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Abstract 

This paper investigates whether the information related to the 
human visual saliency is still preserved at the level of the HEVC 
compressed stream syntax elements. In this respect, a new saliency 
model, matched to the peculiarities of this emerging standard is 
defined. It consists of four elementary maps, describing the four 
main saliency features: intensity, color, orientation and motion. 
These maps are defined based on the energies of the luma and 
chroma coefficients, on the variations of the intra prediction modes 
and on the energy of motion vectors, respectively. They are 
fusioned according to 48 static and static-dynamic pooling 
formulas. The results are compared to three state-of-the-art 
uncompressed (pixel) domain as well as to the MPEG-4 AVC 
compressed domain saliency maps. It is brought to light that the 
HEVC saliency model outperforms (with singular exceptions) the 
state-of-the-art uncompressed domain and is as good as MPEG-4 
AVC saliency model. We can thus state that, as its MPEG-4 AVC 
ancestor, although not designed based upon visual saliency 
principles, the HEVC compression standard preserves this human 
visual property at the level of its syntax elements. 

1 Introduction 
 Visual saliency maps already proved their efficiency in a 
large variety of image/video communication, covering from 
selective compression and channel coding to watermarking.  
 Such saliency maps are generally based on individual saliency 
maps, computed from different characteristics (like color, intensity, 
orientation, motion, …) extracted from the pixel representation of 
the visual content. These individual maps are subsequently pooled 
into a global saliency map. 

Some previous studies also took the challenge of extracting 
the visual saliency directly from transformed (MPEG ASP) or even 
compressed (MPEG-4 AVC) domains. 

By addressing the HEVC (High Efficiency Video Coding) 
stream, the present paper resumes and extends our previous work 
[1], [2] devoted to the definition and evaluation of a saliency map 
solely extracted from the MPEG-4 AVC stream syntax elements. 
 The HEVC saliency map definition is structured at three 
levels. 
 First, the HEVC stream syntax elements are investigated 
according to their a priori potentiality to be connected to the visual 
saliency. Note that, in this respect, the extension from MPEG-4 
AVC to HEVC is not straightforward. On the one hand, HEVC 
allows different block sizes to be defined; consequently the energy 
conservation theorem, invoked in the MPEG-4 AVC intensity and 
color map definitions, is reconsidered and adapted to this new 
applicative configuration. On the other hand, both intra and inter 
prediction modes are changed, thus imposing a detailed 
investigation on the orientation and motion maps. The inter 
prediction modes are now structured into two classes (AMVP – 

advanced motion vector prediction and merge modes) thus making 
a priori the motion saliency detection dependent on the encoding 
configuration. 
 Secondly, a total of 48 fusion formulas [1] (6 for combining 
static features: color advantage, orientation advantage, intensity 
advantage, mean, maximum, and multiplication; and for each of 
them, 8 to combine static to dynamic features: mean, maximum, 
multiplication, skewness, binary threshold, motion priority, 
dynamic weight and scale invariant) are benchmarked. 
 Third, in order to evaluate the coherency between the above-
defined saliency map and the ground-truth fixation map obtained 
over the eye tracking data, we considered the density fixation 
maps, obtained for 80 s of video, and averaged over 30 human 
observers [3]. For each map, two metrics of two types are 
considered: distribution-based metrics (the Kullback-Leibler 
Divergence – KL-D) and location-based metrics (area under the 
ROC curve - AUC). 

2 State of the art 
The saliency detection is a research field in which several sound 

studies have already been advanced for uncompressed images [4], 
[5], [6], [7], and videos [8], [9], [10], [11], [12], [13].  

Since current day visual content is preponderantly stored and 
exchanged in compressed formats and as the full decompression 
process is not only time consuming but computation expensive as 
well, models computing the saliency directly from compressed 
images (namely JPEG [14]) and videos (namely MPEG-4 ASP 
[15] and MPEG-4 AVC [1], [2]) have also been proposed. 

