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Abstract 

The mere presence of spatiotemporal distortions in digital 

videos does not have to imply quality degradation since distortion 

visibility can be strongly reduced by the perceptual phenomenon of 

visual masking. Flicker is a particularly annoying occurrence, 

which can arise from a variety of distortion processes. Yet flicker 

can also be suppressed by masking. We propose a perceptual 

flicker visibility prediction model which is based on a recently 

discovered visual change silencing phenomenon. The proposed 

model predicts flicker visibility on both static and moving regions 

without any need for content-dependent thresholds. Using a simple 

model of cortical responses to video flicker, an energy model of 

motion perception, and a divisive normalization stage, the system 

captures the local spectral signatures of flicker distortions and 

predicts perceptual flicker visibility. The model not only predicts 

silenced flicker distortions in the presence of motion, but also 

provides a pixel-wise flicker visibility index. Results show that the 

predicted flicker visibility model correlates well with human 

percepts of flicker distortions tested on the LIVE Flicker Video 

Database and is highly competitive with current flicker visibility 

prediction methods. 

Introduction  
Digital videos are increasingly pervasive due to the rapid 

proliferation of video streaming services, video sharing in social 

networks, and the global increase of mobile video traffic [1], [2]. 

The dramatic growth of digital videos and user demand for high-

quality video have necessitated the development of precise 

automatic perceptual video quality assessment (VQA) tools to help 

provide satisfactory levels of Quality of Experience (QoE) to the 

end user [3].  

To achieve optimal video quality under limited bandwidth and 

power consumption, video coding technologies commonly employ 

lossy coding schemes, which cause compression artifacts that can 

lead to degradation of perceptual video quality [4]. In addition, 

compressed videos can suffer from transmission distortions, 

including packet losses and playback interruptions triggered by 

channel throughput fluctuations. Since humans are generally the 

ultimate arbiter of the received videos, predicting and reducing 

perceptual visual distortions of compressed digital videos is of 

great interest [5].  

Researchers have performed a large number of subjective 

studies to understand essential factors that influence video quality 

by analyzing compression artifacts or transmission distortions of 

the compressed videos [6], by investigating dynamic time varying 

distortions [7], and by probing the time varying subjective quality 

of rate adaptive videos [8]. Substantial progress has also been 

made toward understanding and modeling low-level visual 

processes in the vision system extending from the retina to primary 

visual cortex and extra-striate cortex [9]. As a result, perceptual 

models of disruptions to natural scene statistics [10] and of visual 

masking [11] have been widely applied to predict perceptual visual 

quality.  

Spatial distortions are effectively predicted by VQA 

algorithms such as SSIM [12], VQM [13], MOVIE [14], STRRED 

[15], and Video-BLIINDS [16]. Spatial masking is well-modeled 

in modern perceptual image and video quality assessment tools, 

video compression, and watermarking. However, temporal visual 

masking is not well-modeled although one type of it has been 

observed to occur near scene changes [17], and been used in the 

context of early video compression methods [18-20]. Among 

temporal distortions, flicker distortion is particularly challenging to 

predict and often occurs on low bit-rate compressed videos.  

Flicker distortion is (spatially local or global) temporal 

fluctuation of luminance or chrominance in videos. Local flicker 

occurs mainly due to coarse quantization, varying prediction 

modes, mismatching of inter-frame blocks, improper deinterlacing, 

and dynamic rate changes caused by adaptive rate control methods 

[21-25]. Mosquito noise and stationary area fluctuations are also 

often categorized under local flicker. Mosquito noise is a joint 

effect of object motion and time-varying spatial artifacts such as 

ringing and motion prediction errors near high-contrast sharp edges 

or moving objects, while stationary area fluctuations result from 

different types of prediction, quantization levels, or a combination 

of these factors on static regions [4], [21].  

