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Abstract
Computer vision is typically thought of as an open-universe

problem because every possible outcome is unknown. Image
segmentation via fuzzy-spatial-taxon-cut reduces image segmen-
tation to a closed-universe problem by assuming a standard-
ized natural-scene-taxonomy, comprised of spatial-taxons. Peo-
ple describe spatial-taxons as thing-like, a group of things or
the foreground[2]. They share properties, border ownership in
particular, with proto-objects described in biological vision [17].
By defining spatial-taxons in a hierarchy, we operationalize the
image segmentation problem into a series of iterative two-class
inferences. As described in earlier publications, this method
out performs other segmentation methods for well-defined image
classes and forms the basis of some commercial image-processing
systems. This paper explores how the methodology used to pro-
vide the inputs to the low-level color-parsing stage affects overall
image segmentation performance by comparing the effects of two
methods: fuzzy constraint and Bayes classifier. We discuss how
these methods alter the performance the of two-class fuzzy infer-
ence system discussed in earlier work.

Introduction
Computer vision systems can, like people, parse an im-

age into several different meaningful pixel regions, depending
on viewer context. This creates uncertainty as to how to decide
which pixels to include or not include within a region. In this
paper we use two different mathematical techniques for decision-
making under uncertainty: Fuzzy inference, and Bayesian infer-
ence. Fuzzy techniques describe it as ambiguity in event defini-
tion, which they rank as degrees of partial-truth, given prior evi-
dence. Bayesian techniques describe it as the relative belief about
the occurrence of an event, given prior evidence.

Examine the picture taken from the Microsoft mscoco data
base in Figure 1. Imagine a viewer who wants to grab the apple.
The mscoco annotation parses the image into mutually exclusive
regions: the apple, the reflection of the apple and the bottles. But
isn’t the reflection of the apple also an apple? To compute the fa-
miliar ROC (receiver operating characteristic) we count the hits,
false alarms, correct rejections and false rejections. How should
we count the pixels within the apple reflection? What about a
parsing (or segmentation) that includes all the objects in the fore-
ground? Intuitively, we know it’s partially true to include the ap-
ples reflection as a partially correct hit. Likewise, we know to
attend to (and include within our scene segmentation) the fore-
ground objects if we need to reach across the bottles to grab the
apple. But, one would not want to reach for the reflection of the

Figure 1. (Picture from Microsoft image segmentation and labeling

database: http://mscoco.org/explore/?id=481165.

Figure 2. Table 1: Fuzzy set theory and classical (Boolean) set theory.

apples (hence a partial truth value for the apple reflection, not a
100 percent truth value (Boolean)). In fuzzy set theory, the inter-
section between a set and its complement equals the semantic un-
certainty due to ambiguity (fuzziness) in the definition of events
included in the set. In probability theory Kolmogoro’s Law Of
The Excluded Middle requires that a set and its complement equal
an empty set. Both set theory and probability theory handle differ-
ent types of uncertainty. Used together, they provide a powerful
toolbox.

In his paper Computer Vision Needs a Core and
Foundation[34], Alan Yuille discusses how the phenomenal
growth in computer vision motivated him to co-organize the 2011
Frontiers of Computer Vision Workshop at MIT 1. He quoted a
student who didn’t know how to get up to speed simply because

1http://www.frontiersincomputervision.com
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Figure 3. Three examples that used discrete classification (taxometrics)

scale instead of continuous scale to tease apart theoretical structure. A. Lin-

naeous taxonomy (image taken from Martz, J. (2011). B. Spatial-taxon tax-

onomy (Barghout 2014). C. Structured tree decomposition taxonomy (Chen,

Yuille and Zhu 2005)

the flood of computer vision papers stymied him from selecting a
few must read papers. He stressed the need to find unifying the-
ories that underpin the success (and failures) of these techniques
and illustrated problems caused by the heavy use of a limited set
of databases. In this spirit, I want to encourage crossover between
the Fuzzy and Bayesian inference computer vision techniques and
thus wrote this as primarily a ‘methods’ paper. This desire moti-
vated my upcoming book: Essential Computer Vision: Fuzzy and
Bayesian techniques (O’Reilly media). I invite interested readers
to contact me for early chapter copies (summer 2016) and wel-
come suggestions on how to improve the book.

