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Abstract 

Face recognition abilities are impacted by exposure to faces 
belonging to distinct categories over the lifespan. Specifically, 
biased exposure to faces of particular races and ages frequently 
leads to impaired face memory and discrimination such that faces 
observers do not frequently see are substantially more difficult to 
process effectively than faces that are closer to their typical visual 
experience. Here, we considered the possibility that variation in 
the sheer amount of faces participants see during the course of 
their development may also systematically impact face processing. 
That is, if you grow up seeing a limited set of faces, are you 
generally less able to process faces effectively? To examine this 
question, we recruited participants who grew up in very small 
communities and compared their behavioral and neural responses 
to face and object images to the responses made by participants 
from larger communities. We find that observers with limited face 
exposure do show poorer face memory and also neural responses 
consistent with limited face-specific processing.   

Introduction 
There are many ways in which individual variation in 

exposure to faces has profound effects on observers’ abilities to 
recognize, remember, and discriminate between faces. Easily the 
most well known example of such an effect is the “other-race 
effect,” which refers to the often very large deficits in observers’ 
recognition abilities for faces belonging to racial categories that are 
not representative of their experience [1]. For example, most white 
observers who grow up seeing primarily white faces will find it far 
more difficult to perform face recognition tasks effectively for 
Black faces or East Asian faces. This does not reflect any intrinsic 
difference in how easy faces are to recognize and discriminate as a 
function of race, since observers from other racial groups typically 
exhibit the opposite effect: White faces are harder to tell apart than 
the Black or Asian faces that have dominated their experience [2]. 
Varying abilities to recognize faces belonging to distinct categories 
as a function of experience extends to categories other than race, as 
well. Faces belonging to “other-age” categories are also typically 
more difficult to recognize and discriminate depending on 
observers’ experience with faces of different ages [3], and identity-
matched artificial faces also appear to belong to an “other-group” 
class defined by synthetic face appearance [4]. 

These effects of biased experience appear to largely be 
acquired during the first year of life, and follow a trajectory 
described as “perceptual narrowing.” [5]. Infancy appears to be 
characterized by an early stage during which infants are sensitive 
to a broad range of differences in facial appearance and a later 
stage when their recognition abilities are supported by 
representations of facial appearance that are more specific to the 
categories of faces that they have been exposed to. Individual 
variation in experience has effects on face recognition beyond the 
first year of life, however, and changes in biased experience to 

faces of different races, ages, etc. can lead to changes in face 
recognition capabilities across stimulus groups. [6]. 

Besides these well-known results describing how biased 
experience shapes face recognition abilities in the context of face 
categories, there are also several results describing more general 
effects of visual experience on face processing. One particularly 
striking example of such work is the substantial literature 
describing the impact of monocular deprivation on various aspects 
of face recognition [7,8]. Briefly, these studies describe the face 
recognition abilities of patients who were born with congenital 
cataracts that were removed relatively early in development. These 
patients, due to this early visual impairment, have intriguing, 
specific deficits in perceiving properties of face images related to 
configural information [9]. In some reports, these patients exhibit 
clear face processing deficits years after the initial impairment has 
been treated, suggesting a critical period for developing face 
recognition competence. This is of course an extreme example of 
individual differences in experience impacting face recognition, 
but there are recent studies demonstrating more benign examples 
of varying face experience affecting subsequent face processing. 
For example, children’s face recognition abilities appear to change 
markedly after the beginning of school [10]. While the face 
environment children are immersed in before reaching school age 
would generally not be considered truly impoverished, this result 
suggests that the increase in face exposure that follows the 
beginning of school leads to fairly rapid improvements in face 
processing efficiency. Similarly, face recognition hyper-fidelity 
can result from overexposure to a small set of face exemplars [11], 
again suggesting that face recognition abilities are sensitive to the 
statistics of face experience in a category-general manner. 

Currently, we chose to investigate the nature of how similar 
natural variation in overall face exposure during development 
might impact face recognition considered broadly. Specifically, to 
examine the consequences of face experience that is impoverished, 
but not an example of true deprivation, we worked with 
undergraduate observers who grew up in very depopulated regions 
and other observers who grew up in larger urban communities. 
Anecdotally, these “small-town” observers (some of whom have 
lived either on family farms or in small towns with under 100 
people) often report difficulty with face recognition after arriving 
on campus, which suggested to us that there may be fundamental 
differences in the way they represent and recognize faces in 
general.  

