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Abstract
A fundamental  limit to human vision is  our ability to sense 

variations in light intensity over space and time. These limits were 
first described systematically a  half century ago in a series  of three 
seminal papers: de Lange [1], van Nes  and Bouman [2], and 
Robson  [3] measured the visibility of  temporal, spatial, and joint 
spatio-temporal sinusoidal variations. Additionally, the first two 
papers described how sensitivity depended on the the light level 
from which the deviations occurred. Their results provided an 
enduring foundation for all  subsequent studies of contrast 
sensitivity.

We have recently reanalyzed these reports and discovered a 
fundamental and remarkable simplification.   In brief, we have 
found that  for photopic retinal illuminances at  moderate to high 
frequencies the log of human contrast sensitivity is a linear 
function of  spatial frequency, temporal frequency, and the log of 
adapting  retinal illuminance. As  a surface in the space defined by 
spatial  and temporal frequency, sensitivity thus forms a 
rectangular pyramid.  

Elsewhere we have described the boundaries of this  surface, 
where it  intersects the plane defined by the maximum contrast  limit 
of  one, as the "window of visibility." [4, 5] The new linear 
formulation allows us to describe the complete surface as the 
“pyramid  of visibility.” The height of the pyramid rises linearly 
with the log of  retinal  illuminance. As a result, the window of 
visibility is  always a diamond that  grows and shrinks, linearly, 
with the log of retinal  illuminance. Elsewhere we have shown that 
under typical conditions log retinal illuminance is a linear function 
of  log luminance [6], in which case the pyramid model also applies 
for sensitivity as a function of luminance.

Almost  40 years ago, analyzing some of  his own data, 
Kulikowski also noted the dependence of log contrast sensitivity on 
linear spatial and temporal frequency, and on the log of  luminance 
[7]. His result appears  not  to have been widely understood, nor its 
practical significance appreciated.

This result has deep theoretical and practical  significance. 
With respect  to  theory, the independence of  spatial, temporal, and 
light level  effects constrains models of processing mechanisms and 
strategies. The practical  significance is that rendition  of visual 
information for the human eye is ultimately governed by the 
pyramid of visibility. There is no need to render beyond these 
limits, and these limits determine the visibility of artifacts in 
rendered information [4]. Consequently this surface provides  a 
critical guide to design of a wide variety of visual  display 
technologies. In particular, these limits determine the ultimate 
number of pixels per degree and frames per second required in 
electronic displays of static or moving imagery.  

Introduction
Contrast is the ratio of the luminance deviation to  the 

luminance from which it  deviates. Contrast threshold is the 
smallest contrast that can be detected reliably under given 
conditions. Contrast sensitivity is the inverse of the contrast 
threshold. A plot of contrast  sensitivity as a function of frequency 
is  called a contrast sensitivity function. In temporal  frequency, this 
is  the temporal contrast sensitivity function (TCSF). In spatial 

frequency, it  is the spatial contrast sensitivity function (SCSF). 
When both spatial and temporal frequency are varied, it is the 
spatio-temporal contrast sensitivity function (STCSF). The contrast 
sensitivity  function behaves  very differently at low and high 
frequencies. At low frequencies, it may be flat or decline towards 
lower frequencies, and generally manifests the effects of light 
adaptation and gain control. At high frequencies, it  falls steadily 
until reaching the upper limit of visible spatial or temporal 
frequency. In temporal frequency, this limit is called the Critical 
Fusion Frequency (CFF). In the remainder of this report  we 
confine our attention to the high frequency portion of the contrast 
sensitivity  function. We also confine our attention to photopic 
vision, and to retinal illuminances of 1000 Trolands and below. 
These limits  still contain a large proportion of our daylight visual 
experiences, and especially our experiences conveyed by electronic 
displays.

