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Abstract
In the era of big data, along with machine learning and

databases, visualization has become critical to managing com-
plex and overwhelming data problems. Vision science has been
a foundation of data visualization for decades. As the systems
that use visualization become more complex, advances in vision
science are needed to provide fundamental theory to visualization
researchers and practitioners to address emerging challenges. In
this paper, we present our work on modeling the perception of cor-
relation in bivariate visualizations using the Weber’s Law. These
Weber models can be applied to definitively compare and evaluate
the effectiveness of these visualizations. We further demonstrate
that the reason for this finding is that people approximate corre-
lation using visual features that are known to follow the Weber’s
Law. These findings have multiple implications. One practical im-
plication is that results like these can guide practitioners in choos-
ing the appropriate visualization. In the context of big data, this
result can lead to perceptually-driven computational techniques.
For instance, it could be used for quickly sampling from big data
in a way that preserves important data features, which can lead
to better computational performance, a less overwhelming user
experience, and more fluid interaction.

Introduction
The rise of data science, spurred by the growth of data sizes

and complexity, has led to new advances in the fields of databases,
machine learning, and visualization. These three pillars enable
data stakeholders to store, analyze, and make sense of big data.

Of the three areas, visualization represents the last step of
the pipeline where automated computation meets the human user.
Recent advances in visualization techniques have led to innova-
tive systems that allow the user to interactively and visually ex-
plore large amounts of data. Success stories such as Tableau
[1, 22], SpotFire [4], SAS Visual Analytics [2] demonstrate the
importance of integrating visualization with machine learning and
databases to solve big data problems.

However, as the data size and complexity continue to rise,
it has become more obvious that the visualization component has
become both the critical element as well as the bottleneck in the
analysis pipeline. Both the database and machine learning can
scale to meet the increased data complexity by adding more stor-
age and more compute nodes in a server farm. The visualization
component, on the other hand, is constrained by both the display
technology as well as the human user’s perceptual and cognitive
limitations.

In this paper, we examine the constraints of the visualiza-
tion component in the context of big data analytics. While these

constraints can be considered as limitations to the data analysis
pipeline, we propose that they also represent opportunities to de-
velop a new user-centric paradigm that makes use of vision sci-
ence to design not only new visualization techniques, but also
database and machine learning algorithms. The resulting system
represents a new approach of big data analytics that puts the hu-
man user’s needs and limitations first, thereby creating a system
that is faster, more fluid, and more intuitive to the user.

Background
Figure 1 shows a traditional (non-interactive) process of data

visualization (adopted from the data state reference model by
Chi [7]). First the data is retrieved from the database into the vi-
sualization system. The system then maps elements of the data to
different perceptual elements (such as color, size, shape, etc.) [5].
Lastly, the human user perceives the image and identifies patterns
and trends that might lead to new insights about the data.

Although simplistic, this pipeline serves as the foundation of
all visual analytics systems today. Recent advances in this topic
can be seen as improving the stages in this pipeline. For example,
nanocubes [14] and multivariate data tiles [15] are examples of
data storage techniques that make use of compact data structures
that aggregate underlying data in a hierarchical way. These data
summaries can be precomputed at various levels of abstraction
based on the number of pixels available for the visualization and
the size of the underlying raw dataset.

Binned aggregation [15], [24] takes this even further by sep-
arating the raw data into bins and returning a small set of summary
statistics. This technique can show both densities and outliers by
varying the bin size. Any issues with variability in the summaries
can be resolved with various smoothing methods [24].

Another technique is to provide approximate incremental an-
swers. The sampleAction [9] and the VisReduce [12] system in-
crementally returns partial answers to user queries computed over
increasingly larger samples of data. This has the benefit of pro-
viding a partial response to an exploratory query quickly and once
the user has a good enough answer, they can stop the process and
move on.

For exact answers from raw data, systems such as Dremel
[16] and MapD [17] take advantage of parallelism and large com-
puting clusters for computational power. Although effective, the
cost and proprietary query language can hinder widespread adop-
tion.