Spatial-taxons
In the late 1700s the naturalist Carl Linnaeus, operational-

ized the problem of organizing specimens of life into a nested
class inference problem by introducing the familiar taxonomy
shown in Figure 2A.[24] I borrow his idea and organize pixels
into the spatial-taxon taxonomy shown in figure 2B. [1] [3] Other
segmentation systems use different taxonomies, such as the ex-
ample in Figure 2C.[31] Unlike the tree decomposition taxonomy
in 2C, the spatial-taxon taxonomy is defined recursively: each
child taxon uses the same classification criteria as its parent 2. I
named the classes spatial-taxons because they are specified via
their image-topic position (hence the term spatial) and are dis-
crete categories (hence the term ‘taxon ’). They are not defined
on a continuous scale, but occur in discrete regions3. Unlike bi-
ological vision, which extends throughout space, cameras restrict

2In practice, we halt recursion when the perceptual input variables
(also called cognitively relevant variables [5] are not isomorphic a human
phenomenological counterpart.

3To distinguish the difference between continuous and discrete scales,
consider an analogy from visual attention. The spot light theory of at-
tention [32] extends along continuous dimensions in space. Object based
attention snaps (in discrete jumps) to objects or object groups.

an image within a frame aperture. Thus I specify my formal defi-
nition of spatial-taxons on image-topic map.

Definition: Spatial-taxon
Let X be the universe of discourse consisting of all pixels within
the rectangular (or square) pixel array of an image, such that X1,1
is located at the upper left corner, and pixel XI,J at the lower left
corner. Let ST0 be a non-empty set that contains all pixels in the
universe of discourse (the image-topic map). ST0 has two mutu-
ally exclusive children ST1 and ST0-ST1 such that ST1∩ (ST0-
ST1) = /0 and ST1∪ (ST0-ST1) = ST0 (the parent). We have now
defined the abstraction level 0 (the whole image) and level 1 (the
foreground). The most abstract information granule is the whole
image, and the second most abstract level contains two mutually
exclusive subsets.

Lets next define the set ST1 as having two children subsets:
ST2, (ST1 - ST2). As with the perception of figure and ground,
these children are mutually exclusive, such that that ST2∩ (ST1-
ST2) = /0 and ST2∪ (ST1-ST2) = ST1 (the foreground). This is the
third most abstract level in the nested spatial-taxon hierarchy.

In this work, I use the segmentation engine described in the
chapter in Granular Computing and Decision Making: Interactive
and Iterative Approaches (Barghout 2015), however we exchange
the color-parsing inputs for those derived from a Bayesian clas-
sifier. We compare the spatial-taxons produced by the previous
work with those produced with the Bayesian classifier inputs us-
ing the same high-level inference system.

Inference systems
For simplicity, we describe both Bayesian and Fuzzy infer-

ence systems in three phases. Bayesian inference starts with a
prior model of the known (phase one), extracts a likelihood of
the prior variable after collecting observations (phase two) and
infers the posterior via Bayes law (phase three). Fuzzy infer-
ence starts with a model of partial-truth membership functions of
what is known (phase one), invokes fuzzy logic - similar to predi-
cate logic (phase two) and returns a defuzzified (Boolean) answer
(phase three).

Figure 4 shows how we obtain phase one for Bayesian (left)
and Fuzzy (right) prior.