Temporal contrast sensitivity
de Lange [1]  measured the TCSF at a range of adapting 

retinal illuminances, for a 2 deg disk target on a 60 deg 
background for two observers. His data for observer V are shown 
in  Figure 1, plotted against linear frequency. We have fit these data 
with the linear model

S1 W , I( ) = c0 + cwW + ciI  (1)

where S is  log contrast sensitivity, W  is temporal  frequency in Hz, I 
is  log retinal illuminance in log Trolands [8]. We have confined the 
fit to  cases where S < 1.5. The parameter c0 defines overall 
sensitivity  in units  of log contrast sensitivity;  cW describes  the rate 
at which sensitivity changes with temporal frequency, and cI 
describes the rate at which sensitivity changes with log retinal 
illuminance. The best fitting parameters  are c0 = 1.604, cW = 
-0.0641, and cI = 0.634.  We will discuss these parameters below. 
The fit is reasonable, considering the range of frequency and 
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Figure 1. Linear model fit to TCSF. Points are contrast sensitivities of observer 
V measured by de Lange [1]. The dashed lines are fits of the linear model to 
the filled points. 
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retinal illuminance. The RMS error is 0.086 (1.7  dB). We note the 
lack of an interaction between F  and I. Elsewhere we explored the 
value of an interaction term FI and found it improved the fit  very 
little [8].

Spatial contrast sensitivity
van Nes and Bouman [2] measured contrast  thresholds for 

stationary sinusoidal gratings 4.5 degree wide by 8.25 degree tall, 
with  a dark  surround. They used a 2 mm artificial pupil and retinal 
illuminances of between 0.0009 and 900 Trolands in steps of a 
factor of 10. Here we consider only the photopic values of 0.9, 9, 
90, and 900 Td. The data are plotted in Figure 2 as log contrast 
sensitivity versus linear frequency.

We fit these data with the linear model 

S2 F, I( ) = c0 + cFF + cI I  (2)

where F  is  spatial frequency in cycles/degree, and cF is the rate of 
change in  log sensitivity with spatial frequency. We used only data 
for which  F  > 4. The best fitting parameters are c0 = 2.19, cF = 
-0.0415, and cI = 0.329. Again the fit is reasonable given the range 
of frequency and retinal illuminance included. The RMS error is 
0.091 (1.8 dB).

Spatio-temporal contrast sensitivity
Robson [3] measured contrast sensitivities for targets that 

were sinusoidal in both space and time, with various spatial and 
temporal frequencies.  The target was 2.5  x 2.5 degrees on a 10 
degree square uniform background of 20 cd m-2. In one case, 
temporal frequency was fixed at one of several values, and spatial 
frequency was varied. In the second case, spatial frequency was 
fixed at one of several values, and temporal  frequency was varied.  
In Figure 3 we plot the data against a linear frequency.

We fit these data with the linear model

S3 W ,F( ) = c0 + cwW + cf F  (3)

Because we are only interested in the high-frequency portion of the 
CSF, we confined the fit to points  for which |{W,F}| <= 6. The 
resulting fits  are shown in Figure 3 along with the data. The best 
fitting parameters are c0 = 2.71, cW = -0.0603, cF = -0.0647.  The 

RMS error is  0.085 (1.7 dB). Again  the fit is reasonable, 
considering the ranges of spatial and temporal frequency included.

The Pyramid of Visibility
We have shown that log  contrast sensitivity is linearly related 

to  temporal frequency [1, 3], spatial frequency [2, 3], and log 
retinal illuminance [1, 2]. Remarkably, no interaction terms 
between W, F, and I are required to fit the data. This means that the 
dependence on W is independent  of F and I, the dependence on F 
is  independent of W  and I, and the dependence on I is independent 
of W and F. In Table 1 we summarize the estimated parameters.

Table 1. Parameters estimated from three studies.

Study c0 cW cF cI RMS
de Lange 1.60 -0.064 0.634 0.086
van Nes & Bouman 2.19 -0.042 0.329 0.091
Robson 2.71 -0.060 -0.065 0.085

It is possible to combine equations 1-3 into a linear model that 
includes all three variables:
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Figure 2. Linear fit to SCSF. Points are contrast sensitivities measured by van 
Nes and Bouman [2]. The dashed lines are fits of the linear model to the filled 
points. 
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Figure 3. Linear fit to STCSF. Points are contrast sensitivities measured by 
Robson [3]. Top: temporal frequency was fixed and spatial frequency varied; 
bottom: spatial frequency was fixed and temporal frequency varied. The 
dashed lines are fits of the linear model to the filled points.
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S4 W ,F, I( ) = c0 + cWW + cFF + cI I  (4)

This equation defines the “Pyramid of Visibility.” It is 
rendered graphically in Figure 4, using  parameters approximately 
those derived in Figures 1-3.

