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Abstract
We propose a colour-based technique for the visualisation of

the phase of complex signals, in particular of Fourier transforms
and of analytic signals. Using the fact that both the hue and the
angle are cyclic magnitudes, a one-to-one relationship can be es-
tablished between angles and colour hues that respects the cyclic
order: an order isomorphism. With the help of a Matlab GUI
tool, called a chromatic profiler, the correspondence is made so
that the cardinal points [2] of the cyclic variables are preserved,
and the rest of the points are mapped so that the result is best
readable. What the technique may lack in accuracy is gained in
readability.

Introduction
For the natural domains of signals of time and space, it is

rare to consider complex signals, nevertheless a main source of
complex signals (e.g. functions of the time or frequency variables
that take as values complex numbers) in engineering is the Fourier
transform. Also, in going from a real signal (i.e. one that has null
imaginary component) to is analytic signal (given by the sum of
the original signal plus i times its Hilbert transform), you get a
complex signal out of a real signal. The Fourier transform of a sig-
nal is a representation of the signal in the Fourier frequency (i.e.
the frequency of a complex exponential) domain. The analytic
signal allows for the computation of the instantaneous, Fourier
frequency and phase.

Elaborating on the work presented in [2], using a hue-angle
correspondence for the phase component1 of a complex signal,
we consider the colour visualisation of complex signals. The
phase of the Fourier transform of a signal is closely related to
its shape (in its original, e.g. time, domain) and is thus important
when working with seismic signals, biomedical signals, images,
etc.

In electrical engineering, there has been a traditional empha-
sis on the magnitude over the phase of the Fourier transform of
signals, mainly because of its origins in telephony and the broad-
casting of audio signals. Also, because the phase of a Fourier
transform is a less intuitive component than the magnitude, and
because the relation of the phase with the waveform or shape of
the original signal (i.e. before being transformed) is indirect.

The hue-angle correspondence mentioned above can be a
homeomorphism between circles since both magnitudes, hues and
angles, live in circle spaces. In the following section, we review
the definitions both of cyclic magnitudes and of circular signals,

1Remember that a complex number has a rectangular-coordinate repre-
sentation in terms of its real and imaginary parts and, in polar coordinates,
a representation in terms of its magnitude and its phase, or angle.

and the traditional ways of plotting their graphs, which present
some difficulties. Afterwards, we present alternative techniques
to visualise cyclic magnitudes such as the Fourier phase or the
instantaneous phase using the hue of (chromatic) colour. In a
later section, we consider the visualisation of the phase of the
Fourier transform of images . The techniques we present allow
for a ready visualisation of complex signals; the techniques are
perhaps more qualitative than quantitative with respect to more
traditional techniques. Whatever may be lost in numerical accu-
racy can be gained in intuition, which may prove useful for design
purposes.

A word on nomenclature. Mathematically, a signal is a func-
tion s : D→ E, with a domain set D and a range set E; it is a func-
tion that codes some information. Although most of the times the
terms function and signal are interchangeable, some discrepancies
in nomenclature exist, for example, a continuous signal (a func-
tion having as domain D a contimuum) may not be a continuous
function (consider for example Heaviside’s step function) and an
analytic signal may not be an analytic function.

Cyclic Magnitudes and Circular Signals
As in [3], [4], [1], we define, somewhat redundantly from a

logical point of view, a cyclic ordering for the elements of a set
A, as a ternary relation R⊂A3 (i.e. a subset of A×A×A) that is

• circular:
(a,b,c) ∈ R =⇒ (b,c,a) ∈ R,∧,(c,a,b) ∈ R.

• antisymmetric:
(a,b,c)∈R =⇒ (a,c,b) /∈R,∧,(b,a,c) /∈R,∧,(c,b,a) /∈R.

• transitive
(a,b,c) ∈ R,∧,(b,d,c) ∈ R =⇒
(a,b,d) ∈ R,∧,(d,c,a) ∈ R.

• complete
∀a,b,c ∈ A,(a,b,c) ∈ R,∨,(a,c,b) ∈ R.