Current flicker visibility prediction methods that operate on a 

compressed video measure the Sum of Squared Differences (SSD) 

between the block difference of an original video and the block 

difference of a compressed video. The block difference is obtained 

between successive frames on macroblocks. When the sum of 

squared block differences on an original video falls below a 

threshold, a static region is indicated [22]. The ratio between 

luminance level fluctuation in the compressed video and that in the 

original video has also been used [23]. To improve the prediction 

of flicker-prone blocks, a normalized fraction model was proposed 

[24], where the difference of SSDs between the original and 

compressed block differences is divided by the sum of the SSDs. 

These methods have the virtue of simplicity, but the resulting 

flicker prediction performance is limited and content-dependent. 

Another method included the influence of motion on flicker 

prediction, where motion compensation was applied prior to SSD 

calculation [25]. The mean absolute discrete temporal derivatives 

of the average DC coefficient of DCT blocks was used to measure 

sudden local changes (flicker) in a VQA model [16]. Current 

flicker prediction methods are limited to block-wise accuracy. 

Further, human visual system (HVS)-based perceptual flicker 

visibility e.g., considering temporal visual masking, has not yet 

been extensively studied. 

Recently, Suchow and Alvarez [26] demonstrated a striking 

“motion silencing” illusion, in the form of a powerful temporal 

visual masking phenomenon called change silencing, where the 

salient temporal changes of objects in luminance, color, size, and 

shape appear to cease in the presence of large object motions. This 

motion-induced failure to detect change not only suggests a tight 

coupling between motion and object appearance, but also reveals 

that commonly occurring temporal distortions such as flicker may 
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be dramatically suppressed by the presence of motion. To 

understand the mechanism of motion silencing, physiologically 

plausible explanations have been proposed [26-29]. However, 

since the effect has only been studied on highly synthetic stimuli 

such as moving dots, we performed a series of human subjective 

studies on naturalistic videos, where flicker visibility is observed to 

be strongly reduced by large coherent object motions [30-33]. A 

consistent physiological and computational model that detects 

motion silencing might be useful to probe perceptual flicker 

visibility on compressed videos.  

In this paper, we propose a new perceptual flicker visibility 

prediction model based on motion silencing. The new perceptual 

flicker visibility prediction model is a significant step towards 

improving the performance of VQA models by making possible a 

model of temporal masking of temporal distortions. The new 

model measures the bandpass filter responses to a reference video 

and a corresponding flicker video using a localized multiscale 3D 

space time Gabor filter bank [34], [35], a spatiotemporal energy 

model of motion perception [36], and a divisive normalization 

model of nonlinear gain control in primary visual cortex [37]. We 

observed that flicker produces locally separated spectral signatures 

that almost lie along the same orientation as the motion tuned 

plane of the reference video but at a distance. The captured V1 

responses for the flicker induced spectral signatures generally 

decreased when object speeds increase. Next, we measured the 

local difference of bandpass responses at each space-time 

frequency orientation and defined the sum of the magnitude 

responses as a perceptual flicker visibility index. The proposed 

model predicts temporal masking effects on flicker distortions and 

thereby shows highly competitive performance against previous 

flicker visibility prediction methods.  

Background: Motion Perception 
Motion perception is the process of inferring the speed and 

direction of moving objects. Since motion perception is important 

for understanding flicker distortions in videos, we model motion 

perception in the frequency domain. Watson and Ahumada [38] 

proposed a model of how humans sense the velocity of moving 

images, where the motion-sensing elements appear locally tuned to 

specific spatiotemporal frequencies.  

Assuming that complex motions of video without any scene 

changes can be constructed by piecing together spatiotemporally 

localized image patches undergoing translation, we can model the 

local spectral signatures of videos when an image patch moves 

[38]. An arbitrary space-time image patch can be represented by a 

function a(x, y, t) at each point x, y, and time t, and its Fourier 

transform by A(u, v, w) where u, v, and w are spatial and temporal 

frequency variables corresponding to x, y and t, respectively. Let λ 

and ϕ denote the image patch horizontal and vertical velocity 

components. When an image patch translates at constant velocity 

[λ, ϕ], the moving video sequence becomes b(x, y, t) = a(x – λt, y – 

ϕt, t). The spectrum of a stationary image patch lies on the u, v 

plane, while the Fourier transform shears into an oblique plane 

through the origin when the image patch moves. The orientation of 

this plane indicates the speed and direction of motion.  