Figure 4. Pyramid of Visibility. Linear model of spatio-temporal contrast 
sensitivity shown as a surface. Two examples are shown, for retinal 
illuminances of 1 and 1000 Td. Parameters used were c0 = 2, cW = -0.06, cF = 
-0.05, cI = 0.5. The surface was limited to |{W,F}| < 10.

Parameters of the model 
A linear model means  that the variation in sensitivity with one 

of the variables temporal frequency W, spatial  frequency F, or log 
retinal illuminance I is independent of the other two. This in turn 
suggests that in each case the response to the effective variable 
reflects a fundamental and likely early property of visual 
processing. We consider each of the parameters in turn.

The values of c0 consist of the extrapolation of the linear 
trends to  values  of zero for W, F, and I, and reflect the global 
sensitivity  of the observer. We do not expect agreement between 
studies, as  the value will depend on extraneous variables such as 
duration and size of the target. In the experiments  considered here, 
durations are unknown. Further, in Table 1, the value of c0  
estimated for Robson includes the contribution from the unknown 
value of retinal illuminance. However, a fixed  and stable value 
would be expected from targets of fixed size and duration, or from 
an ideal observer model with specific spatial, temporal, noise, and 
efficiency constraints [9].

The parameter cW, describes the linear rate of decline in log 
sensitivity  as a function of temporal frequency. It also determines 
the value of the CFF. It is  consistent across the two studies 
considered here (-0.064 vs -0.06). This suggests that this  value is 
robust, since in one case the target  was a disk, and in  the other a 
sinusoidal grating. We speculate that this invariant rate of decline 
reflects some underlying physical process that limits detection of 
temporal change. A linear decline in log sensitivity with frequency 
is  equivalent to an exponential modulation  transfer function, which 
in  turn is consistent with an  impulse response that is a Cauchy 
density, but  we cannot at this time associate that with any 
particular physical process.

The parameter cF, which describes  the linear rate of decline in 
log sensitivity as a function of spatial frequency, differs somewhat 
between the two studies considered here (-0.065 vs -0.042). 
Campbell and Green [10] were the first to note a linear decline in 
log sensitivity with linear frequency. Using their thresholds for 

interference fringes that bypass the eye optics, we estimate the 
slopes for their two observers  to be -0.039 and -0.042. In a 
subsequent experiment, they measured sensitivities for 
conventional gratings, with imposed optical defocus of 1.5, 2, 2.5, 
and 3.5 D. All four sets are quite linear. We estimate the slopes at 
-0.049, -0.046, -0.058, and -0.061. As  expected, the slope generally 
increases with increasing defocus. In short, the expected value of 
cF will depend on the amount of optical blur. The values for 
Robson and van Nes and Bouman are in the range found by 
Campbell and Green, and it is worth noting that Robson used 
natural pupils  (we estimate about 5.5  mm [6]) while van Nes and 
Bouman used an artificial pupil of 2 mm. In summary, steeper 
slopes appear to be associated with increased optical  blur and 
larger pupils. We would also  expect the value of cF to depend on 
the size of the target, since that will change the relative sensitivity 
to high and low frequencies [11].

The parameter cI reflects  the rate of change in log  sensitivity 
with  log retinal  illuminance. In the two studies considered here, the 
the average value is 0.48. This is  close to the value of 0.5 expected 
from an ideal observer limited by quantum fluctuations (the 
deVries-Rose Law) [12, 13]. Other authors have noted this 
relationship [2, 14, 15], and have also noted that it does not persist 
at very low frequencies, or at very low or very high retinal 
illuminances. However, within our regime of interest, it  holds 
quite well. The implication is  that within this regime sensitivity  is 
limited by quantal  fluctuations, or by some other noise whose 
variance rises in proportion to retinal illumination.