Imagine the three elements a,b,c of a triple in the relation
as 3 points on a circle and note that a cyclic ordering gives a
direction to traveling the circle.

Cyclic magnitudes
A cyclic magnitude is a variable that takes values in a cycli-

cally ordered set. An example of a cyclic magnitude is (planar)
angle.Let A = [0,2π) ⊂ R (where R stands for the set of the
real numbers, or real line); the cyclic ordering R being given as
(θ ,φ ,ψ) ∈ R ⇐⇒
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• 0≤ θ ≤ φ ≤ ψ < 2π , ∨,
• 0≤ ψ ≤ θ ≤ φ < 2π , ∨,
• 0≤ φ ≤ ψ ≤ θ < 2π .

In this canonic way, a cyclic ordering (A,R) is obtained from
a linear ordering (A,<). If the linear ordering has a corresponding
metric or measure (order→ open intervals→ length, topology),
the set has a total length. In the case of the angle magnitude the
total length is 2π . Likewise, cyclic magnitudes can be obtained
out of an interval2 [x,y), its total length being y− x.

A metric for these cyclic orderings is obtained via a tent func-
tion T : [x,y]→ [0, y−x

2 ]. For example, for the angle space, the tent
function is

T : [0,2π]→ [0,π], via
T (θ) = θ if 0≤ θ ≤ π , and
T (θ) = 2π−θ if π ≤ θ ≤ 2π;

the metric being given by
d(θ1,θ2) := T (|θ1−θ2|),

see also [5].

Another case of a cyclic magnitude is that of the hue of the
chromatic3 colours and, by choosing a homeomorphism between
the angle space and the hue space, a (hue) colour code for an-
gles [2] results. This can be exploited to visualise plots of angle
signals using colour, economising space and allowing for more
readability.

Circular signals
A signal x : B→ A is called circular if its range A is cycli-

cally ordered. The swing of a circular signal is given by the total
length of its range.

The graph of a signal x : B→ A lives in A×B. If both its
domain A and its range B are linearly ordered sets, the graph nat-
urally fits in the Cartesian plane. A circular signal x : B→A, with
a linearly ordered domain B, has a graph that naturally embeds in
a cylinder B×S1; call it a (circular) cylindrical signal; its graph
in fact presents some difficulties, for it to be drawn on a (plane)
page. On the other hand, a circular signal x(t) : B→ A, with a
cyclically ordered domain B, has a graph that naturally embeds in
torus; call it a (circular) toric signal.

Several solutions have been adopted by the engineering com-
munity to circumvent the problem of the nonplanarity of the
graphs of circular signals when plotting them. Consider first the
plot of the phase component alone. One possibility is to continu-
ously (with respect to the topology of the reals) continue the graph
and to let the angle variable take any real number as value, consid-
ering two such numbers as equivalent whenever their difference
is an integer multiple of 2π . This corresponds to a topological lift
of the circle to the real line. Another solution is to slice open (and
flat) the ambient cylinder of the graph, and to plot the phase func-
tion on such Cartesian plane, with a finite vertical axis from 0 to
2π (or from −π to π), both heights corresponding to the position
of the slice cut, and to implicitly assume that vertical jumps of
magnitude 2π (are only artificial discontinuities and) correspond
in fact to points of continuity.

2In similar ways, the intervals (x,y], (x,y), [0,∞), (0,∞) and (−∞,∞)
can be given cyclic orderings.

3The achromatic colours being black, white and the greys.

Figure 1. The graphs of the signal e jω : R→ C, of its magnitude and of its

phase.

It is important to stress the point that in such planar graphs
of the phase component, a jump of value π is in fact a discon-
tinuity, typically corresponding to a crossing of the origin of the
complex plane of the graph of the function, while a ”jump” of
value 2π is no discontinuity at all; in this sense planar plots can
be misleading; see Figure 1.

In this paper we present a visualisation methodology for the
graph and the phase of complex signals that uses colour4. The
plots are planar and concise and the problem of the artificial dis-
continuities is avoided.

