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Abstract 

Traditionally, subjective video quality is assessed by user 
experiments involving quality ratings, pairwise comparisons, or 
rank ordering, based on the overall impression of quality. Less 
attention has been paid on assessing the visibility of individual 
defects. However, many practical applications could benefit from 
information about subjective visibility of individual packet losses; 
for example, computational resources could be directed more 
efficiently to unequal error protection and concealment by 
focusing in the visually most disturbing artifacts. In this paper, we 
present a novel subjective methodology for packet loss artifact 
detection by tapping a touchscreen where a defect is observed. To 
validate the proposed methodology, the results of a pilot study are 
presented and analyzed. According to the results, the proposed 
method can be used to derive qualitatively and statistically 
meaningful data on the subjective visibility of individual packet 
loss artifacts. 

Introduction  
Visual quality assessment is important for many practical 

applications, such as quality-based classification, optimization of 
coding parameters, error protection and post-processing, in 
particular error concealment. In an ideal case, visual quality would 
be measured objectively, i.e. by an algorithm that analyzes features 
of the content and generates automatically a quality index that is 
well in line with the subjectively experienced quality. In practice, 
objective quality measurement is not a trivial task, and subjective 
quality assessment studies are required to find the ground truth 
information about the subjective quality. 

Conventionally, test subjects in subjective quality assessment 
studies rate the shown content using a given rating scale [1]. When 
a number of subjects have given their individual scores, Mean 
Opinion Score (MOS) can be computed as an average of the 
individual scores. MOS is then considered as a subjective quality 
indicator of the content. Different rating scales can be used: a five-
point scale ranging from one (“very poor”) to five (“excellent”) is 
very common, but there are also different scales, including 
differential scales where the test content is compared against a 
reference content and rated using a relative scale (for example, 
from “much worse than reference” to “much better than 
reference”) [2]. Recently, pairwise comparison methods have 
gained popularity [3], and rank ordering methods are also 
occasionally used [4]. In general, there is no consensus about the 
universally best subjective test method in the scientific community; 
the preferred test method depends on the purpose of the test, 
content type, distortion type and many other factors. 

Unfortunately, a single score given for a video clip gives little 
information on how the different defects contribute to the overall 
score. In networked video content, visual quality is often affected 
by both compression and transmission artifacts. In adaptive 
streaming, compression rate may vary as a result of changing 

available bandwidth, which will cause temporal variations in the 
visual quality. Transmission errors (such as packet losses) are often 
concentrated into clusters that are scattered unevenly in both 
spatial and temporal dimensions. 

There are several reasons why the temporal dynamics of 
video artifacts are important for practical applications. Firstly, the 
quality level during the last few seconds of a test sequence may be 
overly emphasized in subjective ratings, since the short-term 
memory has a limited range [5]. However, objective metrics 
should treat all parts of the sequence equally, since real-life 
viewing of television or streaming video often contains breaks and 
disruptions, and therefore it is not directly comparable to a 
subjective quality assessment task. Secondly, fluctuating quality is 
typically judged subjectively more disturbing than constant quality, 
even if the average quality was somewhat lower [6]. Thirdly, 
spatiotemporal differentiation of distortions would be useful for 
certain applications, such as perceptually driven unequal error 
protection or prioritized error concealment. 

To capture the dynamic nature of visual quality better than the 
conventional rating schemes, methods for temporally continuous 
rating have been proposed. For example, in Single Stimulus 
Continuous Quality Evaluation (SSCQE) method, a slider is used 
to rate the content continuously as the subjective quality changes 
[7]. Jumisko-Pyykkö et. al. studied acceptability of mobile 
audiovisual content by employing a button that is pressed when the 
quality drops to an unacceptable level [8]. Borowiak et. al. 
proposed another method where the quality of a test sequence is 
gradually deteriorated, and the task for the test person is to adjust 
the quality back to its original level by turning a control knob [9]. 
Kanumuri et. al. assessed visibility of packet losses by using a 
method where the space bar is pressed when a packet loss artifact 
is observed [10-11]. 