From Illuminance to Luminance
One of us has recently developed  a formula for the diameter 

of the light-adapted pupil [6]. This allows for a calculation of the 
expected retinal illuminance for a given adapting luminance. Using 
this  formula, we have noted that the relationship between log 
luminance and log retinal illuminance is approximately linear 
under many conditions. An example is shown in Figure 5.
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Figure 5. Relationship between log luminance and log retinal illuminance. 
Based on the formula of Watson and Yellott [6]. Assumed conditions are: 
adapting field area = 100 deg2; age = 30 years;  viewing binocular. The red 
dashed line and text show the best fitting linear relationship and correlation.

This allows us to construct a formula for log spatio-temporal 
contrast sensitivity that is a linear function of adapting luminance, 
rather than retinal illuminance. Under specified viewing 
conditions, the pyramid of visibility can thus be described by the 
following equation:

S5 W ,F,L( ) = cL ,0 + cWW + cFF + cLL  (5)
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where L is the log of adapting luminance. The parameters cL,0 and 
cL can be easily derived from the parameter cI, once the linear 
relationship between log luminance and log retinal  illuminance is 
known. This relationship is readily  available from an online 
calculator [6]. For example, given the relationship shown in  Figure 
5,
cL ,0 = c0 +1.61
cL = 0.775cI

 (6)

While sensitivity is  likely to be more robustly associated with 
retinal illuminance, for the reasons discussed above, knowing the 
relationship to luminance is of greater practical value. Displays are 
specified in terms of luminance, and consequently knowing the 
form of the pyramid of visibility for a particular adapting 
luminance is needed when specifying rendering limits in  space and 
time.

Estimating Parameters

Robson (1966)
Because no one of the three sets of data considered covers all 

three variables of interest, it  it is difficult to estimate a consistent 
set of the four model parameters c0, cW, cF, and cI. However we can 
obtain a preliminary estimate by way of a few assumptions. First 
we note that  Robson states  that “The grating pattern subtended 2.5° 
x 2.5° in the center of a 10° x 10° screen illuminated to the same 
mean luminance of 20 cd/m2” [3]. Making use of the formula of 
Watson and Yellott [6], we estimate the pupil diameter at this 
luminance and field size to be 5.32 mm. This in turn  leads to an 
estimate of retinal illuminance of 2.65  log Td.

If we now fit Equation 4 to Robson’s data, setting I = 2.65 and 
assuming  cI = 0.5, then we obtain estimated parameters shown in 
Table 2. Using Equation 6, we can then compute the parameters for 
the luminance model, which are also shown in Table 2.

Table 2. Parameters estimated from Robson [3].

S4 c0 cW cF cI

1.39 -0.060 -0.065 0.500
S5 cL,0 cW cF cL

2.19 -0.060 -0.065 0.388

ModelFest (2005)
Another data set of interest, due to its wide utilization as a 

benchmark, are the so-called ModelFest data [16]. Here we 
analyze the mean data for 16 observers, for Gabor functions of 
fixed 2 deg size, with  a Gaussian time course and fixed duration of 
500 msec (standard deviation of 125 msec). The data are shown in 
Figure 6.

Elsewhere we have estimated the pupil  diameter in the 
ModelFest experiments  to be 5.15 mm [9]. The mean luminance 
was 30 cd/m2 for an estimated retinal  illuminance of I = 2.8 log Td. 
Using this value, and  setting W  = 0 and cI = 0.5, we have fit 
Equation 4 to these data, for F > 3 cycles/deg. The fit is  shown by 
the red line in Figure 6. The fit is remarkably good (RMS = 0.65 
dB). The assumed and estimated parameters are shown in  Table 3. 
Once again, we also transform the retinal illuminance parameters 
to luminance parameters, as shown in Table 3.

The parameter c0 is lower than that  estimated from Robson’s 
data, but in the ModelFest case we have a smaller stimulus size 
and a specific briefer duration.