In a prior report [12] we have described how our participants 
from small-town communities exhibit poorer face memory for 
unfamiliar faces as well as ERP responses at the N170 component 
(a face-sensitive ERP component [13]) that differ from those of a 
control group in terms of face selectivity. Specifically, the effect of 
object category (face vs. non-face images) was smaller within our 
small-town group than in our group of participants from larger 
communities. The goals of our current study are to further explore 
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the differences in electrophysiological response between these two 
groups of participants by examining their ERP data using single-
trial pattern classifiers [14]. Compared to traditional analyses of 
ERP waveforms, single-trial pattern classifiers applied to EEG data 
have the potential to reveal differences between participant groups 
and effects of stimulus manipulations that are not expressed solely 
at a single ERP component, which in some cases means that they 
offer increased sensitivity. For example, while neither the P100 nor 
the N170 responds in gradient-like fashion to parametrically-varied 
“faceness” in natural images, pattern classification of the data 
obtained from the same electrodes where the N170 is measured has 
revealed that there is a neural representation of face appearance 
that does exhibit a similar smooth variation in response as non-face 
targets more closely resemble true face images [15]. 

A key goal of this current analysis is to investigate the 
possible difference in how upright and inverted faces are processed 
in our small-town and large-town groups. The orientation-
dependence of face recognition, typically referred to as the “Face 
inversion effect” [16] is often used to develop the argument that 
faces are processed by distinct mechanisms that implement 
recognition strategies and representations that differ from those 
used to recognize other objects. Critically, inversion effects appear 
to extend beyond face images to include other object categories 
observers may have expertise for [17,18]. This suggests that 
differential processing of inverted images may signal expert-level 
processing, and so we might expect that this effect may be less 
prevalent in observers from small towns who may lack sufficient 
face exposure to have developed expert-level face processing 
mechanisms. However, when we have examined visual ERPs to 
upright and inverted faces in small-town and large-town observers, 
we have found no evidence supporting an interaction of the face 
inversion effect with visual experience [12]. Presently, we explore 
the possibility that while such an effect may not be evident at 
individual components of the visual ERP, analyzing the ERP signal 
with more sophisticated tools may reveal differences in processing 
that are in line with our hypothesis regarding impoverished face 
experience and the face inversion effect. 

We continue by describing the properties of our participant 
sample, the design of both our behavioral task and the 
electrophysiological recordings that are the basis for our pattern 
classification analysis.  

Methods 
Participants 

We recruited a total of 37 participants from the NDSU 
undergraduate study pool. All participants responded to a 
screening questionnaire as part of their Introductory Psychology 
course that included a question regarding the size of their 
hometown. Based on their responses, we invited participants who 
either grew up in communities with a population smaller than 1000 
people (our “Small-town” sample) or who grew up in communities 
that had a population greater than 30,000 (our “Large-town” 
sample). All individuals recruited to participate in the study 
reported either normal or corrected-to-normal vision and no history 
of neurological impairment. 
 
 
 
 
 

Behavioral testing  
To assess each individual’s ability to recognize and remember 

unfamiliar faces, we administered an online version of the 
Cambridge Face Memory Test (CFMT) [19]. This assessment 
requires participants to study a small set of novel faces during a 
training period and then subsequently distinguish previously 
studied individuals from new faces during test phases that include 
variation in face viewpoint and the presence of visual noise. The 
CFMT takes approximately 15-20 minutes to complete and 
observers completed this task prior to participating in our EEG 
recording sessions. The task was administered on a desktop 
computer positioned at a comfortable viewing distance from the 
observer. Neither head position nor eye movements were 
constrained or monitored during task performance. 