In spite of its benefits, temporally continuous quality 
assessment is used relatively rarely in the related research. One 
reason may be the challenging analysis of temporal quality data. 
Continuous quality assessment is also a more demanding task than 
giving one score for a sequence, and the continuous data is 
therefore often more noisy than the individual scores. Lastly, 
temporally continuous assessment does not encompass the spatial 
dimension and the interplay between the spatial and temporal 
dynamics of visual artifacts that are particularly essential for 
packet loss artifacts, typically appearing in spatially and 
temporally restricted regions. This is why we propose a method for 
indicating transmission artifacts in a video sequence by tapping a 
touchscreen where the artifact appears. The proposed method 
allows us to gather more precise information about error visibility 
in different regions of the image than a continuous quality score. In 
addition, the relative visibility of errors appearing approximately at 
the same time can be assessed. This is the main difference between 
our method and the method used in [8,10-11]. 
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The rest of this paper is organized as follows. First, we 
explain the proposed subjective test methodology, how the content 
was generated, and how the practical test was arranged. Then, we 
present our approach for analyzing the results: first, we define the 
error clusters caused by packet losses, and then, we relate taps on 
the touchscreen to error clusters. Finally, we summarize the results 
from the practical study, and the concluding remarks are given. 

Subjective Test 
In order to assess the visibility of individual error clusters 

subjectively, we have designed a test protocol where a test video is 
displayed on a touchscreen, and a test person is instructed to tap 
the screen in the position where a packet loss error appears. Since 
test persons are not necessarily familiar with the concept of packet 
loss error, we prepared also a short introduction video with some 
examples of packet loss artifacts. Test persons could ask questions 
after watching the introduction video, before starting the test. 
Before the actual test video, a short training sequence was 
displayed, to allow test persons to familiarize with the test 
protocol. To avoid reflections of light on the display, the test was 
run in a room with the lights switched off and windows blinded by 
curtains. 

Content generation 
In conventional quality rating experiments, several short test 

clips are typically shown and rated during a subjective experiment. 
Since our experiment is by nature continuous, we decided to use 19 
test sequences produced by Swedish Television (SVT) as source 
content. The sequences are freely available for research use in 
Consumer Video Digital Library (CVDL) [12]. When played 
sequentially without breaks between, the sequences form a 
continuous storyline with several different scenes with various 
levels of details and types of motion, such as panning and 
zooming, well representing a typical television viewing 
experience. Original sequences are in YUV 4:4:4 format with Full 
HD resolution (1920x1080 pixels) and a frame rate of 50 frames 
per second. However, to facilitate processing, we converted the 
sequences to YUV 4:2:0 format and reduced the frame rate to 25 
frames per second. The total length of the video, and therefore that 
of the test, is about six minutes. 
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Figure 1. The workflow for generating the test sequences. 
 
 
To create the test sequences, we first encoded the sequences 

using H.264/AVC reference codec (version 12.4) [13]. We set the 
group of pictures (GOP) length to 25, with the frame structure 
IBBPBBP… for temporal prediction. Flexible macroblock (MB) 
ordering (FMO) with the standard chessboard pattern was enabled, 
since it is commonly used also in real-life digital television 
content. Each Network Adaptation Layer Unit (NALU) was 

configured to include a fixed number of MBs (200), to make it 
easier to generate packet losses at certain spatial locations. To 
ensure roughly constant quality without excessive compression 
artifacts, quantization parameter (QP) was set to 24, instead of 
using rate control.   

Our intention was to create test sequences with realistic 
packet loss artifacts, where the impact of several individual packet 
losses may be intertwined, due to the complex spatial and temporal 
prediction structures between NALUs. In the related studies on this 
topic, only one packet loss is typically allowed in each timeslot of 
a few seconds. In that case, it is possible to relate each press of a 
button with a certain packet loss [14]. Since we will also collect 
the spatial location of the observed artifacts, we can omit this 
limitation, and let multiple packet losses to occur in each GOP. 