While these new techniques, methods, and systems have led
to a faster and more efficient data visualization process, our goal
in this paper is fundamentally different. Unlike these advances
that seek to improve a component of the pipeline, we propose
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Figure 1: A simplified pipeline of data visualization. The data is first fetched from the database and delivered to a client system to render
a visualization. The human user perceives information from the visualization.

that a new paradigm of the data visualization process can lead to
advances in vision science, visualization techniques, and closer
integration of machine learning, database, and visualization.

Human Perceptual Limitations
In order to develop a paradigm that focuses on the limitations

of the human perceptual and cognitive abilities, we first examine
some examples of low-level limitations in the data visualization
process.

Consider an example of a visualization display that has a res-
olution of 1000x1000 pixels resulting in a total of 1 million pixels,
each with the capability of displaying three color channels. When
used in a visualization, it has been shown that this 1 million pixel
(the resolution of the display) is the theoretical upperbound of the
maximum amount of information that the human can perceive [6].

This theoretical upper bound is important because it suggests
that the first step in visualization pipeline shown in Figure 1 is
lossy when displaying a large amount of data. For example, imag-
ine a database that holds 10 million records of data. When the 10
million records are sent to the visualization system, the 10 million
records need to be “compressed” into 1 million pixels resulting in
a 10:1 ratio of data loss. The “compression” can be performed
using a variety of methods. Most commonly the data is aggre-
gated (averaged) into a single value, but other methods such as
clustering and sampling are also frequently used [20].

In addition, beyond the theoretical limitation of the display
technology, the second step in the visualization pipeline is also

Figure 2: A screen with a resolution of 1000 x 1000 can at most
display 1 million pixels. When a visualization reaches this upper
bound, however, the resulting image is often unrecognizable.

lossy. While the display resolution constraints what the user is
able to perceive, comprehending the visualization is further con-
strained by the user’s cognitive limitations. For example, using
the previous example, when each pixel represents 10 data ele-
ments in an aggregated fashion, the visualization can result in a
colorful “snow” (see Figure 2). Although the data-visual mapping
of this visualization may be coherent, accurate, and maximizing
of information content, the cognitive limitation of the user makes
this visualization less than useful [6].

Applying the Perceptual Limitations
Based on the user’s perceptual and cognitive limitations, we

propose that there are two immediate opportunities for optimizing
the design of a visualization system.

Pixel-Based Constraint
First, for a display system that can render at most 1 million

“pieces” of data, it does not make sense for a database to trans-
fer more than 1 million rows to the visualization system with that
display. Since transferring data from the database to the visu-
alization can be costly (especially when the two are connected
via network), minimizing the amount of data transferred from the
database will improve the performance of the overall system.

It is relevant to note that the 1 million rows of data transferred
from the database can be raw or processed data. Using sampling
techniques [3], the database can choose the most representative
1 million raw data elements. Alternatively, using aggregation or
clustering techniques, each of the 1 million rows can represent
the mean of a large number of raw data elements. When combined
with the notion that data transfer is costly, this implies that most of
the data processing should take place in the database system. Only
the resulting computed data should be sent to the visualization
system for rendering.

Perceptually-Based Constraint
Second, we consider and leverage the user’s perceptual and

cognitive limitations when perceiving an image. For example,
Figure 3 shows two images that appear very similar. However,
the image on the right has a significantly coarser resolution than
the one on the left (301 kb vs. 115 kb, a 2.62:1 compression
ratio). Many existing image compression techniques (such as
JPEG-2000 [23]) are based on this same idea: for as long as the
user cannot tell the difference, keep reducing the resolution of the
image. The resulting simplified images are smaller in file sizes,
which are faster to transit via network and to render on screen.