Table 3. Parameters estimated from ModelFest [16].

S4 c0 cW cF cI RMS (dB)
0.92 -0.060 0.500 0.650

S5 cL,0 cW cF cL

1.74 -0.060 0.391

Window of Visibility
The Window of Visibility is the region of the spatiotemporal 

frequency domain that contains visible frequencies [4, 5]. It is 
shown graphically by the diamond-shaped intersections in Figure 4 
between the pyramid and the plane at S  = 0. More generally, we 
can consider the window formed by any particular value of S > 0, 
that is, the frequencies visible at  a particular log contrast -S. We 
illustrate the shape of the window in Figure 7. For any particular 
values of S and I, the shape of the window is  fixed, and there exist 
particular spatial and temporal  resolution limits, F0 and W0, that 
mark the corners of the diamond.
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Figure 6. Fit of pyramid model to ModelFest data. Points are contrast 
sensitivities for Gabor functions averaged over 16 observers [16]. 
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Figure 7. Window of Visibility. The green region marks the window of visibility. 
The spatial and temporal limits of the window F0 and W0, are also shown.
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Since Equation 4 is linear, it is  possible to rearrange terms and 
provide expressions for the boundaries of the window. These 
describe the spatial  or temporal “fusion frequencies” as a function 
of contrast, retinal  illuminance, and the value temporal or spatial 
frequency, respectively:

F = S − c0 − cWW − cI I
cF

 (7)

W =
S − c0 − cFF − cI I

cW
 (8)

With S and I fixed, it  is evident that W  is a linear function of 
F, and vice-versa. These are the straight lines that form the sides of 
the diamond-shaped window of visibility. This  reciprocity between 
W  and F was noted by Kulikowski [7]. To our knowledge, this 
relationship has not previously been given a name,  but we propose 
that it be called “Kulikowski’s Law.”

We note that Equation 8  is a generalized version of the Ferry-
Porter Law, which states that the critical  fusion  frequency is a 
linear function of log retinal illuminance [17]. It is generalized in 
that it applies to  any contrast  (not  just S = 0) and any spatial 
frequency. The generalization with respect to contrast was also 
noted by Tyler and Hamer [17]. 

Interestingly, Equation 7 states that the spatial  resolution limit 
(“fusion frequency”) is also a linear function of retinal  illuminance. 
To our knowledge, this relationship has  also  not  previously been 
given a title. 

The spatial and temporal resolution  limits, F0 and W0 (see 
Figure 7), are also  easily expressed by setting W  or F  to zero in 
Equations 7 and 8 respectively,

F0 =
S − c0 − cI I

cF
 (9)

W0 =
S − c0 − cI I

cW
  . (10)

These equations make explicit the fact  that these limits are 
linear functions of both contrast and retinal  illuminance. Elsewhere 
we have shown how these quantities may be used to compute the 
required frame rate for apparently smooth stroboscopic motion [4, 
5], so it is  of some utility to have simple formulas to compute their 
values under arbitrary conditions of contrast  and retinal 
illuminance.

Because the log contrast sensitivity can be written as a linear 
function of either retinal illuminance (Equation 4) or luminance 
(Equation 5), Equations 7-10 can also be written as functions of 
luminance. For completeness, we provide them here:

F = S − cL ,0 − cWW − cLL
cF

 (11)

W =
S − cL ,0 − cFF − cLL

cW
 (12)

F0 =
S − cL ,0 − cLL

cF
 (13)

W0 =
S − cL ,0 − cLL

cW
 (14)

Limitations
Mark Twain observed that “There is something fascinating 

about science. One gets such wholesale returns of conjecture out of 
such a trifling investment of fact” [18]. We have constructed a 
comprehensive description of spatial and temporal contrast 
sensitivity, and their dependence on  retinal  illuminance, and 
derived therefrom a series  of powerful relationships, all from the 
modest results of three very old studies. Certainly our model  needs 
to  be confirmed by additional modern data. De Lange’s data are for 
a single spatial target of uncertain duration, van Nes and Bouman’s 
data are for static presentation of unspecified duration, and 
Robson’s data are for unspecified duration, a single luminance, and 
unspecified pupil  diameter (and thus retinal illuminance). A more 
comprehensive survey of the relevant parameter space, both from 
the literature and from new data, is desirable. These data should 
control spatial frequency, temporal frequency, size, duration, and 
retinal illuminance.