Packet losses were simulated by a Matlab script removing 
NALUs randomly from the encoded sequences. The process was 
partially supervised, in order to keep the amount of visible packet 
loss artifacts at a meaningful level. For example, if authors’ 
informal inspection of the damaged content revealed that the losses 
in certain regions caused excessive impact, the loss rate in those 
regions was reduced accordingly. The average packet loss rate was 
approximately 1.5%, and since there is 42 NALUs per frame, each 
GOP is impacted by approximately 15 NALU losses in average. 
The procedure for creating the test sequences and the error-free 
reference sequences is illustrated in Figure 1. 

Practical study 
In order to validate the test methodology and gather 

preliminary experiences, we arranged a small scale pilot study 
employing the proposed methodology. Twenty persons 
participated in the study, 7 females and 13 males, aged between 20 
and 33. All except one of the subjects self-reported vision (for both 
acuity and color) that is normal or normal with glasses. None of 
the test persons indicated substantial experience on image 
processing. The test subjects were informed about the purpose of 
the test (i.e. to gather statistical information about the visibility of 
packet loss artifacts). They were also told that there would be a 
large number of artifacts and they were not expected to detect them 
all, so it was best to concentrate on the most obvious ones. 

The test was run by using dedicated software written 
specifically for this purpose in C++ using Qt Creator platform, and 
compiled for Windows 7 operating system. The software displayed 
the test clips sequentially and recorded information about taps 
(coordinates and frame number) in a results file. Starting and 
ending times of the test were also recorded. There was no audio 
track or any kind of sound effects in use. As hardware we used a 
Dell’s panel PC with a 21.5 inch touchscreen of Full HD 
resolution, equipped with a flash solid state drive as a mass 
memory, to allow sufficiently fast reading of video data in raw 
YUV format. The height of the display is 29 cm, and since the 
touchscreen had to be located close enough to the test person to be 
tapped conveniently, the distance to the display was approximately 
1.5-2 times the height.   

Analysis of Results 
The workflow for analyzing the data is outlined in Figure 2. 

The test sequence is compared against the reference sequence to 
find the error clusters, as described below. At this phase, data 
characterizing each error cluster can also be computed. When the 
results from subjective tests are available, different analysis 
techniques can be used to correlate the taps with error clusters. 
Since the methodology is novel, there are no established 
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techniques for this purpose, and we have therefore developed our 
own approach. 
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Figure 2. The workflow for analyzing the results. 

 

Finding error clusters 
Appearance of packet loss defects varies extensively, based 

on the video codec, coding parameters (such as temporal prediction 
length and slice structure), error concealment method (advanced 
techniques can conceal impact of lost MBs better than simple ones) 
and even content type (for example, complex textures can “mask” 
the impact of errors). Due to temporal prediction, errors in intra 
frames (I-frames) are often propagated to the predicted frames (P- 
and B-frames). Spatial prediction techniques may spread packet 
loss artifacts beyond the borders of the slices that were actually 
lost. If FMO is used, a checkerboard pattern with damaged and 
error-free MBs alternating will appear. The adopted error 
concealment strategy will also influence the appearance of the 
artifacts resulting from packet loss.  

The shape and extent of an artifact caused by an individual 
packet loss is difficult to predict. When several packets are lost, 
covering an overlapping spatiotemporal area, it is also difficult to 
link the contribution of each lost packet to the overall quality 
degradation in the affected region. This is why we do not use a 
packet loss as a basic unit of error. Instead, we have adopted a 
concept of error cluster to describe a spatiotemporally restricted 
area, where distorted pixels appear. The distortions within each 
error cluster can be contributed by one or several packet losses. 

The first challenge is to create a definition for an error cluster. 
As many common video coding standards, such as MPEG-2 and 
AVC/H.264, use 16x16 pixel MBs as a basic unit for coding and 
temporal prediction, our analysis is performed on per-MB basis; 
each MB is classified as non-erroneous (i.e. it does not belong to 
any error cluster) or erroneous, when it forms an error cluster with 
the other erroneous macroblocks located spatially or temporally 
next to it. Sometimes there may be two or several error clusters 
located close to one another, and in this case it is not always trivial 
to decide whether a group of erroneous MBs should be classified 
as a one large cluster or several smaller clusters. After attempting 
several different approaches, we have decided to use the following 
procedure for finding the error clusters: 

 
1) Primary and secondary visibility thresholds for an error 

is defined in terms of mean squared error (MSE) per 
MB, denoted as t1 and t2, respectively (t1 > t2). 