The notion of perceptible differences is often measured in
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Figure 3: Examples of JPEG2000 compression. The picture on the right has less than half the resolution as the one on the right but results
in little difference in perception.

terms of just noticeable difference, or JND. One unit of JND is
defined as the minimum change in the stimulus (e.g. the image)
before a human can perceive that change has occurred. Different
stimuli, such as color, brightness, smell, will have different values
of JND, but the notion of one JND can be universally applied
to all aspects of human sensory perception. For a more detailed
definition of JND, see the following section on Just Noticeable
Difference.

Our second observation can therefore be specifically defined
as: a visualization can continue to be simplified for as long as the
change does not exceed one JND. However, in data visualization,
the measurement of JND is less well understood. For example,
consider the two boxplot visualizations (also known as box-and-
whisker plots) in Figure 4a. Although these two visualizations
appear very similar, there is in fact a difference between the two.
Figure 4b uses a red line to highlight that difference.

Now consider the two barchart visualizations in Figure 5a.
The difference between these two barcharts should be much easier
to detect than the previous boxplot example (refer to Figure 5b
to see the difference). Although the magnitude of the difference
between the two boxplots in Figure 4a and the two barcharts in
Figure 5a are the same, the perceptual differences are different.
This suggests that the JND of these two visualizations are in fact
different.

Similar to the JPEG-2000 example (Figure 3), a boxplot or
barchart visualization can be “simplified” for as long as the user
cannot detect the differences. In the boxplot example (Figure 4a),
the amount of simplification can be higher (because the JND is
larger), whereas less simplification can be done in the barcharts
(because the JND is smaller).

An interesting open question is how visualizations can be
“simplified”. As noted earlier, existing approaches have utilized
sampling, streaming, and aggregation techniques [3, 9, 10]. Re-
gardless of the applied technique, the value of using a simplified
visualization that is perceptually the same (i.e. within one JND)
as the original is that the data size can be reduced, which leads to
faster data transfer, processing, and rendering.

Perceptually-Driven Visualizations
The fact that differences in barcharts are easier to detect than

in boxplots is well-known. However, the visualization commu-

nity does not yet have clear answers to “by how much are bar-
charts easier detect than boxplots and why?” In the seminal work
by Cleveland and McGill [8], the authors examined various vi-
sualizations and compared and documented differences in their
effectiveness. This study, and many others that have extended this
work, largely focus on “ranking” the effectiveness of the visual-
izations, but do not directly model the relationship between the
amount of change in visualization versus the amount of change in
perception.

Since JND is a measure of change of perception (one unit
of JND is the minimum amount of change in stimulus that can
be perceived), modeling the relationship between changes in vi-
sualization and perception is the first step towards quantitatively
comparing visualizations and developing perceptually-driven vi-
sualizations. Changes in the visualization can be measured in
changes in pixels. For example, for images such as the ones in
Figure 3, one can compute the sum of changes for all pixels. For
information visualizations such as boxplots and barcharts, the dif-
ference in length between bars can also be measured in number of
pixels.

In the sections below, we introduce the formal definition of
JND and give an example of modeling JND in information visu-
alization.

Just Noticeable Difference
Just noticeable difference, or JND, was first defined by

Ernest Heinrich Weber in the 18th century as:

∆I
I

= k (1)

Known as the Weber’s Law, in this equation I represents the inten-
sity of the original stimulus and ∆I represents the smallest amount
of change that is required for a human to perceive the difference
(the JND). This simple relationship elegantly captures the rela-
tionship between sensory stimulus and human perception across
a large number of stimuli and became the foundation of the field
of psychophysics.

It is relevant to note that not all JNDs have the linear re-
lationship with the intensity of the stimulus. Other perceptual
laws, such as Fechner’s Law and Stevens’ Power Law [21] have
been used to model more complex sensory perception, such as
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(a) (b)

Figure 4: (a)Two similar boxplots. The difference between them is very hard to perceive. (b) The red line highlights the difference
between two boxplots. The length of the box on the right is different.