In the Bayesian case, I used a highly modified version of
the Bayesian hierarchical model introduced by Fei-Fei & Per-
ona (2005) [13] called patch-based Dirichlet latent allocation.
Dirichet latent allocation was introduced [8] by Blei and col-
leagues as an unsurpervised machine learning technique for mod-
elling topics within a large text document corpora. The tech-
niques exploits three facts: (1) documents discuss several topics;
(2) word frequency conditionally depends on topic discussed; and
(3) the Dirichlet distribution is conjoint across Bayes law 4. The
method first learns the latent structure of topics (which co-occur
with documents (top level of the Bayesian hierarchy), and then
it learns the latent structure of words that co-occur within top-
ics (second level of Bayesian hierarchy). This two step hiearchy
results in ‘bags of words’ representations that can be used to gen-
erate new topic and document models. When confronted with a
yet to be analyzed document, this system generates a model of the
new document from the learned latent structures ‘topic word bags

4In otherwords, if the prior probability is a multinomial Dirichlet, it’s
posterior is also a multinomial Dirichelt.
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Figure 4. Instead of learning latent color visual words from a training cor-

pora (as in Fei-Fei & Perona 2005), I extracted the distributions for 12 color

words from English speaker color survey - replacing the unsupervised learn-

ing part of the Bayesian hierarchy with the labeled color distributions. A. The

centroid mapped on the world-color-survey Muncel chart (taken from Lin-

sey and Brown 2014). B. Bayesian model modified from Fei-Fei & Perona

2005. Within the large box (image) are observed (in gray) color categories

distributed over multinomial sample distrbution (in white). Generative model

comprised of patches (small box) with color themes (co-occurences of color

features) used to classify color category via a ‘bag of color ’ patch. (Note: a

patch is analogous to a ‘code word ’in the topic modeling liturature, a texton

(or convolution filter) in computer vision or a ‘shape epitome ’image labeling

(Chen2013)) C. Fuzzy membership functions derived from color spindle. The

example of derived color of orange is shown.

’. The topics of the new document are infered via traditional three
phase Bayesian inference described earlier.

I thank Anthony DiFranco, who uses latent Dirichelet alloca-
tion (LDA) for topic modeling of wikipedia entries, for suggesting
LDA as a Bayesian comparison model. Anthony adapted his topic
modeling code into a patch-based Bayesian model in our earlier
collaboration.

As Brainard (2009) states: ”Bayesian analysis provides a
framework for generating models that may be applied to specific
perceptual phenomena. The task of the modeler is to express the
content of interest as a likelihood and prior, and then to link the re-
sulting estimate of the scene parameters to perception. The frame-
work is useful to the extent that it consistently generates models
that describe, predict, and clarify empirical data. “[6] The spe-
cific perceptual phenomena required by the fuzzy inference sys-
tem are image-topic estimates of pixel color category for the input
image given the prior extracted from the color naming survey and
the likelihood sampled from the ‘bag of color ’ patches.

In the fuzzy case, the input domain, referred to as the uni-
verse of discourse in fuzzy set theory and the event space in prob-
ability theory, was converted from red green blue (RGB) coordi-
nates to hue, saturation and intensity (HSI). The numerical val-
ues approximate 12 non-mutually exclusive volumes cut from the
color spindle shown in the three dimensional volume color spin-
dle (shown in 4b). The spindle varies along three dimensions: hue
(H: angle around the color circle), saturation (S: distance from

Figure 5. Formulas for converting from RGB to hue, saturation and intensity

(HSI).

Figure 6. Fuzzy membership functions for each primary color. Fuzzy mem-

bship of derived colors are the intersections of primary colors.

midline) and brightness (I: height along the midline). The equa-
tions below convert pixel rgb values into HSI values. The torus
ringing the middle of the spindle contains the most vibrant colors.
Monochromatic colors live on the middle axis and de-saturated
pastels live between the center and vibrant colored surface.