Prediction of Perceptual Flicker Visibility  

Linear Decomposition 
Natural environments are inherently multi-scale and multi-

orientation, and objects move multi-directionally at diverse speeds. 

To efficiently encode visual signals, the vision system decomposes 

   
(a) (b) (c) 

 
Figure 1. Gabor filter bank in the frequency domain. (a) Geometry of the 
Gabor filter bank. (b) A slice of the Gabor filter bank along the plane of zero 
temporal frequency. (c) A slice of the Gabor filter bank along the plane of zero 
vertical spatial frequency. 
 

the visual world over scales, orientations, directions, and speeds. 

Cortical neurons in Area V1 are selective for spatiotemporal 

frequency and orientation, while neurons in Area MT are selective 

for the velocity of visual stimuli [37], [39]. Since the responses of 

simple cells in Area V1 are well-modeled as linear and bandpass 

[34], [35], linear decompositions are widely used to model the 

spatiotemporal responses to video signals [14], [40].  

The receptive field profiles of V1 simple cells are well 

modeled by Gabor filters [34], [35]. Hence, we used a bank of 

spatiotemporally separable Gabor filters to model the responses of 

V1 simple cells to videos. A 3D spatiotemporal separable Gabor 

filter h(x) is the product of a complex exponential with a Gaussian 

envelope: 
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where x = (x, y, t) is a spatiotemporal coordinate in a video 

sequence, and U0 = (U0, V0, W0) is the center frequency of the 

Gabor filter. ∑ is the covariance matrix of the Gaussian envelope. 

 We implemented a Gabor filter bank as in [14] and [40]. 

Three scales of filters were deployed, with 57 filters at each scale 

on the surface of a sphere centered at the space-time frequency 

origin, as shown in Fig. 1. The largest radial center frequency was 

0.7π radians per sample, and the filters were sampled out to a 

width of three standard deviations. A total of 171 filters were used: 

10, 18, 15, 10, and 4 filters were tuned to five different speeds, s = 

tan (φ), where the vertical angle φ = (0 20, 40, 60 and 80) degrees 

and orientations θ at every 18, 20, 24, 36, and 90 degrees, 

respectively. The number of oriented filters was determined such 

that adjoining filters intersected at one standard deviation 

following [40]. We also included a Gaussian filter centered at the 

frequency origin to capture the low frequencies in the video. The 

standard deviation of the Gaussian was selected so that the 

Gaussian would intersect the coarsest scale of bandpass filters at 

one standard deviation [14]. 

Modeling Visual Cortical Neurons 
The responses of V1 neurons were modeled using the 

spatiotemporal energy model in [36] with divisive normalization 

[37]. The motion energy within a spatiotemporal frequency band 

was extracted by squaring the responses of quadrature (sine and 

cosine) Gabor filter components and summing them:  
 

   
2 2

sin cos( , ) ( , ) ( , ) ,E h I h I          (2) 

 

where hsin(φ, θ) and hcos(φ, θ) are the sine and cosine Gabor filters 

at φ and θ, respectively, and I is the luminance level of the video.  

The quantity (2) models the response of an individual neuron 

to a particular band of spatiotemporal frequencies. In order to 
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agglomerate the combined responses of all cortical neighborhoods 

that include cells tuned for the full range of orientations and 

directions, the response of each neuron is normalized to limit its 

dynamic range of responses without altering the relative responses 

of neurons in the pool [37]. The energy response of the nth simple 

cell Sn is divided by the sum of the neighboring energy responses: 
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where K determines the maximum attainable response, and σ is a 

semi-saturation constant. Here K = 4 and σ = 0.2 as was used in 

[37] in agreement with recorded physiological data. The model V1 

complex cell responses Cn are found by averaging the responses 

(3) along scales on constant space-time frequency orientations: 
 

( , ) ( , ),n nm m

m

C c S   
 (4) 

 

where cnm (> 0) are weighting factors. We used constant values 

although they could be Gaussian in spatial distance [37]. 