Fourier Transforms
Even though, in engineering, it is usual to work with real sig-

nals, the Fourier transform of a (real or complex) signal typically
has nonzero real and imaginary parts, that is, it is a complex sig-
nal. For illustration purposes, we consider the Fourier transform
of continuous and discrete signals and, later on in Section , the
Fourier transform of 2D discrete signals.

Consider the convolution system (a first-order low-pass fil-
ter) with characteristic function given by h(t) = (1− e−tΩC )u(t),
where u(t) stands for Heaviside’s step function 5. The transfer
function of the system is the Fourier transform of h, which is given
by

H(Ω) = F{h}(Ω) =
∞∫
−∞

h(t)e− jΩtdt = 1
1+ jΩ/Ωc

which has as phase a cylindrical signal.
Likewise, consider a discrete convolution system (again a

low-pass filter) with difference equation yn = 0.5(xn + xn−1))
with characteristic function gn = 0.5δn + 0.5δn−1 (where δ is
Kronecker’s delta function6) and corresponding transfer function
given by

G(ω) = F{g}(ω) =
∞

∑
n=−∞

gne− jωn = 1+ e jω , ω ∈ [0,2π)

whose phase 6 G(ω) is a toric signal.

4At this point, the technique is not suitable for colour blind people but
it will be done so, if with limitations, in the future.

5u(t) = 0 if t < 0, and u(t) = 1 if t ≥ 0, i.e. u is the indicator function
of the interval [0,∞)⊂ R.

6δn = 0 in n 6= 0, and δ0 = 1.
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Figure 2. Phase Filter All Pass Example on Sinusoidal Signals

Likewise, for a discrete image, or a 2D discrete signal in
general, {xn,m : n,m ∈ Z}, its Fourier transform is given by

X(ω,η) = F{x}(ω,η) =
∞

∑
n=−∞

∞

∑
m=−∞

xn,me− jωne− jηm,

(ω,η) ∈ (−π,π]× (−π,π]

Fourier transforms are usually visualised with two graphics,
one for the magnitude and the other one for the phase.

Visualisation of the Phase of Complex Sig-
nals Using Colour

A complex signal s : A→ C, where C stands for the set of
the complex numbers, has a graph (i.e. the set of ordered pairs
(a,s(a))) that lives (i.e. it is canonically embedded) in A×C.
If A is a linearly ordered set, such as the reals R, topologically,
the ambient space R×C for the graph of the signal is R3. Thus,
for complex signals that are functions of a 1D linearly ordered
domain, the graphs are naturally plotted in a 3D space, rather
than on a plane. In particular, complex signals of constant magni-
tude are naturally plotted on a cylinder; see for example Figure 1,
where the signal F(ω) = e jω , of magnitude |F(ω)|= 1 and phase
6 F(ω) = ω , is plotted.

We present an alternative to the techniques of a plot in 3D
space and to the more traditional practise of plotting separate,
plane graphs of the magnitude |s(a)| and phase 6 s(a) components
of a complex signal s(a), a ∈ A, consider the following. With the
help of colour, a complex signal s(a) can in fact be plotted on
a flat screen or piece of paper. A simple coloured straight line
(or band) can be used to indicate the phase [2] of the signal as a
function of a by exploiting one of the already mentioned corre-
spondences between hues and angles; moreover, by changing the
luminance of the hue at different points on the line (or band), the
coloured line (or band) can simultaneously indicate the phase and
the magnitude of the signal.

It should be remembered that the complex number 0 + 0 j
has undefined phase so that, whenever the magnitude of a sig-
nal is null, the phase becomes undefined. The typical case of a
discontinuity of the phase of a complex signal occurs when the
graph of the signal continuously crosses the origin of the complex

plane, the magnitude then becomes zero, while the phase abruptly
changes from a given angle φ to the angle φ +π; the magnitude
remains continuous but (even if the function corresponding to the
signal7 is analytic) is not an analytic function anymore, as it is
not differentiable anymore. Sometimes, since (for the case of pla-
nar plots) it is preferred, instead of plotting the magnitude and the
phase of a complex signal, to plot its (real) value function (given
by± its magnitude) and its angle function (given by the phase +0
or +π) so that the value may be positive or negative so long as the
angle is a continuous function, even when the signal crosses the
origin.