(a) (b)

Figure 5: (a) Two barcharts with the same difference as the above two boxplots. However, the difference is easier to detect. (b) The red
line highlights the difference between two barcharts.

wavelength of light. For example, Stevens’ Power Law models
perception and the intensity of the stimulus using an exponential
relationship. A full treatment of perceptual modeling and psy-
chophysics is out of the scope for this paper. Our goal in this
paper is to demonstrate how perceptual modeling in information
visualization can be used in connection to data science and big
data computation. Below we give an example on how such per-
ceptual models can be developed and suggest how these models
can be used in data science.

Modeling JND in Perception of Correlations using
Bivariate Visualizations

In a 2010 paper by Rensink and Baldridge, the authors
showed that the perception of correlation in a scatterplot can be
modeled using the Weber’s Law [19]. The study utilized vision
science experimental techniques to establish that the participants’
ability to discern correlation in the data decreases linearly as the
data becomes less correlated (see Figure 7). Using a side-by-side
stimuli to estimate the discriminability between scatterplots of
two correlation values and a staircase method to systematically
and dynamically adjust the difference between the two, the au-
thors were able to establish that the JND in the perception of cor-
relation in scatterplots (i.e. minimal perceptible difference be-
tween the side-by-side stimuli, or ∆I in Equation (1) is linearly
correlated with the value of the correlation (i.e. intensity of stim-
uli, I).

This finding is significant to the information visualization
community because it establishes that techniques and principles
in vision science used to model low-level sensory stimuli can be
applied to model higher-level perception (such as perceiving cor-
relation) in abstract information visualization. Further, with the
Weber equation, it is possible to quantitatively measure how other
design channels can affect perception, thus leading to a path to-
wards developing a foundation of vision science for information
visualization [18].

Extending the work by Rensink and Baldridge, Harri-
son et al. applied the same experimental techniques and tested
whether the perception of correlation follows the Weber’s Law
in nine bivariate visualizations [11]. First, the authors estab-
lished that using crowdsourcing (on Amazon’s Mechanical Turk),
they were able to replicate the findings of Rensink and Baldridge
which were established using traditional in-person studies. The
authors then tested a total of nine common bivariate visualizations
used in commercial office tools like Excel (see Figure 6). The
result of this work shows that in all tested visualizations, the per-
ception of correlation follows the Weber’s Law similar to Rensink
and Baldridge’s finding for scatterplots. Further, since each of
these visualizations have a different Weber fraction (k in Equa-
tion (1)), the authors were able to rank the visualizations based
on their effectiveness in representing correlations in the data (see
Figure 8).

More recently, Kay and Heer extended the work by Harri-
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Figure 6: All the tested visualizations in the stud by Harrison et al.

Figure 7: The result of study by Rensink and Baldridge showing
that the relationship between stimulus (correlation, r) and percep-
tion (JND) is linear.
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Figure 8: The result of the study by Harrison et al. showing that
all nine tested visualizations follow the Weber Law for the per-
ception of correlation.

son et al. to improve the comparison between the visualizations
for the task of perception of correlation [13]. Using a log-linear
model, the authors find a better fit to account for residuals and
variance in the same data. The result suggests that the tested
visualizations can be grouped into four categories ranging from
high precision to indistinguishable from chance. Although the
log-linear model no longer fits the Weber’s assumption (that the
intensity of the stimulus and the JND are linear), the research is a
step forward in developing a vision science for information visu-
alization.

Discussion
The research above in modeling the perception of correla-

tion using visualizations are examples of how vision science can
be used to better understand the effectiveness of information vi-
sualization. Differing from most research in information visual-
ization that focuses on “which visualization is better”, these ex-
amples that produce models can go a step beyond to answer “by
how much is the visualization better.”

Beyond using these models to compare visualizations, an-
other value for developing perception models is to use them for
data computation because of the predictive capability of models.
For example, knowing that the JND of correlation using a scatter-
plot when the correlation value is high means that the data cannot
be aggressively sampled or aggregated. Conversely, when the cor-
relation value is low, the user cannot easily distinguish two scat-
terplots of similar correlations, which leaves more room for data
approximation that could save computation time without affecting
the user’s ability to perceive information and make decisions.