 

Electrophysiological testing 
We collected continuous EEG data from our participants 

during our electrophysiological recording sessions using an EGI 
GES300 NetAmps amplifier and 64-channel Hydrocel Geodesic 
Sensor nets (Figure 1). Raw EEG was bandpass filtered online 
between 0.1Hz-100Hz and recorded using NetStation v4.0 with a 
sampling rate of 250Hz. Before recording began, we established 
stable impedances below 50 kilo-ohms to ensure adequate signal-
to-noise and all testing was carried out in a sound-attenuated 
electrically isolated chamber. Recording was carried out using the 
vertex electrode as a reference. 
 

 
Figure 1 – The layout of the sensor array used to collect ERP data from our 
small-town and large-town observers. The front of the head is at the top of the 
figure, the back of the head at the bottom. Continuous EEG was referenced to 
the vertex electrode and eye movement data was collected from sensors 
positioned on the cheeks and above the eyes. 

Visual stimuli were presented to the participants on a 1024 x 
768 LCD monitor with all stimulus timing and response collection 
routines controlled using EPrime v2.0 with extensions for 
NetStation. Participants were seated approximately 50cm away 
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from the display and used a 4-button response box to categorize 
stimuli as they appeared. 

Participants’ task during the recording session was to label 
images of faces and chairs according to their planar orientation. 
Each image was either presented upright or upside-down (inverted) 
and participants were asked to indicate the orientation of the image 
after it disappeared from view using the button box. The right/left 
arrangement of the buttons for signaling upright vs. inverted image 
orientation were alternated across participants to ensure that motor 
behavior would not be a confounding factor across subjects. The 
stimulus set used for this task was comprised of 60 grayscale faces 
[20] and 60 grayscale chairs  (Figure 2) each presented in both 
orientations for a grand total of 240 images. Images were presented 
in a pseudo-randomized order that was different for each 
participant, and each image was presented onscreen for 500ms. 
The interstimulus interval was sampled on each trial from a 
uniform random distribution bounded between 700ms and 1500ms 
to ensure that participants could not reliably anticipate the onset of 
new images.  

 

 
 

Figure 2 – Examples of upright and inverted face and chair stimuli as 
presented to participants during EEG recording. Participants’ task during 
image presentation was to report the orientation of the images using a button 
box. 

Results 
Behavioral results 

As we have reported elsewhere [12], we found significant 
differences in participants’ performance in the CFMT as a function 
of their lifetime experience. Specifically, we found that 
participants from the small-town group were significantly less 
accurate at this task (Average accuracy = 72.9%) than participants 
from the large-town group (Average accuracy = 79.0%; 
t(35)=1.98, p=0.028, one-tailed independent samples t-test). We 
report this result here as well to motivate the correlations we 
examined in this analysis between CFMT performance and the 
results of applying single-trial classifiers to the ERP data obtained 
from these two participant groups. 

 

Electrophysiological results 
In our original report, we used our raw EEG data to identify 

two ERP components that exhibit face sensitivity: the P100 [21] 
and the N170 [22]. We observed that participant group had a 
significant impact on the P100 amplitude, and also that participant 
group interacted with the effect of category at the N170 component 
[12]. However, we found no significant interaction between 
participant group and the orientation of face or non-face images, 
which suggested that there were not differences in face-specific 
processing that were reflected by these two components of the 
visual ERP response. The focus of our current report is to examine 
this latter issue in more depth by using single-trial classifiers to 
consider the entire ERP waveform at once rather than isolating 
specific peaks and troughs from the ERP signal and characterizing 
neural responses solely in terms of the amplitudes and latencies of 
these signals.  

 
EEG preprocessing 

We obtained single-trial event-related potentials from our 
continuous EEG data by implementing most of our standard pre-
processing pipeline for analyzing ERP components. First, the raw 
EEG signal for each participant was filtered with a 30Hz low-pass 
filter. Next, we segmented the continuous EEG into 1000ms 
epochs using stimulus markers inserted into the EEG record during 
the recording session. We used each marker to identify a single 
epoch that began 100ms before the stimulus was presented and 
extended 900ms after stimulus onset, yielding a one second long 
segment for each trial at each of our 64 channels. The 100ms-long 
pre-stimulus baseline period was used to correct each individual 
segment for DC offset due to drift, local movement or other factors 
that could result in a shifted signal. We calculated the average 
value measured during the baseline period and subtracted this 
value from each timepoint across the entire waveform to obtain a 
baseline-corrected signal. Next, we applied routines for artifact 
detection and removal that included thresholds for identifying eye 
movements (saccades), eye blinks, and individual channels that 
could be identified as “bad” due to extreme values. Following this 
artifact detection stage, we applied routines for bad channel 
replacement that used interpolation methods to replace missing 
data at problematic sensors with a weighted average of 
neighboring sensor values. At this stage, we would typically 
average individual trials within each stimulus condition to obtain 
an average ERP we could use to identify individual components, 
but for the present analysis we did not implement this step to 
preserve the individual trials within each condition for each 
participant. 