In order to extract the saliency maps, Fang et al [14] no longer 
considers pixel representation of the image but a transformed 
domain related to the JPEG compression. The features (intensity, 
color, texture) are directly extracted from the 8×8 JPEG discrete 
cosine transform (DCT). In order to extract the intensity and color 
maps, the JPEG native YCrCb transformed color space is 
translated into the RGB transformed color space, and then the 
intensity and color features are extracted according to the Itti’s 
principles (the Y channel represents the luminance component, 
while Cr and Cb represent the chroma components). The texture 
feature is given by the AC coefficient in YCrCb color space. The 
global saliency map is obtained through a so-called coherent 
normalized-based fusion method, i.e. through a weighted addition 
of the elementary maps. The experimental results are obtained on 
1000 images and correspond to the AUC (Area Under the ROC 
Curve) between the human fixation and the saliency maps;an 
average AUC value of 0.93 is obtained and shown to be larger than 
the values corresponding to six other state of the art studies. 

To the best of our knowledge, [15], [1], [2] are the first studies 
devoted to video saliency detection in the compressed domain.  

Fang et al proposes a saliency detection model in MPEG-4 ASP. 
This model uses DCT coefficients of unpredicted frames (I frames) 

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.16HVEI-107

IS&T International Symposium on Electronic Imaging 2016
Human Vision and Electronic Imaging 2016 HVEI-107.1



 

 

to get static features and predicted (P and B frames) to get motion 
information. YCrCb color space is used in MPEG-4 ASP video 
bitstream. The AC coefficients represent texture information for 
image blocks. The motion vectors are then extracted to get the 
motion feature. The combination of the static and the motion 
features is then applied based on a dynamic fusion. The 
experimental results are obtained on 50 video sequences and 
correspond to calculate the KLD and the AUC between the 
saliency map and the fixation map at saccade locations; it is shown 
that this model is validated by a 𝐾𝐿𝐷 = 1.828  and 𝐴𝑈𝐶 =  0.93. 

In our previous work [1][2], we proposed a saliency detection 
model in MPEG-4 AVC stream (before the entropic coding). The 
first step consists in extracting the elementary saliency maps: the 
intensity and color maps are related to by energy of the luma and 
chroma residual coefficients, while the orientation is given by the 
gradient of the intra prediction modes. The motion is extracted as 
the amplitude of the inter motion vectors. The second steps 
ensured the statistical coherency for each individual map: the 
outliers are eliminated, the elementary maps are normalized to 
belong to a dynamic range of [0, 1] and an average filtering with 
fovea size kernel is applied to each map. The third step consists on 
pooled the obtained saliency maps. It requires both computing the 
static saliency map as a combination of the intensity, color and 
orientation maps, and then combining it to the motion saliency 
map so as to obtain the MPEG-4 AVC saliency map. In [2], the 
applicative performances are evaluated under a robust m-QIM 
watermarking framework [16]. The video corpus consists of 6 
videos sequences of 20 minutes each. For prescribed data payload 
(of 30, 60, and 90 bits/second) and robustness (BER of 0.07, 0.03, 
and 0.01 against transcoding, resizing and Gaussian attacks 
respectively), the saliency information increases the transparency 
by an average value of 6 dB in PSNR, 0.003 in NCC and decrease 
the DVQ (Digital Visual Quality) by 1400. This experiment was 
not considering the color saliency map. In [1], the comparison 
between the above-defined map and the ground-truth is done by 
considering a corpus of 8 video sequences. The differences 
between the MPEG-4 AVC saliency map and the EyeTracker 
density fixation maps are evaluated by computing the Kullback-
Leibler divergence and the AUC (area under the ROC curve). The 
KLD results in an average value of 0.83 and the AUC is an average 
value of 0.84. 

3 Method presentation 
3.1 HEVC overview 
 The nowadays emerging HEVC (High Efficiency Video 
Coding) standard brings improvements over MPEG-4 AVC, so as 
to increase the compression capabilities, especially for high 
resolution videos [17]. 
 HEVC offers larger and more flexible prediction and 
transform block sizes, greater flexibility in prediction modes, more 
sophisticated signaling of modes and motion vectors and larger 
interpolation filter for motion compensation.  
 HEVC video sequences are structured, in the same way as 
MPEG4-AVC, into Groups of Pictures (GOP). A GOP is 
composed of an I (intra) frame and a number of successive P and B 
frames (unidirectional predicted and bidirectional predicted, 
respectively). The I frame describes a full image coded 
independently, containing only references to itself. The 
unidirectional predicted frames P use one or more previously 
encoded frames (of I and P types) as reference for picture 
encoding/decoding. The bidirectional predicted frames B consider 