2) If a MB, or any other MB within the surrounding 
window of 3x3 MBs (to avoid “holes” inside clusters), 

has MSE larger than t1, then this MB is classified as 
erroneous. 

3) If the average MSE of all the neighboring MBs within 
any of the windows of size 3x3, 5x3 or 7x3 MBs is larger 
than t2, then the MB is classified as erroneous. The 
reason for using those shapes is that typical slices span 
further in horizontal than vertical direction.   

4) Any two (or more) erroneous MBs located vertically or 
horizontally next to each other belong to the same error 
cluster. 

5) If the considered MB is erroneous, and also the MB 
located in the same position in the previous frame was 
erroneous, they belong to the same error cluster. 

6) Sometimes two error clusters grow together along time. 
After merging, the joint error cluster is assigned to the 
cluster that was the largest in the previous frame. 

 
We have implemented an algorithm in Matlab that follows the 

procedure described above. The algorithm uses as input the 
reference sequence (decoded video without packet losses) and the 
test sequence (decoded video corrupted by packet losses). In our 
implementation, we have used the detection thresholds t1=0.001 
and t2=0.0001 computed on luma pixels (values normalized to 
interval 0-1), respective to peak signal-to-noise ratio (PSNR) 
values 30 dB and 40 dB. As an output, the algorithm produces a 
three-dimensional matrix with dimensions (w,h,f), where w is the 
width of a frame in MBs, h is the height in MBs, and f is the 
number of frames in the sequence. In the output matrix, each 
element represents a MB that is marked as unaffected (0), or 
belonging to an error cluster identified by a sequence number (n). 

An example of detected error clusters in three consecutive 
frames is shown in Figure 3. The damaged frames are shown on 
top, a distortion map of damaged MBs is shown in the middle, and 
the error clusters found by the algorithm described above are 
shown on the bottom row. The distortion map is created so that 
badly distorted MBs (PSNR less than 20 dB) are white and non-
distorted MBs (PSNR higher than 50 dB) are shown in black. 
PSNR values between 20 and 50 dB are represented by different 
gray levels, ranging from full white to full black.  

In some cases, error has been detected, but it is not visible to a 
human observer. For example, there is a severely distorted area 
detected in the lower part of the third frame in Fig. 3, even though 
it is efficiently concealed by copying the respective macroblocks 
from the previous frame. PSNR for that region is low, since the 
fine texture of the grass is misplaced in respect with the 
undamaged reference frame. However, as the figure shows, it is 
difficult or impossible for a human eye to see any defect (at least in 
a static image). In some other locations, for example around the 
right foot of the player on the right, misplacement of a macroblock 
causes a clearly visible artifact.  

Correlating taps with error clusters 
In the prior art [10-11], each detected error (i.e. the press of a 

button) can be easily related to a packet loss, since each packet loss 
event has been separated from other packet loss events by a time 
interval longer than a typical reaction time. However, it is a more 
challenging task to relate individual taps to error clusters in our 
study, since the error clusters have very different and uneven 
shapes and distributions of distorted pixels. In addition, the human 
reaction time and spatial accuracy of taps varies between different 
test persons. 
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We have chosen a straightforward technique where a 
detection window is defined for each tap. If there is any MB 

belonging to a certain error cluster inside the detection window, 
that error cluster is marked as detected. In our analysis, we have 
used a detection window that includes 37 MBs around the tapped 
MB (see the shape in Figure 4) and all the frames from z-25 to z-5, 
where frame z is when the tap was recorded. Frames z-4…z are not 
included in the detection window, because we assume that the 
reaction time is always more than 200 ms. As the physical size of a 
MB on the used test screen is about 4.2x4.2 millimeters, an error 
cluster will be marked as detected if the screen is tapped closer 
than 12.6 millimeters from any MB of that error cluster, and no 
longer than one second after the cluster has disappeared. Figure 4 
shows a graphical illustration of the detection window.  