 
Single-trial classification of ERP signals 

Following the pre-processing routines described above, the 
dimensionality of each single-trial ERP is quite high: We have 
measurements of 225 post-stimulus onset timepoints at each of 64 
channels for a total of 14400 values for trial. To reduce this 
dimensionality somewhat and also provide us with a more global 
representation of the ERP signal across the entire scalp, we chose 
to describe each trial using the Global Field Power rather than 
retaining data for each individual sensor. The Global Field Power 
(or GFP) is a function of time (Eqn. 1) that describes the standard 
deviation of the ERP signal across the entire sensor array. It is thus 
non-negative everywhere and condenses the topographic 
information in the ERP signal to a single measure of how large 
voltage fluctuations are across the entire scalp. We lose all spatial 
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sensitivity by representing the raw ERP signal this way, but retain 
the temporal sampling from the original signal.  

 
 

𝐺𝐹𝑃 𝑡 =
(𝑉! 𝑡 − 𝑉!"#$ ! )!!
!

𝑘
 

 (1) 

Equation 1 – The expression for the Global Field Power across the sensor 
array (GFP) as a function of time. In the above expression, ‘k’ signifies the 
number of sensors in the array, and V(t) signifies the voltage measured at an 
individual sensor (indexed by i) over time.  

We continued by training and testing a linear SVM classifier 
for each participant using the svmtrain.m and svmclassify.m 
functions implemented in Matlab. Specifically, we determined how 
separable the upright and inverted ERP trials were for face and 
chair images by using a leave-one-out procedure. Each participant 
thus yields two values, one describing our accuracy at classifying 
upright vs. inverted face ERPs and a second one describing our 
accuracy at classifying upright vs. inverted chair ERPs.  

The first question we examined was whether or not we were 
able to reliably classify upright vs. inverted image orientation 
using single-trial ERPs at above-chance levels as a function of 
image category (face vs. chairs) and experience with faces (small-
town vs. large-town experience). Given the set of leave-one-out 
accuracy values we calculated for each condition, we estimated 
99% confidence intervals of the mean accuracy in each condition 
by carrying out a bootstrap sampling procedure with 1000 
iterations. We found that these intervals included zero for the chair 
condition in both participant groups as well as for the face 
condition in our small-town sample. However, the interval did not 
include zero for the face condition in our large-town sample 
(Figure 3), suggesting that we were only able to reliably classify 
image orientation from single-trial ERP data obtained from large-
town observers viewing face images.  

 

 
 

Figure 3 – Bootstrapped estimates of our mean SVM classification for both 
participant groups and both image categories. Error bars depict 99% 
confidence intervals of the mean. Critically, only the classification rate for face 
images viewed by the large-town group is significantly above chance. 

Next, we examined whether the CFMT scores we measured 
for small- and large-town participants were related to either the 
upright/inverted classifier accuracy for faces or chairs. In each 
case, we computed the correlation coefficient between the values 
we obtained for SVM classification in each condition. In no case 
did we observe a significant correlation, suggesting that there is no 
clear relationship between the separability of upright vs. inverted 
ERPs responses and participants’ actual face recognition abilities 
as indexed by the Cambridge Face Memory Test. 

We note that in prior work we have also found relatively 
limited relationships between performance on the CFMT and 
individual component characteristics. CFMT performance thus 
does not seem to be clearly related to neural measures of face 
processing, whether local or global representations of the ERP 
signal are used. 