Coding the Hue Circle in RGB Colour Space
In digital machines, colour is coded with the RGB, cubic,

colour space. A hue circle can be derived in a straightforward
fashion by considering the the chromatic hexagon [6] which is the
(nonplanar) hexagon composed of the six edges of the RGB cube
that do not contain [111] (white) nor [000] (black) as vertices. The
points of the hexagon are at a fair distance from the black point,
nevertheless their distance (i.e. the luminance) varies; likewise,
the points of the hexagon are at a fair distance from the achromatic
segment but the distance (i.e. the saturation) varies.

The chromatic hexagon can be parametrised with a number x
in the interval [0, 6) as follows. Let x = 0 correspond to [RGB] =
[100], then, for x ∈ [0,1), let the corresponding colour be [1,x,0],
for for x∈ [1,2), let the corresponding colour be [1−(x−1),1,0],
for x ∈ [2,3), let the colour be [0,1,x− 2], for x ∈ [3,4), let the
colour be [0,1− (x− 3),1], for x ∈ [4,5), let the colour be [x−
4,0,1] and, for x ∈ [5,6), let the colour be [1,0,1− (x− 5)). By
assigning to each value of x the angle 2π

6 x, the hue circle of Figure
3 results. The variations in luminance and saturation are too big
and the circle is not appropriate.

0 100 200 300
0

0.5

1

Degress [°]

R
G

B−
Va

lu
e

Sinusoidal Color Profile

Figure 3. Hue disk corresponding to the chromatic hexagon. Pri-
maries R (having the hue of a spectral red than of unique red), G
and B, being closer to the black point, have a smaller luminance
than their pairwise combinations yellow (R+G), cyan (G+B) and vi-
olet (B+R).

For the illustrations in the paper, rather than colouring a

7Strictly speaking, an analytic signal is a signal that results from the
addition to a given real signal, of its Hilbert transform, times j (=

√
−1).
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(thin) circle, we color disks, with the understanding that the cor-
responding hue circle is at the boundary of the plotted disk.

Alternatively to a disk based on the chromatic hexagon, you
can exploit a colour space of the type hue-saturation-luminance
(such as Matlab’s hsv colour space) to obtain a hue disk; by set-
ting the luminance and saturation values as constant and letting
the hue component sweep all possible values and then translating
(as with Matlab’s hsv2rgb) the hue-saturation-luminance values
to corresponding RGB values, you also get a hue disk. See for
example the one in Figure 4. In this case, to obtain a chromatic
diagram, since Matlab’s hsv colour space equally spaces in the
circle the RGB primaries red green and blue, the function h(θ)
rather that being linear, is preprocessed as in Figure 5 producing
the circle in Figure 6.
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Figure 4. Hue disk resulting from a linear variation of Matlab’s hue
h, followed by Matlab’s hsv2rgb.
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Figure 5. An orientation-preserving homeomorphism of the circle to
itself, that shifts the angles 0◦ (red), 60◦ (yellow), 120◦ (green) and
240◦ (blue) , to the angles 0◦, 90◦, 180◦ and 270◦, correspondingly.
The scale of the axes is shown normalized.

Other hue circles result from appropriate functions R(θ),
G(θ) and B(θ) of the angle variable θ ∈ [0,2π); the aim is to get
a circle where all hues appear continuously and the corresponding
colours are of uniform saturation and luminance, Each such a set
of functions is called an RGB hue-angle code, or correspondence
and their graphs are called profile curves .
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Figure 6. The hue code in Figure 4 composd with the homeomor-
phism graphed in Figure 5.

In this vein, we have designed a computational tool which
allows to manually design piecewise linear profile curves. This is
achieved by placing a set of hinges, at a collection of θ positions,
where the values of R, G and B are manually fixed; in between
the hinges the variations are linear and, in a trial and error process
where the corresponding hue disk is being displayed, a suitable
hue disk is obtained.

A suitable hue disk is one that, except at the center where
a pinwheel singularity results, it continuously8 displays all hues,
with uniform luminance and saturation, that displays complemen-
tary hues as opposed and that displays the 4 unique hues red, yel-
low, green and blue at the four cardinal points.