in their computation both forward and backward reference frames, 
be they of I, P or B types. 
 A frame in HEVC is partitioned into coding tree units 
(CTUs), which each covers a rectangular area up to 64x64 pixels 
depending on the encoder configuration. Each CTU is divided into 
coding units (CUs) that are signaled as intra or inter predicted 
blocks. A CU is then divided into intra or inter prediction blocks 
according to its prediction mode. For residual coding, a CU can be 
recursively partitioned into transform blocks. 
 As in our previous work [1], saliency maps are obtained by 
first computing elementary saliency maps and then performing 
their post-processing and pooling. We extract the saliency map 
only from I and P frames.   

3.2 HEVC elementary saliency maps 
 When defining our saliency map, we consider that the luma 
residual coefficients which represent the difference between the 
current block and its neighborhood would provide same intensity 
information corresponding to the one obtained by the center-
surround difference at the still image intensity map. In our 
previous work [1], the intensity map in MPEG-4 AVC video 
stream is defined by computing the energy luminance for each 4x4 
luma transform block.  
 Such a technique would not be appropriate in the context of a 
varying transform block sizes as in HEVC, where several 
transform block sizes are supported: 4x4, 8x8, 16x16 and 32x32. 
The basic transform coding process of the prediction residual in 
HEVC is very similar to that of MPEG4-AVC. It is based on 
integer DCT basis functions, except for 4x4 luma transform 
blocks, in which case a DST-based transform is performed. 
 To compute the intensity saliency map from HEVC video 
stream, two steps are required. We first compute the luminance 
energy of the transform block (TB) and then we calculate the 
luminance energy of each 4×4 region inside the TB.  
 We first extract the transformed and quantified luma 
coefficients for each TB directly from the compressed stream. By 
applying the energy conservation property between DCT or DST 
transformed and spatial domain, the luminance energy of a TB is 
computed according to:  
	

𝑀!" = 𝑌!"
!

!

!

!

!

	
 
(1) 

Where s is the size of TB, i and j are coefficient coordinates and Y 
is the luma residual coefficient. 
 We calculate the luminance energy of a 4×4 region inside TB 
as following: 
 𝑀! 𝑘 = 𝑀!"/𝑁 (2) 
Where k is the 4x4 region index in the frame and N is the total of 
4x4 regions in TB. The intensity conspicuity map will be obtained 
by displaying 𝑀! where the highest values represent the salient 
blocks. 

3.2.1 Color map 
 Thorough analogy to the way in which the intensity saliency 
was defined, color saliency will be based on color energy.  
 In our previous work [1], we first extract from the compressed 
MPEG-4 AVC video stream chroma residual coefficients. The 
color information (Cr,Cb) is then used to calculate the two 
opponent color pairs RG (Red/Green) and BY(Blue/Yellow). 
Finally, we compute the color saliency map as the sum of the 
energy in the double color-opponent RG and BY space. For the 
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same reason as for intensity map, this technique is not appropriate 
with HEVC stream.  
 The chroma TB size of HEVC is half the luma TB size in 
each dimension, except when the luma TB size is 4x4, in which 
case a single 4x4 chroma TB is used for the region covered by four 
4x4 luma TBs. 
 To compute color saliency map from HEVC video stream, 
only chroma DC coefficients, which represent the average color of 
the chroma transform block TB, are extracted. First, we calculate, 
for each 4×4 region inside TB, a color average for each of the 
chroma color components Cr and Cb.  
 𝐷𝐶! 𝑘 = 𝐷𝐶!"! ×𝐷𝐶!"! /𝑁 (3) 
 
Where k is the 4x4 region index in the frame, c is the color 
component, DCTB is the DC coefficient in TB and N is the total of 
the 4x4 regions in TB.  
 Then, based on the average color, we calculate the average 
opponent-color pairs RGk and BYk for the associated 4x4 region k. 
Finally the color map is computed according to: 
 𝑀! 𝑘 = 𝑅𝐺!

! + 𝐵𝑌!
! (4) 

 The color conspicuity map will be obtained by displaying Mc 
where the highest values represent the salient blocks.  