For each color, the fuzzy membership (known model) is
the intersection of three kernels: hue, saturation and brightness.
Red, green, blue and yellow are centered at 0, 1/3 (360/120), 1/3
(360/240, 1/6 (360/60) with standard deviation of 1/6, 1/6, 1/6,
and 1/9 respectively. The saturation kernels are all centered at
one with a standard deviation of 1/2. Intensity for red, green,
blue and yellow are centered at 1/2, 1/2/ 2/6 and 4/6 with standard
deviations of 1/3. Though we picked our initial kernels accord-
ing to world color survey, we use long tail distributions (since is
possible for a pixel that might appear dark blue in isolation to ap-
pear green when context indicates its part of a green leaf (like the
ambiguously colored dress)). In practice we began with these ker-
nels then modified the shapes slightly via method of adjustment
to match the color appearance of a single user. The table below
shows how the fuzzy membership functions are related to these
three kernel. Due to limited space, we left out the derived colors.
However, figure 4b shows how to carve the membership of orange
from the fuzzy intersection of yellow and red. Also note we parse
a 12th color, light-blue, the intersection of white and blue.

Now that we have fuzzy representations, we perform fuzzy
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inference via the familiar logical steps:

Knowledge : memberships & rules

Facts : partial truths

Conclusion : fuzzy implication

Once the 12 non-mutually exclusive fuzzy color member-
ships for the image are known, fuzzy implication (Mamdani) ag-
gregates the predicates. For example the fuzzy membership of
orange is red and yellow. So µorange =

∫
universe o f discourse µred ∩

µyellow/cardinality(universe o f discourse)

Method
What is a well-defined image class?
The spatial-taxon view of scene perception assumes that hu-

mans parse scenes not between regions of similar features that
vary continuously, but instead via discrete image-topic jumps bi-
ased toward taxometric scene configurations.[28] [4] Segmenting
images into meaningful regions for ground truth databases is pre-
requisite testing computer segmentation algorithms. Yet region
relevancy depends less on segmenting specific objects then on
the abstraction level within the spatial-taxon taxonomy. This is
particularly true for visual components necessary for the specific
tasks.

I addressed this problem by adding two requirements to
ground-truth regions used in this testing. First I required 80%
of humans to agree on the center of the subject of interest, which
indicates appropriate level of abstraction (Barghout 2009). Sec-
ond (and this is specific to my inference system) I test via a two-
alternative-force-choice procedure that the scene decomposition
rules used by the fuzzy-interence-system correlate with human
detection of these rules. This is a tricky procedure and not neces-
sary for unsupervised learning techniques.

Processing Pipeline
The inference system [2] applies four scene composition

rules: (1) spatial-taxon distinguishes itself from the background
via strongly weighted uniformly connected color and somewhat
similar background colors adjacent to aperture frame; (2) spatial-
taxon contains high spatial-frequency structure and background
adjacent to aperture frame shares colors and contiguous low spa-
tial frequency structure (in other words a blurry connected re-
gion); (3) the system knows nothing about the characteristics
of the spatial-taxon, but it knows the background is low spatial
frequency (blurry), of similar color and adjacent to the aperture
and (4) the spatial-taxon shares similar contiguous colors and the
background contains different but similar contiguous colors. In
addition any region of strong bi-lateral symmetry is weighted to-
ward being a spatial-taxon. The fuzzy inference system and de-
cision making system used to adjust rule weights are detailed in
Barghout 2014 & 2015.

The prior knowledge of the four composition rules are stored
in the database illustrated in figure 7. Various combinations of
inference rules are sent to the decision making process (figure
7), which choses the combination of hypothetical spatial-taxons
that maximizes utility and minimizes attentional resourses. See
Barghout 2015 for details on the decision making engine. In
the final stage the optimal hypothetical spatial-taxon combination

Figure 7. Processing pipeline. The left processing stream uses the stored

Bayesian ’bag of colors ‘to produce up to 12 posterior color parsing distri-

butions for the input image. The Bayesian model is augmented by a fuzzy

parsing of blurry and not-blurry regions (see Barghout 2014 for more details).

The rest of the pipeline is identical to the fuzzy inferece system shown on

the right. Both systems produce mutually exclusive spatial-taxon and back-

ground regions.