Notice for example in Figure 7, that the use of sinusoidal
RGB profile curves does not result in a suitable disk, mainly due
to the virtual absence the unique yellow hue. Also, as mentioned,
we want a hue circle that is a chromatic diagram, i.e. where op-
posing hues are complementary. 9 This provides more readability
to the plots of angles based on the resulting hue code. Likewise,
we want the 4 cardinal points of the circle (those at 0◦, 90◦, 180◦

and 270◦) to correspond to the 4 unique hues red, yellow, green
and blue. The aim of the design of the RGB profile curves is to
achieve these goals.

In Figures 9 and 10, two RGB and their corresponding disks
are shown; they were custom designed are presented with the
colour profiler already mentioned, implemented as a Matlab GUI.
The luminance is nearly constant, the uniques are placed at the
cardinal points and opposing hues are nearly complementary.

In Figures 9 and 10 two custom made profiles are shown.
They were designed with the help a GUI Matlab interface.

Phase and Magnitude Visualisation
Given a hue-angle correspondence, the phase of a complex

signal (e.g. of the frequency variable) can be displayed as a
coloured, horizontal ribbon, where the horizontal position mea-
sures frequency (or, more generally, the domain of the signal func-

8A spatial function of hue is continuous if the transitions are smooth,
i.e. separated by just noticeable differences.

9Remember that two colours are said to be complementary if in an
additive combination an achromatic colour results, e.g. blue and yellow.
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Figure 7. Hue disk resulting from sinusoidal variations of the R , G
and B components of the profile. The yellow hue is hardly visible.
The corresponding RGB profile curves are shown below.

tion), and the colour at each position represents the phase. If, in
addition to the phase, the magnitude of the signal is to be plotted
as well, it may be coded as changes of luminance of the coloured
ribbon.

Visualisation of Fourier Transforms of Im-
ages

The phase of the Fourier transform of a 2D signal or image
can be plot as a coloured rectangle, where each of its points has
a colour that corresponds, via a chosen profile. As an example, a
image compound by some black and white squares is showed in
Figure 14.

As it was pointed several years ago by T.S. Huang, the
phase of the Fourier transform of an image contains information
about shapes and edges, while the magnitude contains informa-
tion about texture. A colour phase plot is shown in Figure 15.

Instantaneous phase
The phase φ(t) = 6 (s(t)) of the analytic signal sa(t) = s(t)+

jŝ(t) (where ŝ stands for the Hilbert transform of s) of a signal s(t)
is called the instantaneous phase of the signal.

For example, consider the rectangular pulse signal

p(t) := u(t +1)−u(t−1) (1)

where u stands for Heaviside’s step function; its Hilbert transform
p̂(t) = p(t) ∗ 1

πt is given by p̂(t) = 1
π

ln | t+1
t−1 |. The instantaneous

phase of p(t), together with a colour-visualised version, is shown
in Figure 16.

Figure 8. Hue disk resulting from piecewise linear variations of the
R, G and B components of the profile. Three, very apparent, strong
variations of the luminance result. at yellow, violet and cyan hues.

Conclusion and Further Work
The Fourier phase of a signal, as well as the phase of the

analytic signal of a signal, are somehow less intuitive that the cor-
responding magnitudes; nevertheless, they are important aspects
of the signal that can be exploited.

The circular aspect of the phase is usually ignored and the
phase is assimilated to a linearly ordered magnitude. This also is
an obstacle for the development of tools that process that impor-
tant aspect of a signal.

A drawback of the proposed method, for visualisation using
colour is that people with abnormal colour vision may not be able
to read the plots. This is not a trivial issue as between about 0.5%
and 10% of white people, more for the case of males than for fe-
males, perhaps less for nonwhite people, are either protanopes or
deuteranopes. We plan to modify the technique so that it can be
used for people with at least two types of cone. For this, in addi-
tion to designing appropriate profiles with the help of protanope
and deuteranope people, we will place a reference frame near the
corresponding plot.
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