Spectral signatures of flicker videos 
To understand the distributions of the spectral signatures of 

flicker videos, we generated translational motion videos by moving 

an image patch (1280 × 720 pixels) from a large static image (4140 

× 2330 pixels) at constant speeds (e.g., 0, 1, 2, and 3 pixels per 

frame) in horizontal, vertical, and diagonal directions. Then, we 

simulated quantization flicker by alternately compressing the video 

with different QP pairs (e.g., QP26 and QP44) every 3 frames 

using an H.264 codec. We measured the model V1 responses for 

these videos with and without flicker distortions, separately.  

For the reference video, the spectral signatures formed a flat 

plane on the u, v axes when there was no motion. The plane tilted 

with respect to the u, v axes when motion was increased, as 

illustrated in Fig. 2(a). For the flicker videos, we observed that the 

spectral signatures separated along the same orientation as the 

motion tuned plane of the reference video but at a distance from 

the reference spectral plane, as shown in Fig. 2(b). Larger flicker 

intensities (e.g., caused by more separated QP pairs such as QP44 

and QP26) produced larger responses to the flicker-induced 

spectral signatures. We also observed that the model V1 responses 

for the flicker-induced spectral signatures generally decreased 

when motion increased.  

We executed the same spectral analysis by simulating 

quantization flicker on the videos in the LIVE VQA database [6] 

and observed similar results. Changing patterns in the spectral 

signatures of flicker videos (Fig. 2) also agreed with the changing 

patterns of the spectral signatures from the physiological 

experiments on motion silencing using the dot stimuli [29]. 

Perceptual Flicker Visibility Index 
We developed a perceptual flicker visibility index based on 

how flicker changes the spectral signatures of a video and how 

motion influences the resulting V1 responses. Shifted or separated 

spectral signatures not present in a reference video might cause 

flicker distortions. Therefore, we devised an approach to capture 

perceptual flicker visibility by measuring locally shifted energy 

deviations relative to those on the reference video at each subband. 

Next, we define the sum of the difference as a perceptual 

flicker visibility index 
 

,

( , , ) ( , , ) ,x x
r dFV C C

 

      (5) 

(a) 

 

(b) 

 
  

 
Figure 2. Schematic illustration of the spectral signatures that form motion 
tuned planes: (a) reference videos and (b) flicker videos. 
 

where Cr(φ, θ, x) and Cd (φ, θ, x) are the model V1 responses on the 

reference and flicker videos in (4), respectively. Larger values of 

FV indicate larger flicker visibility, while zero implies no flicker. 

Results and Performance Evaluation 
We tested the proposed perceptual flicker visibility model on 

the LIVE Flicker Video Database [31], [32]. The database contains 

6 reference videos and 6 flicker distorted versions of each 

reference, for a total of 36 videos in Phase I. Quantization flicker 

was simulated by periodic changes of H.264 compression level by 

varying the QP value. We enlisted 43 subjects who rated their 

continuous-time flicker percepts on test videos. We refer to [30-32] 

for the details of flicker simulations and the human psychophysical 

studies.  

Since some previous flicker visibility prediction models [22], 

[23] are only able to predict flicker visibility on static segments of 

video sequences, it is not possible to directly compare them with 

the performance of the proposed model. For the other models, we 

first compared the predicted flicker visibility maps obtained by 

each model. Next, we evaluated the performance of the proposed 

model against the results of the human subjective study using a 

correlation analysis. 

Figure 3 shows flicker visibility maps obtained by the method 

in [22], [25], [16], and by the proposed model on one of the videos 

in the LIVE Flicker Video Database. Brighter regions indicate 

larger flicker, while the gray slashed areas denote regions that 

cannot be predicted for flicker visibility. In Fig. 3, the left column 

shows results on static or small motion scenes, while the right 

column presents the results on large motion scenes. As shown in 

Fig. 3(b), Fan’s method [22] predicts flicker visibility only on 

static regions, while the other methods predict flicker on all 

regions. The flicker maps in [22], [25], and [16] are limited to 

block-wise accuracy, but the proposed model can predict flicker 

visibility with pixel precision, as shown in Figs. 3(b)-(e). 