The model fits in Figures 1-3 are not  perfect. There are 
suggestions  of small but possibly systematic departures. Additional 
data may clarify how well the model fits  in the general case. But 
we argue that  the linear model accounts  for an extraordinary 
amount of the variance over a very large part of the photopic visual 
domain.

The model, by design, only describes sensitivity at high 
spatial or temporal frequencies. The region of excluded low 
frequencies is tentatively identified as

F
F1

⎛

⎝
⎜

⎞

⎠
⎟

2

+
W
W1

⎛

⎝
⎜

⎞

⎠
⎟

2

<1  (15)

where F1 = 6 cycles/deg, and W1 = 6 Hz. Further research is 
required to better determine these two parameters.

However, it  is the limits at high spatial and temporal 
frequencies that usually determine the practical limits  of human 
vision. We also note that the widespread practice of plotting 
contrast sensitivity against a log frequency abscissa, while valuable 
for many purposes, may exaggerate the importance of low 
frequencies. For example, in linear coordinates, the three-
dimensional volume enclosing all  visible frequencies at one retinal 
illuminance is a pair of cones (the rotation of the diamond-shaped 
window of visibility  as spatial orientation is  varied), as shown in 
Figure 8. The volume of this cone of visibility is

V = F0
2W0

2π
3

  . (16)

The volume enclosing the frequencies defined by Equation 15 is an 
oblate spheroid, as shown in Figure 8, with volume

Vlow = F1
2W1

4π
3

  . (17)

At I = 2, F1 = 6 cycles/deg, and W1 = 6 Hz, the low frequencies 
occupy only Vlow/V = 0.002 of the total visible volume. In other 
words, in linear coordinates, our model covers 99.8 % of all visible 
frequencies.

Another limitation of our model  is that we deal only with 
photopic retinal illuminances, and only up to about 1000 Td. 
Above this level, contrast sensitivity  asymptotes, and the linear 
relationship with log retinal illuminance no longer holds. But our 
model again covers a very large region of great practical 
importance.

Our model  describes  foveal  contrast  sensitivity. It is unknown 
how well the linear model describes peripheral contrast sensitivity. 
Further, even foveal contrast sensitivity is dependent on the size of 
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the target. The model appears to work well for the several  sizes  we 
have considered, but different sizes  will  certainly affect the 
estimate of c0, and probably cF, and possibly whether the model 
fits at all. Answers await further data.

As noted, the value of c0 the will depend on target size, but it 
will  also depend on duration. None of the three primary studies 
considered specified duration, although ModelFest did. Thus our 
estimates of c0 are at this time not well defined.

The luminance model  that  we have described, as an extension 
of the model for retinal illuminance, requires knowledge of the 
pupil diameter, or at least of the adapting luminance and field size.

Summary
The shape of the the spatio-temporal contrast sensitivity 

function, and its dependence on adapting light  level, has been of 
great interest  for almost a century [1, 3, 19-22]. The practical 
implications of the surface to imaging technology have been 
detailed [4, 5]. Elaborate formulas have been developed to 
characterize the shape of the surface [19]. Following Kulikowski,
[7], we have found that over a broad and important  range of 
luminance, spatial frequency, and temporal frequency the surface 
can be described by a linear model.  The model has important 
theoretical and  practical  implications. Because of its shape as a 
surface, and because of its close relation to the “window of 
visibility,” we have called this model the “pyramid of visibility.”
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Figure 8. The conical solid enclosing all visible spatial and temporal 
frequencies at one retinal illuminance and contrast and the oblate spheroid 
enclosing only low frequencies. Dimensions are approximately correct for 
S = 0, I = 2, and F1 = 6 cycles/deg and  W1 = 6 Hz.
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