Figure 8. Internal ’bag of color ‘ structure for the top 5 probable colors. From

left to right are the original photo, the white distribution, black distribution,

brown distribution, gray distribution and orange distrution for each pixel on

the image-topic. I rotated the axis to improve view. In the top-down left of

each mesh is a top down view. Probability decreases from white (highest

probability)

along with the optimal inference rule weights is defuzzied into a
Boolean output as shown in figure 7.

The fuzzy inference system used in this paper applies the
four composition rules just described. The Bayesian computer
vision liturature refers to this type of inference as geometric bag-
of-features or spatial bag-of-features [16].

Results
Figures 8 and 9 show five of the 12 possible Bayesian and

Fuzzy color parsings for an example image.
In the Bayesian case, I sorted from left to right the most influ-

ential internal ‘bag of color’ structures. The white ‘bag of color’
has the highest posterior and covers the largest image-topic area.
It’s difficult to see this from the mesh plot, though I rotated the
axes to improve the view, but it‘s easy to see from the top down
view in the upper left corner. The black ‘bag of color’ does a
good job of parsing the black clothing and hair. Unfortunately,
the brown and gray posteriors and all the other ‘bag of colors’
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Figure 9. From left to right: origianl image, white fuzzy membershp, black

fuzzy membershp, brown fuzzy membershp, red fuzzy membershp and yel-

low fuzzy membership. Axes rotated to match those of Bayesian color pars-

ing in figure 9.

Figure 10. Spatial-taxon inferred by the fuzzy inference system with the

fuzzy color parsings (middle) and Bayesian ’bag of colors ‘ for the original

image on left.

save orange posteriors miss classify the skin as white - creating
two disjoint regions. As per the decision making algorithm de-
scribed in Barghout 2014a, 2015, the fuzzy inference system de-
cided the highest utility was obtained by grouping the co-occuring
color parsings of the bottom woman as shown in 10c.

In the Fuzzy case, figure 10 shows fuzzy membership white,
black and brown in the same view as the Bayesian case. As in the
Bayesian bag of white region, the high luminance of the wall and
floor returned high degrees of paritial truth for the same image-
topic areas - as can be seen in the top down view in the upper
left. Unlike the Bayesian case, the fuzzy membership provided
richer spatial variation. The rich spatial complexity co-occures
with brown, red and yellow. Thus the hypothetical spatial-taxons
in the fuzzy inference system could build a uniformly connected
region which as per Barghout (2014a, 2015) had high utility re-
sulting in the spatial-taxon segmentation in figure 11.

Discussion
This paper represents a first start in systematically combining

the tools of fuzzy and Bayesian inference, but much more needs
to be done.

The Bayesian model requires a discrete set of fea-
tures (multinomial variables), in our case 12 color cate-
gories. To generate the patch kernal, patchn ∼ p(patchn |
(patchcolortheme)n, f eaturedistribution) which tends to over
segment color parsings.

In the example shown in the results section, the Bayesian
method doesn’t provide enough overlap for the fuzzy inference
system to group the spatial-taxon with any of the four scene com-
position rules. This was the case for most of the images in the
test copora from Barghout 2015. This may be an artifact due to
my infering the latent structure from the Muncell color distribu-
tion instead of learning it from a large test corpora which may

have inferred latent structure that supported the merging of color
topics.

Another problem with the Bayesian implementation stems
from the lack of lightness constancy anchoring. The Bayesian
parser was highly biased toward white, probably because there
was no lightness constancy constraints built into the prior model.
Again, this may have been learned from the latent structure of a
large test copora. Since the fuzzy membership functions, carved
from the color spindle, it incorporated a de-facto white anchor due
to the distance between white and black intensity being anchored
to about 1.5 log units.

Conclusion
In conclusion, image segmentation via fuzzy-spatial-taxon-

cut reduces image segmentation to a closed-universe problem by
assuming a standardized natural-scene-taxonomy, comprised of
spatial-taxons. This inference system provides a frame in which
Fuzzy inference and Bayesian inference techniques can be en-
capsulated and compared. Further work is needed to modify the
Bayesian model to reduce the over segmentation problem and in-
troduce lightness constancy constraints.
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