time, a stack of images can be created.  
By registering all of the images and taking the median of each 
pixel in the stack, a stable representation of the area is observed. 
Using a median radar cross section (RCS) and median CCD 
product, the terrain in the area can be classified according to its 
coherence properties. The median RCS (MRCS) and median CCDs 
(MCCD) images are segmented into superpixels using the SLIC 
superpixel segmentation, which allows a user to define how 
compact the superpixel appears and the number of superpixels in 
the image. This allows a user to create a nearly uniform grid of 
pixel groups [14, 17].  A truly uniform segmentation would 
provide pixel groups and reduce the computing complexity, but the 
pixels in those groups would be visually and statistically very 
dissimilar. 

After the median MRCS and median MCCD images are 
segmented, a training process is used in which terrain types that 
support change detection are identified and a subset of superpixels 
capturing each terrain type is chosen. In this study, approximately 
20 superpixels consisting of 500 pixels for each terrain type were 
selected.  For each data type, a distribution curve is generated for 
both the MRCS and MCCD products.  The distribution curve is 
generated by fitting common distribution types (Gamma, Beta, 
Log-Normal, Exponential, and Gaussian) to the each data type’s 
scaled histogram data. The distribution type, distribution 
parameters, and scaling are saved to represent each terrain type. 
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With the training finished, new images can be evaluated by 
segmenting the image into superpixels and comparing each 
superpixel in the image to the previously trained data.  For each 
superpixel in the image, its pixels are scaled and fit with the 
distribution according to each terrain types training data.  The 
distribution curve of the superpixel is then compared to the terrain 
type’s distribution curve using Kullback-Leibler (KL) Divergence 
to get a similarity score.  Using probabilistic fusion [21, 22], the 
KL scores of the MRCS and MCCD images are translated into p-
scores which can then be added despite the KL scores being 
statistically different.  These added scores can then be used to form 
a heat map to indicate where an image is most likely to support 
change detection.  

We conducted a proof-of-concept analysis in which an ISC 
map of one of the CCD images from the eye tracking study was 
compared to participants’ gaze maps. To compare the image p-
scores to the human gaze maps, we first created a set of 20 
thresholded images (P) using the original p-score image and 
thresholding each pixel for thresholds 1,2,3,…20. We then 
calculated the CC metric for each thresholded image, Pi, compared 
to the gaze map from either the IAs or the novices. 

𝐶𝐶(𝑃𝑖 , 𝑆𝑗) =
𝑐𝑜𝑣(𝑃𝑖,𝑆𝑗)

𝜎𝑃𝑖𝜎𝑆𝑗
  

Where i = 1,2,…20; j = 1(analysts), 2(novices) (2) 

At the lower thresholds, the maps show only regions that 
never change, while at higher thresholds the maps show regions 
with increasing susceptibility to change. This analysis showed that 
the CC metric peaked for novices at a p-score threshold of 2 while 
peaking for experts at a p-score threshold of 7. Although 
exploratory, these results indicate that the gaze maps of the novices 
were relatively insensitive to the likelihood that a particular region 
would support change detection. They devoted their attention to 
terrain features that did not provide much support for change 
detection and therefore had low p-scores in the ISC map. In 
contrast, the analysts devoted more attention to regions that had 
higher p-scores and were likely to support change detection. 

Discussion 
The results of this experiment revealed distinct differences 

between the visual search patterns of the participants in the three 
experience groups. Professional SAR imagery analysts were faster 
and more accurate in finding targets in a visual search task using 
SAR and CCD images. The results of the eye tracking study 
showed that the analysts were rapidly able to identify the ROI in 
the scenes containing targets and spent a significantly higher 
proportion of their time inspecting the ROI than the other groups 
of participants. The viewers with less experience, including non-
analysts and true novices, spent more time viewing other regions 
of the images, which had a negative impact on their speed and 
accuracy. 

To explore the relationships between the participants’ gaze 
maps and the visual features of the imagery, we compared the gaze 
maps to bottom-up saliency maps and to maps of image features 
that were either irrelevant (shadows) or relevant (regions 
supporting change detection) to the task. While the gaze maps of 
the novices and experienced non-analysts were correlated with the 
bottom-up saliency of the images, the gaze maps of the 
professional analysts showed no such correlation. These results 
indicate that the less experienced groups were at least somewhat 

distracted by visual features that had high visual saliency but little 
relevance to the task. In contrast, the analysts focused their 
attention on task-relevant features, whether they were highly 
visually salient or not. In other words, the analysts’ visual search 
processes appear to be driven primarily by top-down, goal-directed 
visual attention, while the less experienced participants were 
influenced more by bottom-up visual saliency. 

The comparisons of the participants’ gaze maps to 
automatically detected image features also supported this 
interpretation of the eye tracking data. We chose SAR shadows as 
an example of a visual feature that was highly salient but had little 
relevance to the task. When superpixels from shadow regions were 
masked out of the visual saliency maps, the match between the 
saliency maps and the analysts’ gaze maps improved substantially. 
When the same masking was done for the novices, the match 
between the saliency maps and gaze maps was reduced. The 
comparison between the gaze maps and the ISC maps had a similar 
result. The highest match between the novices’ gaze maps and the 
ISC maps was at a very low threshold, where the ISC map showed 
areas with little susceptibility to change. These areas are not very 
informative in a change detection task, but novice participants 
spent quite a bit of time looking at them. The analysts ignored 
those regions, focusing their attention on regions that were 
supportive of change detection and were therefore task-relevant. 

The results of this study revealed information about what 
types of SAR and CCD image features are used by people with 
different levels of experience. By studying the professional 
analysts’ approach to the visual search task and identifying the 
features and regions that they focus on, we were able to identify 
which features are most relevant to their real-world visual search 
tasks. This information can be used to inform system design and 
the design of new image products and image processing algorithms 
to support the analysts in their daily work. By comparing the 
professional analysts to experienced non-analysts and novices, we 
were also able to identify image features that might be distracting 
to less experienced viewers. This information can inform the 
training of new analysts. It can also help to validate new image 
processing algorithms. For example, the comparison between the 
participants’ gaze maps and the ISC maps provided valuable 
feedback about the value of the ISC method for identifying regions 
that are relevant to the end users of the imagery. The threshold 
cutoffs identified by the gaze map comparisons can be used when 
deploying the algorithm to help analysts filter out potential false 
alarms. 

The methods developed for this study could be applied in 
other domains to assess image quality in terms of how well the 
images support the end user’s top-down goals. By approaching the 
problem from the perspective of human cognition, we were able to 
learn a great deal about the features of the images that did or did 
not support the end users’ cognitive needs.  
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