3.2.2 Orientation map  
Compared to MPEG-4 AVC, changes in the intra prediction 

process has been introduced in HEVC in both prediction block 
sizes and prediction modes. HEVC supports variable intra 
prediction block sizes from 64x64 down to 4x4. As MPEG-4 AVC, 
DC and planar mode are defined, while intra angular prediction 
directions are augmented from 8 to 33.  

According to intra HEVC paradigm, the prediction modes 
reflect the orientation of the corresponding block with respect to its 
neighboring blocks. The orientation map will be computed by 
analyzing the discontinuities among the intra prediction modes of 
intra frame blocks: blocks which feature the same direction as their 
neighborhood are considered as non salient while blocks with 
different orientation modes are considered as salient. 

The building of the orientation map starts by analyzing the 
intra prediction block sizes. Large intra prediction blocks are 
considered as non salient regions. In the remaining cases, values of 
the prediction modes are extracted; then, the obtained orientation 
for each 4×4 block will be compared to those obtained for a set of 
neighboring blocks.  

The Mo orientation map is computed according to: 

𝑀! 𝑘 = 𝐶𝑎𝑟𝑑 𝑂! = 𝑂!;∀𝑙 ∈ 𝑉  𝑖𝑓  𝑃𝐵 𝑠𝑖𝑧𝑒 ≥ 8×8
0      𝑒𝑙𝑠𝑒

  
(5) 

where k is the block index in the frame, V is the n block 
neighborhood and l is the block index belonging to V. 

3.2.3 Motion map 
 In addition to the advanced motion vector prediction 
presented in prior standards, HEVC defines a new inter prediction 
mode: the merge mode, which derives the motion information from 
spatially and temporally neighboring blocks. Compared to MPEG-
4 AVC, HEVC includes asymmetric motion partitioning and share 
the accuracy of motion compensation, which is in units of one 
quarter of the distance between luma samples.  

For each GOP, we define the motion saliency map from HEVC 
stream as the global motion amplitude, computed by summing the 
motion amplitude over all the P frames in the GOP, at the same 
corresponding block position: 

 
𝑀!(𝑘)= 𝑀𝑉𝐷𝑥!

2+𝑀𝑉𝐷𝑦!2

!∈!"#

 
 

(6) 

where (𝑀𝐷𝑉𝑥! ,𝑀𝑉𝐷𝑦!) denote horizontal and vertical 
components of motion vectors difference in the P frame block k, 
and 𝑀! represents the global motion amplitude among the P 
frames GOP; the larger this 𝑀!value, the more salient the k block 
position. 

3.3 Elementary saliency maps post-processing 
 The obtained saliency maps for each feature are now to be 
normalized to the same dynamic rang. This is achieved on each 
individual map, by three steps approach, Fig. 1. 
 

 
 

Figure 1 Elementary saliency maps post-processing 
 
 First, outlier detection is performed: the 5% largest and the 
5% lowest values are eliminated. 
 Then the remaining values are mapped to the [0 1] interval 
through an affine transform. 
 Finally, an average filtering, with the window size equal to 
the fovea area is applied. 
 In the case of the orientation map where its values belong to 
[0 1], the first two post-processing operations are skipped.    

3.4 Saliency maps pooling 
 Individual features (intensity, color, orientation, motion) are 
processed separately to produce individual feature maps, which are 
then fused to obtain the saliency map that globally represents the 
most salient regions. 
 In our work, we first combined among them the static features 
maps into a static saliency map, then we merged it with the motion 
saliency map to finally have a global saliency map.  
 In the following subsections, we describe the pooling 
techniques to create the static saliency map and then the global 
saliency map. 

3.4.1 Static saliency map fusion formulas 
 The static saliency map is computed as a linear combination 
of the intensity, color, and orientation normalized maps as follows: 
 𝑀! = 𝛽!𝑀! + 𝛽!𝑀! + 𝛽!𝑀!) (7) 
where 𝛽!, 𝛽!, and 𝛽! are the parameters determining respectively 
the weight for the intensity, color and orientation map.  
 Color advantage fusion: here, we consider the equation (7) 
with 𝛽! = 0.2,𝛽! = 0.6, et 𝛽! = 0.2 . 
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 Orientation advantage fusion: here, we consider the same 
equation (7) with 𝛽! = 0.2,𝛽! = 0.2, et 𝛽! = 0.6 
 Intensity advantage fusion: here we take 𝛽! = 0.6,𝛽! =
0.2, et 𝛽! = 0.2 
 Mean fusion: the same as the previous ones with equal 
weights 𝛽! = 𝛽! = 𝛽! =

!
!
. 