However, since a user can use a visualization for a range
of purposes (e.g. reading a specific value, comparing subsets of
data, identifying outliers, etc.), having a model for a single task
is insufficient. As these examples only focus on one particular
task (perception of correlation), the resulting models are limited
and not yet applicable for general use. What is needed then is a
continued collaboration between the vision science and the infor-
mation visualization communities to research and develop similar
models of visualizations and tasks. The outcome of such founda-
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tional work will lead to improved understanding of the effective-
ness of visualizations, but also applicable models that can inform
data computation and representation.

Conclusion
In this paper, we introduced the concept of perceptually-

driven visualizations for large scale data computation and visu-
alization. We demonstrate that a closer examination of the tradi-
tional data visualization pipeline in the context of big data leads to
the identification of two bottlenecks in the data visualization pro-
cess where the amount of the transferred data is limited. While
these bottlenecks can be perceived as constraints in the process,
we propose that they can also be viewed as opportunities to im-
prove data computation and information flow.

First, the resolution of the display pose as the initial bot-
tleneck. Given any display, its resolution serves as a theoretical
upper bound of how much information can be shown to the user.
This upper bound dictate the maximum amount of data that should
be transferred from the back-end data source to the visualization
system. By adhering to this upper bound, a visualization system
can render data at a faster rate by reducing the latency caused by
transferring unnecessary data.

Second, the human perceptual system serves as another bot-
tleneck. Following the notion of just noticeable difference (JND),
we demonstrate that taking advantage of two visualizations that
are indistinguishable can lead to opportunities for applying data
sampling and aggregation. Further, we suggest that models of per-
ception of abstract information visualizations developed by ap-
plying experimental techniques in vision science can be used to
measure the tradeoff between perceptibility versus data accuracy.

These two approaches represent two starting points for de-
veloping a framework of perceptually-driven visualization. While
these approaches remain mostly theoretical in nature, early exam-
ples suggest that they are promising in scaling visualizations to
rendering large amounts of data. By further close collaborations
between the vision science and the information visualization com-
munities, these approaches can be realized that can have founda-
tional and applied impact to the future of information visualiza-
tion research and practice.

References
[1] Tableau, 2003 (accessed February 29, 2016).
[2] SAS, 2013 (accessed February 29, 2016).
[3] Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner,

Samuel Madden, and Ion Stoica. Blinkdb: queries with bounded er-
rors and bounded response times on very large data. In Proceedings
of the 8th ACM European Conference on Computer Systems, pages
29–42. ACM, 2013.

[4] Christopher Ahlberg. Spotfire: an information exploration environ-
ment. ACM SIGMOD Record, 25(4):25–29, 1996.

[5] Jacques Bertin. Semiology of graphics: diagrams, networks, maps.
1983.

[6] Min Chen and Heike Jaenicke. An information-theoretic frame-
work for visualization. Visualization and Computer Graphics, IEEE
Transactions on, 16(6):1206–1215, 2010.

[7] Ed H Chi. A taxonomy of visualization techniques using the data
state reference model. In Information Visualization, 2000. InfoVis
2000. IEEE Symposium on, pages 69–75. IEEE, 2000.

[8] William S Cleveland and Robert McGill. Graphical perception:

Theory, experimentation, and application to the development of
graphical methods. Journal of the American statistical association,
79(387):531–554, 1984.

[9] Danyel Fisher, Igor Popov, Steven Drucker, et al. Trust me, i’m
partially right: incremental visualization lets analysts explore large
datasets faster. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 1673–1682. ACM, 2012.

[10] Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman,
Don Reichart, Murali Venkatrao, Frank Pellow, and Hamid Pira-
hesh. Data cube: A relational aggregation operator generalizing
group-by, cross-tab, and sub-totals. Data mining and knowledge
discovery, 1(1):29–53, 1997.