 

Discussion 
These analyses extend our prior results obtained from this 

unique participant population, specifically with regard to the 
possibility that individuals from relatively impoverished face 
environments may actually process faces in qualitatively different 
ways. Specifically, our classifier results suggest that the face 
inversion effect may be to some extent less clearly reflected in the 
visual ERPs of small-town observers. This outcome is largely 
consistent with the hypothesis that face expertise leads to 
subsequent changes in the mechanisms applied to face stimuli such 
that so-called configural [23] and holistic processing are applied to 
face images. Further, compared to our prior results with this 
population that relied heavily on standard analyses of ERP 
components, the use of a single-trial classifier made it possible to 
reveal features of the ERP signal we were not sensitive to in our 
original analysis. For example, we have found that when we 
consider only the amplitude and latency of the P100 and N170 
components, there is no evidence that the inversion effect 
manifests differently across object categories for small-town or 
large-town observers [12]. The fact that we do observe a difference 
in classifier accuracy across image category and participant groups 
here may indicate that later parts of the ERP signal carry 
information about face orientation differently as a function of 
group experience.  

One important limitation of our current analysis is that by 
collapsing across sensor locations via the Global Field Power we 
are unable to make any statement about which sensors carried 
diagnostic information. An obvious extension of this work would 
thus be to either re-do our classification procedure using the entire 
sensor array, or selectively choose subsets of electrodes to use as 
the basis for classification and characterize the diagnosticity of 
spatial and temporal subsets of the ERP data. Recent work on the 
neural basis of material categorization [24] has employed 
techniques like this to reveal the timecourse of material recognition 
using ERPs, for example, and application of these techniques to 
our data set could be similarly informative. Overall, understanding 
both where and when diagnostic information for image orientation 
emerges for small-town and large-town observers would help us 
more closely characterize the differences in neural processing 
between these two groups.  

There are also some key limitations of both our participant 
groups and our design that are important to point out. First, we 
made no real attempt to verify or quantify participant experience 
with faces in either of our two participant groups, meaning that 
there may be substantial heterogeneity in both samples. While 
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naively we might think this should only compromise our ability to 
measure differences between the two groups, overall we argue that 
understanding how individual experience may shape perception 
ultimately requires that we make better efforts to establish exactly 
what the visual experience of our observers might be. Here, we do 
not know how frequently our participants may have traveled to 
more densely populated cities, how frequently they watched 
television, or any of a number of other factors that may have 
modulated the representations they use for face recognition and 
their subsequent capability to recognize the people around them. 
Such rich descriptions of visual experience have been useful in 
interpreting the nature of experience-dependent effects in infancy 
[25,26], and in future work it would be invaluable to obtain similar 
descriptions of adult face exposure. We also do not know given the 
present data set whether the behavioral difference we observed for 
face memory as a function of participant group might extend to 
other visual tasks. Do these participants have any deficits for non-
face object recognition, for example? While our neural results offer 
a compelling case that one key difference between small-town and 
large-town observers may be a category-selective response to 
image orientation, behaviorally we cannot say if there is perhaps a 
more general effect of face experience on the perception of 
complex (or even simple) visual stimuli. 

Overall, we regard these results as an important 
demonstration that not only do variations in face experience impact 
how well faces are remembered and recognized, these variations 
may also affect how faces are represented for recognition. These 
effects are not just relevant when we consider face recognition 
within different categories, but they extend to faces of all 
categories, implying a broad impact of overall face exposure. 
Important extensions of this work would include other 
characterizations of holistic face processing beyond the inversion 
effect and the inclusion of other behavioral markers of face-
specific processing. For example, employing recently developed 
standardized assessments of holistic processing [27] would be a 
powerful way to compare small-town observers’ performance to a 
typical population, and look for relationships between neural 
responses to faces, other behavioral descriptors of face recognition 
ability, and holistic representations of appearance. Examining how 
face adaptation and aftereffects [28] manifest in small-town and 
large-town observers would also be a powerful means of 
understanding the relationship between behavioral performance 
and the neural representations that underlie face processing. 
Continued examination of how varying statistics of face exposure 
lead to variation in face processing in the absence of impairment or 
deprivation will offer insights into the nature of visual learning and 
the plasticity of higher levels of the visual system. 
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