 Max fusion: This is a winner takes all strategy in which the 
maximum value between the three maps is taken for each block. 
 𝑀! = 𝑚𝑎𝑥(𝑀! ,𝑀! ,𝑀!) (8) 
  Multiplication fusion: a block by block multiplication is 
done, corresponding to a logical AND. 
 𝑀! = 𝑀!×𝑀!×𝑀! (9) 

3.4.2 Spatio-temporal saliency map fusion formulas 
 The sptio-temporal saliency map is obtained according to a 
fusion function f applied on spatial saliency map and motion 
saliency map.  
 In our study, we consider 8 fusion functions on each static 
saliency map (calculated according to the 6 previously presented 
formulas) and the motion map: we shall thus obtain 48 saliency 
maps. Each of these 48 saliency map will be compared to the 
density saliency map in order to validate its performances and to 
know the better combination that gives us the best HEVC saliency 
map. 
 Mean fusion[4]: this fusion technique takes the pixel average 
of both static and dynamic saliency map. 
 𝑀! = (𝑀! +𝑀!)/2 (10) 
 
 Max fusion[18]: this is a winner takes all strategy in which 
the maximum value between the two saliency maps is taken for 
each pixel.  
 𝑀! = 𝑚𝑎𝑥(𝑀!,𝑀!) (11) 
 
 Multiplication fusion[18]: a pixel by pixel multiplication is 
done, corresponding to a logical AND. 
 𝑀! = 𝑀!×𝑀! (12) 
 
 Maximum skewness fusion[18]: The static saliency map is 
modulated by its maximum value. The dynamic saliency map is 
modulated by its skewness value. The reinforcement term gives 
more importance to the areas that are salient both in static and 
dynamic way. 
 𝑀! = 𝛼𝑀!×𝛽𝑀! + 𝛾 𝑀! +𝑀!  (13) 
 
with 𝛼 = max (𝑀!), 𝛽 = 𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠(𝑀!) and 𝛾 = 𝛼𝛽 
 Binary threshold fusion[19]: A binary mask is used to 
exclude spatiotemporal inconsistent areas and to enhance the 
robustness of the final saliency map when the global motion 
parameters are not estimated properly. 
 𝑀! = max (𝑀!,𝑀!⋂𝑀!) (14) 
 
 Motion priority fusion[20]: this fusion technique states that a 
viewer might pay more attention to the motion caused by a moving 
object even when the static background is more attractive. 
 𝑀! = (1 − 𝛼)𝑀! + 𝛼𝑀!, (15) 
 
With α=λ𝑒!!! and λ=max (M!)-mean (M!). 
Dynamic weight fusion[21]: in this fusion method, the weights of 
the static and dynamic saliency maps are determined by the ratio 
between the means of both maps for each frame. 
 𝑀! = (1 − 𝛼)𝑀! + 𝛼𝑀!, (16) 

 
Where α = mean (𝑀!)/ (mean (𝑀!) + mean (𝑀!)) 

Scale invariant fusion[22]: in this fusion technique, the input 
images are analyzed at three different scales from 32×32 to 
128×128 to original image size. Three fused maps are obtained 
which are finally combined linearly into the final spatio-temporal 
saliency map. 
 

𝑀! = 𝑤!𝑀!
!

!

!!!

 
 
(17) 

 
Where 𝑀!

! = (1 − 𝛼)𝑀! + 𝛼𝑀! 𝑤𝑖𝑡ℎ 𝛼 = 0.5 is the fused map at 
scale l and the coefficients of the linear combination are 
𝑤! = 0.1,𝑤! = 0.3 𝑎𝑛𝑑 𝑤! = 0.6. 

4 Experimental results 
 
 In this section, we consider a public database [3]. It contains 8 
video sequences of 10 seconds each one. For each video, the eye-
tracker data are extracted for 30 observers. The distance between 
observers and the display was set to 3m. The resolution of the 
display was 1920×1080 with 50Hz frame rate. Based on those 
results, a density fixation maps are calculated and given with each 
video.  