The binary decision between detected and non-detected error 
clusters carries some problems. First, there will be unavoidably 
some small error clusters that will be marked as detected only 
because they are located spatiotemporally close to a large cluster. 
Second, some error clusters span over a long sequence of frames 
(even several seconds), and they may be tapped several times, 
indicating higher visibility, which is omitted in the binary decision. 
More comprehensive analysis may be performed by using a 
weighted detection index Dn for error cluster n, defined as: 
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Figure 3. Three consecutive video frames with packet loss artifacts (top), heatmap of erroneous MBs (middle), and the detected error clusters (below).  
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Figure 4. Detection window for correlating taps with error clusters. 
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where Ω is the detection window, i and j are the spatial coordinates 
and k is the frame index, and wi,j,k are the weights based on the 
proximity to the tapped MB, mn(i,j,k)=1 if MB at position (i,j,k) 
belongs to the error cluster n, and mn(i,j,k)=0 if it does not. 
Basically, higher Dn suggests higher probability that error cluster n 
has been detected. This can be used in different ways: a detection 
threshold could be defined, or if there are several error clusters 
detected by the same tap, only the one with highest Dn would be 
marked as detected. 

The weights wi,j,k  are defined so that the highest values are 
assigned to the positions where the test person was most likely 
intending to tap. In our analysis, we have first defined spatial 
weights as: 
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In S, the middle position has the highest weight (1), as it 
represents the MB that was tapped. The surrounding MBs have 
lower weights, following roughly the shape of a Gaussian function. 
To obtain the final weights, we have defines temporal weighting 
function T(k): 
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We have formulated the temporal weighting function so that it 
approximates the shape of the probability distribution for reaction 
times. Since we do not know the typical human reaction times in 
this particular task, we have assumed that the reaction times are 
roughly similar to those reported in the context of video gaming 
[15], typically ranging from 400 to 500 ms. Roughly similar 
average reaction times have been observed in [14], but with a 
sharper distribution; we assume that in our study the distribution of 
reaction times is wider, since the task of locating the error and 
tapping the screen is more complex than just pressing a button. 
This is why we did not use directly the data from [14] or [15] for 
our weighting function. The weights derived from (3) are shown in 
Figure 5.  

When the MB at position (x,y) in frame z is tapped, the 
weights wi,j,k can be obtained by combining the spatial weights 
from matrix S and the temporal weight as: 

 
)(3,3,, kTsw iyixkji ⋅= +−+−  (4) 

 
An alternative approach for correlating taps with errors would 

be to create a heatmap of objectively detected distortions and 
another heatmap for subjectively detected distortions (taps), and 
then study their correlation in a similar fashion as heatmaps 

derived by saliency models are compared against heatmaps 
generated from eye tracking data [16]. As an objective heatmap, 
the distortion map computed on a per-MB basis (as shown in Fig. 
3) could be used. A subjective heatmap could be generated by 
using Eq. (4) to create distortion maps derived from each tap, and 
then combining distortion maps derived from different taps into an 
overall heatmap. However, since each tap on a touchscreen only 
approximates the location of the distorted regions, not their shapes 
and extents, we assume that it is more meaningful to relate taps 
with error clusters instead of a heatmap. Analysis based on 
heatmaps may be considered in the future research. 

 
 
 

 
 

Figure 5. Temporal weights for frames z-25 to z, computed from (3). 
 
 

Practical test results 
The test content, composed of 19 test sequences, contains 

7896 error clusters in 9061 frames. The vast majority of the error 
clusters are very small; only 3456 clusters contain more than nine 
MBs. On the other hand, the largest cluster contains more than 
180,000 MBs and spans temporally over 110 frames (more than 
four seconds). As a comparison, one frame contains 8,160 MBs. In 
total, 9.4% of all MBs are classified to belong to an error cluster. It 
should be noted that different algorithms for cluster detection 
could produce very different results. However, since we do not 
have a priori knowledge about the visibility of clusters, there is no 
meaningful method for comparing different cluster detection 
algorithms. The subjective test results may be used for improving 
the cluster detection in an iterative manner, but at this stage of our 
study, this is considered as part of future research. 