[11] Lane Harrison, Fumeng Yang, Steven Franconeri, and Ronald
Chang. Ranking visualizations of correlation using weber’s law.
Visualization and Computer Graphics, IEEE Transactions on,
20(12):1943–1952, 2014.

[12] Jean-François Im, Felix Giguere Villegas, and Michael J McGuf-
fin. Visreduce: Fast and responsive incremental information visu-
alization of large datasets. In Big Data, 2013 IEEE International
Conference on, pages 25–32. IEEE, 2013.

[13] Matthew Kay and Jeffrey Heer. Beyond weber’s law: A second look
at ranking visualizations of correlation. Visualization and Computer
Graphics, IEEE Transactions on, 22(1):469–478, 2016.

[14] Lauro Lins, James T Klosowski, and Carlos Scheidegger.
Nanocubes for real-time exploration of spatiotemporal datasets.
Visualization and Computer Graphics, IEEE Transactions on,
19(12):2456–2465, 2013.

[15] Zhicheng Liu, Biye Jiang, and Jeffrey Heer. immens: Real-time vi-
sual querying of big data. In Computer Graphics Forum, volume 32,
pages 421–430. Wiley Online Library, 2013.

[16] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer,
Shiva Shivakumar, Matt Tolton, and Theo Vassilakis. Dremel: in-
teractive analysis of web-scale datasets. Proceedings of the VLDB
Endowment, 3(1-2):330–339, 2010.

[17] Todd Mostak. An overview of mapd (massively parallel database).
White paper, Massachusetts Institute of Technology, Cambridge,
MA, 2013.

[18] Ronald A Rensink. On the prospects for a science of visualiza-
tion. In Handbook of human centric visualization, pages 147–175.
Springer, 2014.

[19] Ronald A Rensink and Gideon Baldridge. The perception of cor-
relation in scatterplots. In Computer Graphics Forum, volume 29,
pages 1203–1210. Wiley Online Library, 2010.

[20] Ben Shneiderman. Extreme visualization: squeezing a billion
records into a million pixels. In Proceedings of the 2008 ACM SIG-
MOD international conference on Management of data, pages 3–12.
ACM, 2008.

[21] Stanley S Stevens. On the psychophysical law. Psychological re-
view, 64(3):153–181, 1957.

[22] Chris Stolte, Diane Tang, and Pat Hanrahan. Polaris: A system
for query, analysis, and visualization of multidimensional relational
databases. Visualization and Computer Graphics, IEEE Transac-
tions on, 8(1):52–65, 2002.

[23] David Taubman and Michael Marcellin. JPEG2000 Image Com-
pression Fundamentals, Standards and Practice: Image Compres-
sion Fundamentals, Standards and Practice, volume 642. Springer
Science & Business Media, 2012.

[24] Hadley Wickham. Bin-summarise-smooth: a framework for visual-
ising large data, 2013.

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.16HVEI-131

IS&T International Symposium on Electronic Imaging 2016
Human Vision and Electronic Imaging 2016 HVEI-131.6



Author Biography
Remco Chang received his BA in Computer Science and Economics

from the Johns Hopkins University (1997), his MSc in Computer Science
from Brown University (2000), and his PhD in Computer Science from
the University of North Carolina Charlotte (2009). Since then he has
worked as a software engineer at Boeing, a research scientist at the Uni-
versity of North Carolina Charlotte. He is currently an Assistant Profes-
sor in Computer Science at Tufts University. His research interests include
visual analytics, information visualization, human computer interaction,
and databases.

Fumeng Yang is currently a graduate student in the Department of
Computer Science at Tufts University. She received her B.E. in Computer
Science and Technology from Shandong University, China (2013).

Marianne Procopio is currently a graduate student in the Depart-
ment of Computer Science at Tufts University. She received her BA and
MA in Computer Science from Boston University (2007).

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.16HVEI-131

IS&T International Symposium on Electronic Imaging 2016
Human Vision and Electronic Imaging 2016 HVEI-131.7