Before calculating our HEVC saliency maps, those video 
sequences were encoded in the HEVC standard. The GOP is 
composed only of I and P frames, its size is set to 5 and the frame 
size is set to (576×720). The HEVC reference software (JCT-VC 
HEVC) is completed with software tools allowing the parsing of 
these elements and their subsequent usage, under syntax preserving 
constraints. 
 Our experiment consists of comparing the obtained saliency 
maps according to different fusioning formulas by calculating the 
distance between the saliency map and the density fixation map 
using two measures: KL-D which is a distribution-based metric 
and the AUC which is a location-based metric. We use here the 
Borji’s implementation for both KL-D and AUC calculation and 
we compare each obtained map to existing saliency detection 
models. According to the used code the KL-D is the distance 
between the saliency map and the density fixation map and the 
AUC is the area under the ROC curve of the saliency map and the 
binarised density fixation map. To binarise the density fixation 
map, we used the threshold as the half of maximum value of the 
entire map. 
 Figures 2-9 represent the result of the comparison of the 
obtained saliency maps with four methods of the state of the art, 
namely: Ming Cheng et. al. [7] (referred to as the Ming method), 
Hae Seo et.al. [12] (referred to as Hae), Stas Goferman [13] 
(referred to as Gof) and our previous work in MPEG-4 AVC video 
stream [1] (referred to as AVC). In the case of the AVC method, 
the best result in each spatio-temporal fusion technique computed 
in [1] is used. 
 As a general tendency, Figures 2-9 bring to light that saliency 
extraction from the HEVC stream outperforms (in both KL-D and 
AUC sense) the three investigated uncompressed domain state-of-
the-art methods. However, no sharp conclusion can be drawn when 
comparing the HEVC domain to AVC domain: the performances 
depend on both the static and spatio-temporal saliency pooling 
technique. 
 In order to quantify these behaviors we define and compute 
two coefficients ƍ!"# and ƞ!"#, defined as follows: 
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ƍ!"# =
KLD!" − KLD!"

KLD!"
 (1) 

where KLD!" represents the minimal KL-D value over all the six 
static pooling formulas for a given spatio-temporal saliency 
pooling formula 𝑖, i=1, 2,…8 (the compressed domain saliency 
maps). KLD!"  is the KL-D value of the maps Mj, j = 1,2,3,4 (the 
four state of the art maps, Ming, Hae, Gof, AVC). 

ƞ!"# =
AUC!" − AUC!"

AUC!"
 (2) 

where AUC!" represents the maximal AUC value over all the six 
static pooling formulas for a given spatio-temporal saliency 
pooling formula 𝑖, i=1, 2,…8, (the compressed domain saliency 
maps) and AUC!" is the AUC value of the maps Mj, j = 1,2,3, 4 
(the four state of the art maps, Ming, Hae, Gof, AVC). 

 According to these definitions, a gain with respect to the state 
of the art is reflected by positive ƍ and ƞ values. 

The ƍ and ƞ coefficients are reported in Tables 1 and 2, 
respectively.  

 

	
Ming[7]	 Hae[12]	 Gof[13]	 AVC[1]	

Mean	
(stat_max)	 0.41	 0.39	 0.31	 -0.03	
Max	
(stat_max)	 0.39	 0.37	 0.28	 -0.07	
Multiplication	
(stat_mean)	 0.12	 0.08	 -0.03	 -0.58	
Maximum	skewness	
(stat_mean)	 0.39	 0.36	 0.28	 -0.07	
Binary	threshold	
(stat_max)	 0.34	 0.31	 0.22	 -0.19	
Motion	priority		
(stat_max)	 0.16	 0.13	 0.01	 0.27	
Dynamic	weight	
(stat_max)	 0.41	 0.39	 0.31	 -0.05	
Scale	invariant	
(stat_max)	 0.41	 0.39	 0.31	 -0.02	

TABLE 1 KLD GAINS BETWEEN HEVC SPATIO-TEMPORAL 
SALIENCY MAP FUSION TECHNIQUES AND THE STATE OF THE ART 

METHODS [7] [12] [13] [1] 
 