Large differences in the number of taps and detected error 
clusters between test persons were observed. Apparently, some test 
subjects took a more “competitive” approach in the experiment, 
attempting to tap as many errors as possible, whereas some others 
were more focused on the story and tapped the most obvious 
defects only. Nevertheless, we assume that by averaging the results 
from different persons, meaningful indicators of subjective 
visibility of error clusters can be derived. Table I lists some key 
statistics of the experiment: a) the number of taps, b) the number of 
detected error clusters, c) the number of detected error clusters 
when only the cluster with the highest weight is counted per tap, 
and d) missed taps (i.e. taps that did not hit any error cluster). 
Minimum, average, median and maximum values from different 
test persons are given. Note that some large clusters may have been 
tapped several times, but each detected cluster is counted only 
once in the statistics. 
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Table I: Statistical summary for the number of taps, detected 
clusters (all), detected clusters (only the strongest counted per 
tap) and missed taps. 

 a) b) c) d) 
minimum 82 56 33 4 
median 165.5 190.0 123.5 17.5 
average 211.1 198.0 124.3 23.8 
maximum 654 360 199 73 
standard dev. 127.3 74.6 40.3 17.6 

As demonstrated in Figure 3, majority of the error clusters are 
not highly noticeable to human observers. In total, 1083 error 
clusters were detected by at least one test person, but many of 
those are small clusters located in the same detection window with 
a larger cluster; we can refer to them as “side detections”. If only 
one cluster, the one with the highest weight per tap, is counted, 483 
clusters were detected. Out of those, 175 were detected by one test 
person only, 94 by at least 10 test persons (i.e. detection 
probability is 50% or higher), and only one cluster was detected by 
all the twenty test persons. From these results, we can conclude 
that there are approximately 90 clearly visible error clusters that 
will be observed by the majority of people. 

To analyze further the correlations between individual test 
persons, we computed Pearson correlation coefficients between the 
detections by each test person (zero is non-detected and one is 
detected), and the average number of detections by the others (i.e. 
the number of other test persons who detected the cluster). This 
allows us to compare the individual detection accuracy against the 
other persons’ detection accuracy. We omitted the clusters not 
detected by any of the test persons, as well as side detections. The 
resulting coefficients ranged from 0.374 to 0.675 for nineteen 
persons, with average 0.545. For one test person, a significantly 
lower correlation coefficient 0.027 was found, indicating an 
outlier. Due to the nature of the experiment, the data was supposed 
to be noisy, but the reasonably strong positive correlation 
coefficients suggest that the test arrangement is meaningful. 
Stronger correlations can be observed, if weighted detection 
indices are used instead of the binary detection data. 

We have computed some basic indicators to characterize the 
error clusters, namely the length (in frames), spatial size (average 
number of MBs per frame), and distortion (in PSNR). In addition, 
we have computed spatial activity index (SI) and temporal activity 
index (TI) for each error cluster. High value for SI indicates high 
level of spatial details, and high value for TI indicates intensive 
motion, respectively. Instead of using the standard definitions for 
SI and TI from [17], we have redefined SI and TI as follows:  

 

[ ])( nn CSobelmeanSI =  (5) 
 

[ ]prevnnn CCmeanTI ,−=  (6) 
 

In (5) and (6), n denotes the index of the error cluster, Cn 
includes all the pixels in those MBs that are marked to belong to 
the error cluster n, Cn,prev includes the respective pixels in the 
preceding frame, and Sobel denotes the standard Sobel filter. Only 
the monochrome component (Y) of the original non-distorted 
frames is used for computing the PSNR, SI and TI values for each 
error cluster. 

Since large error clusters may draw attention from smaller 
error clusters, we have also defined an indicator called proportion 

of erroneous MBs (PEM). PEM is simply the number of erroneous 
MBs that belong to a certain error cluster divided by the total 
number of erroneous MBs appearing in the same frames. 
Therefore, PEM=1 indicates that there are no other error clusters 
appearing in the same time interval. Low value for PEM indicates 
that there are a lot of erroneous MBs belonging to other error 
clusters, competing for viewer’s attention. This is why we can 
hypothesize that PEM is positively correlated with error cluster’s 
likelihood to be detected. 

The average values of the chosen indicators (temporal length, 
spatial size, PSNR, SI, TI and PEM) for the detected and 
undetected error clusters are shown in Table II. In order to avoid 
noise from side detections, only primarily detected clusters (the 
one with the highest weight in the detection window) by at least 
one test person are considered as detected. The respective median 
values are shown in Table III. 

 
Table II: Average characteristics of detected and undetected 
error clusters. 

 length  
(frames) 

spatial  
size 

distortion 
(PSNR) 

SI TI PEM 

detected 31.81 227.9 31.60 4.80 2.93 0.167 
undetected 3.86 14.7 38.75 5.33 1.57 0.034 
all 5.59 27.9 38.30 5.30 1.65 0.053 

 
Table III: Median characteristics of detected and undetected 
error clusters. 

 length  
(frames) 

spatial  
size 

distortion 
(PSNR) 

SI TI PEM 

detected 29 99.2 32.43 4.17 2.26 0.067 
undetected 1 4.0 37.98 3.77 1.49 0.006 
all 1 4.0 37.84 3.79 1.52 0.008 

 
 

As the results show, the detected clusters tend to be 
significantly longer and larger than the undetected clusters. Also 
the average PSNR is lower for the detected clusters than 
undetected clusters. These results are well in line with the results 
expected by intuition. For SI and TI, the results are more difficult 
to interpret. The mean SI is larger for undetected than detected 
clusters, whereas the median SI is larger for detected clusters. In 
average, TI for detected clusters seems to be higher than for 
undetected clusters. We will discuss the possible explanations in 
the following Section.  

Different subjective visibility indices can be derived from the 
subjective data. Most obviously, the mean of the weighted 
detection indices Dn will be directly related to the expected 
visibility level. In addition, the average number of detections 
(number of test persons who detected the cluster) could be 
considered as a visibility index. In Table IV, Pearson correlation 
coefficients (PCC) are computed to estimate the relationship 
between subjective visibility (average number of detections and 
sum of weighted detection indices; side detections are omitted) and 
error cluster characteristics (temporal length, spatial size, 
distortion, SI, TI and PEM). Only the error clusters detected by at 
least one person are taken into consideration in the computations. 
When all the error clusters are included, the observed correlations 
are slightly stronger; however, in respect with each other, they are 
comparable with the results shown in Table IV. We did not 
observe any significant differences in the results, when different 
inclusion criteria for data points were used.  
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Table IV: Correlations (PCC) between subjective visibility 
indicators and objective characteristics of error clusters. 

 avg. detections mean(Dn) 
length in frames 0.420 0.445 
spatial size in MBs 0.368 0.376 
PSNR  -0.390 -0.399 
SI -0.008 0.021 
TI 0.280 0.292 
PEM 0.459 0.458 

 
 

As the results show, there is a moderate positive correlation 
between both visibility indicators and the temporal and spatial size 
of error clusters, which follows intuition. Negative correlation is 
observed between subjective visibility and PSNR, which is 
expected as well, since higher PSNR indicates lower distortion. It 
should be noted that each MB of an error cluster that is located 
inside the detection window will contribute to Dn. Since large 
clusters usually occupy larger part of the detection window than 
small clusters, the size of the cluster has an impact on Dn. This 
explains why spatiotemporal size has stronger correlation with 
mean value of Dn than the percentage of detections among test 
persons. In any case, we can conclude from the results that both 
spatiotemporal size of the cluster and distortion observed within 
the cluster (PSNR) contribute to the overall visibility of the error 
cluster. This observation seems trivial, but it is a necessary step for 
validating the proposed methodology. 