 Table 1 shows that when comparing the HEVC saliency map 
extracted in the HEVC domain to the three uncompressed-domain 
methods based on the KL-D, with singular exceptions, the ƍ 
coefficient is larger than 0.1 (its maximal value reaching 0.41). 
The worst performances are provided by the (Multiplication, 
static_mean) pooling combination, when the Gof method 
outperforms by 3% the HEVC saliency detection. When compared 
to the AVC saliency extraction, the pooling technique has a bigger 
impact in the overall performances: 

• the (Mean, stat-max), (Dynamic weight, stat_max) and 
(Scale invariant, stat_max) combinations result in quite 
equal good performances, the ƍ being lower than 5%; 

• the (Max, stat_max), (Multiplication, stat_mean), 
(Maximum skewness, stat_mean) and (Binary threshold, 
stat_max) combinations result in better performances for 
the AVC saliency map extraction; 

• the (Motion priority, stat_max) combination ensures 
better performances for the HEVC saliency extraction.  

 A similar analysis can be performed based on the ƞ 
coefficient reported in Table 2. This time, all the figures show that 
HEVC outperforms the three state-of-the-art uncompressed domain 
methods with gains ranging from 6% to 23%. Moreover, HEVC 
and AVC saliency extraction feature equally good performances: 
the absolute value of the ƞ coefficient is always lower than 3%. 
 

	
Ming[7]	 Hae[12]	 Gof[13]	 AVC[1]	

Mean	
(stat_max)	

0.23	
	

0.19	
	

0.18	
	

0.00	
	

Max	
(stat_max)	

0.22	
	

0.19	
	

0.18	
	

0.00	
	

Multiplication	
(stat_mean)	

0.10	
	

0.08	
	

0.06	
	

-0.03	
	

Maximum	skewness	
(stat_mean)	

0.22	
	

0.19	
	

0.18	
	

0.00	
	

Binary	threshold	
(stat_max)	

0.21	
	

0.18	
	

0.17	
	

0.03	
	

Motion	priority		
(stat_max)	

0.18	
	

0.15	
	

0.13	
	

-0.02	
	

Dynamic	weight	
(stat_max)	

0.23	
	

0.19	
	

0.18	
	

0.01	
	

Scale	invariant	
(stat_max)	

0.23	
	

0.19	
	

0.18	
	

0.00	
	

TABLE 2  AUC GAINS BETWEEN HEVC SPATIO-TEMPORAL 
SALIENCY MAP FUSION TECHNIQUES AND THE STATE OF THE ART 

METHODS [7] [12] [13] [1] 
  

5 Conclusion 
This paper investigates whether the information related to the 

human visual saliency is still preserved at the level of the HEVC 
compressed stream syntax elements.  

In this respect, we define elementary intensity, color, 
orientation and motion saliency maps. They are related to luma 
residual coefficients, chroma residual coefficients, intra prediction 
modes and motion vectors difference respectively. 

These individual maps are pooled according to 6 static 
formulas: color advantage, orientation advantage, intensity 
advantage, mean, max and multiplication. Over each of these 6 
static formulas, we consider 8 spatio-temporal formulas, namely: 
Mean, max, multiplication, maximum skewness, binary threshold, 
motion priority, dynamic weight and scale invariant. 

The experiments consider 8 video sequences [3] and compare 
the 6x8 HEVC saliency maps to three state of the art 
uncompressed domain methods references as well as to results 
obtained in our previous study devoted to the MPEG-4 AVC [1]. 

By computing both Kl-D and HEVC, it is brought to light that 
the saliency can be extracted directly from the HEVC stream 
syntax (after the entropic decoding), without any overall loss in 
performances. These results prove that, as its predecessor MPEG-4 
AVC, although not designed by exploiting saliency principles, the 
HEVC standard preserves the visual saliency at the stream syntax 
elements level. 

From the practical point of view, this result opens the door 
towards a large variety of applications, like video retargeting, 
object segmentation and discovery or video surveillance. 
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FIGURE 2 MEAN FUSION 

 

 
FIGURE 3 MAXIMUM FUSION 

 

 
FIGURE 4 MULTIPLICATION FUSION 

 

 
FIGURE 5 MAXIMUM SKEWNESS FUSION 
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FIGURE 6 BINARY THRESHOLD FUSION 

 

 
FIGURE 7 MOTION PRIORITY FUSION 

 

 
FIGURE 8 DYNAMIC WEIGHT FUSION 

 

 
FIGURE 9 SCALE INVARIANT FUSION 
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