Discussion and future research 
In the related literature, several subjective studies have been 

reported, where packet loss artifacts are indicated along the 
temporal dimension, e.g. by pressing a button [8,10-11,18]. This 
kind of method is useful for analyzing the visibility of individual 
packet losses, when they are separated in different timeslots. 
However, in real-life high resolution video sequences, errors often 
appear in different spatial positions and overlap in temporal 
dimension. In our method, we use a touchscreen to record also the 
spatial position of the detected error. This allows us to analyze the 
relative visibility of temporally overlapping errors, which is not 
possible with the conventional methods. On the other hand, a 
larger number of dimensions also has disadvantages: our method 
has a higher cognitive load, and the results are more difficult to 
analyze. This is why we must accept greater inaccuracies in the 
results, compared to error detection performed solely in the 
temporal dimension. 

The results of this study show that the proposed methodology 
can be used to produce credible indicators for subjective visibility, 
showing strong correlation with objective features that are 
expected to be related with error visibility. When this information 
is available, we expect that we can develop more accurate 
objective metrics predicting the subjective visibility of individual 
error clusters. The subjective visibility data could also be highly 
useful for validating no-reference algorithms for detecting packet 
loss artifacts in decoded video sequences. Some methods for 
packet loss artifact detection have been proposed in the literature 
[19,20], but since there is no subjective visibility data available for 
individual error clusters, those methods have only been evaluated 
by using objectively measured distortion (such as MSE) as ground 
truth. As demonstrated in Fig. 3, objective distortion measures may 
not be well in line with subjectively experienced distortion. This is 

the case particularly when individual error clusters are evaluated 
instead of the overall quality. 

Our results show that the likelihood to detect an error cluster 
is clearly correlated with the spatiotemporal size of the error 
cluster, as well as PSNR. In terms of PCC, the correlation between 
error visibility and the SI is weak, even though the results show 
differences in mean and median values of SI for detected and 
undetected error clusters. This observation leads us to assume that 
error clusters with very high or very low spatial activity are less 
likely to be detected than error clusters with intermediate level of 
spatial activity. We assume that complex textures (high SI) can 
“mask” the impact of distortion, whereas error concealment 
effectively recovers distortions on smooth surfaces (low SI), which 
could explain the higher visibility of distortions located in regions 
with intermediate spatial details.  

Positive (although relatively weak) correlation is observed 
between TI and error visibility. Possible reason is that distortions 
in static regions (low TI) are easier to conceal by spatial 
replacement than distortions in regions with intensive motion (high 
TI). It is evident that SI and TI do influence the error visibility; 
however, their impact is not as straightforward as the impact of the 
spatiotemporal size and PSNR. This is why SI and TI are not as 
strongly correlated with error visibility. In the future research, we 
will analyze the influence of spatiotemporal activity on the error 
visibility more comprehensively.  

It should be noted that in our correlation analysis, we have 
included only error clusters that have been detected by at least one 
person. This is because the vast majority of error clusters are 
undetected. When undetected clusters are also included, somewhat 
higher correlation coefficients can be obtained between error 
visibility and temporal length, spatial size and TI. In contrast, the 
correlation between error visibility and PSNR becomes slightly 
lower. The same is observed if we include the side detections that 
were omitted in the analysis above. The differences are relatively 
small and do not compromise our observations and conclusions in 
general. In the future, we will study different methods to combine 
the features we have analyzed into a model that can be used to 
predict the visibility of error clusters more accurately. 

Conclusions 
In this paper, we have proposed a subjective test methodology 

for assessing the visibility of individual error clusters caused by 
packet losses in networked video. In the subjective experiment, the 
test person taps a touchscreen in a position where a packet loss 
defect is observed. We have conducted a pilot study to verify the 
methodology, and we have also proposed techniques for analyzing 
the data. Comparisons between subjective indicators of visibility, 
such as the percentage of test persons who have detected an error 
cluster, and objective indicators of visibility, such as 
spatiotemporal size and measured distortion level of an error 
cluster, show clear correlations, which suggests that the 
methodology is valid. In addition, the correlation statistics show a 
reasonable level of coherence between test persons, which also 
suggests that the results can be considered meaningful. However, a 
more extensive subjective study is required to obtain statistically 
more accurate data on subjective visibility. In the future research, 
objective models will be developed to predict subjective visibility 
of error clusters, using the subjective data generated from the 
proposed testing method as a ground truth for calibrating and 
validating the objective models. 
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