Furthermore, the proposed model predicts silenced flicker 

distortions in the presence of large motion in agreement with the 

human responses. Although the methods in [25] and [16] consider 

moving objects using motion compensation, the estimated results 

were less predictive of human percepts of flicker. For example, the 

predicted results in [25] generally show small or almost zero 

flicker visibility on both small and large motion (e.g. the baseball 

player in Fig. 3(c)). In [25], the SSDs between the original and 

compressed block differences after motion compensation were 

divided by the SSD of the original block differences. This division
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Figure 3. Comparison of predicted flicker visibility maps in the presence of static or small motion (left) and large motion (right). (a) Frames from a flicker distorted 
video. Flicker visibility maps: (b) Fan et al. [22], (c) Vo et al. [25], (d) Saad et al. [16], and (e) the proposed model. The gray slashed areas in (b) denote regions 
where the model cannot predict flicker visibility. Brighter regions indicate larger flicker visibility. The flicker maps were logarithmically compressed for rendering. 
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Figure 4. Predicted flicker visibility from the proposed model. Each colored 
band indicates the 95% confidence interval (CI) of perceived flicker from the 
human subjects at different QP alternations – (QP44, QP26) ( ), (QP38, 
QP26) ( ), and (QP32, QP26) ( ). Each solid line with different markers 
represents the predicted flicker visibility from the model – (QP44, QP26) (●—), 
(QP38, QP26) (▲—), and (QP32, QP26) (■—), respectively.  

Table 1. PLCC of the proposed model on the test videos 

Method QP alternation Bb BMX La Mr Rc Tr 

Choi et al. [31] 

QP44 - QP26 0.9534 0.7815 0.6477 0.8712 0.9183 0.8952 

QP38 - QP26 0.9880 0.7523 0.8721 0.8515 0.9034 0.9156 

QP32 - QP26 0.9796 0.7959 0.8187 0.7773 0.7882 0.9267 

Proposed 
Model 

QP44 - QP26 0.9614 0.5532 0.5257 0.7202 0.8603 0.6690 

QP38 - QP26 0.9918 0.4977 0.8751 0.8630 0.9206 0.8871 

QP32 - QP26 0.9326 0.4416 0.6999 0.7701 0.5833 0.8216 

Table 2. SROCC of the proposed model on the test videos 

Method QP alternation Bb BMX La Mr Rc Tr 

Choi et al. [31] 

QP44 - QP26 0.7069 0.6656 0.0640 0.0620 0.9284 0.4922 

QP38 - QP26 0.8125 0.3775 0.1050 0.1440 0.5777 0.6103 

QP32 - QP26 0.9880 0.2028 0.7755 0.5445 0.6975 0.8840 

Proposed 
Model 

QP44 - QP26 0.7311 0.6033 0.1919 0.5929 0.5381 0.6718 

QP38 - QP26 0.8462 0.3439 0.1771 0.7795 0.3301 0.5443 

QP32 - QP26 0.8833 0.1237 0.6002 0.7215 0.5053 0.7926 

 

may yield a small degree of flicker sensitivity on moving objects. 

By contrast, the method in [16] predicts heightened flicker 

visibility in the presence of large motion, as shown in Fig. 3(d) on 

the baseball player. This might result from mismatches between 

inter-frame blocks or large residuals between consecutive frames. 

On other tested flicker videos, we observed similar results. 

Predicted flicker visibility values delivered by our proposed 

model were also compared against the human flicker visibility 

scores. As shown in Fig. 4, the trajectory of flicker visibility 

predicted over time by the model correlates well with the flicker 

visibility perceived by human subjects. The frame intervals [51, 

208] for “Bb” and [51, 265] for the other videos were compared, 

since subjects needed at least 50 frames to begin to rate initial 

flicker visibility after each test video began. No data was obtained 

when objects disappeared in a scene. The frames were shifted to 

account for a lag response. We averaged the predicted flicker 

visibility over the moving object (e.g., the baseball player) and 

filtered the average by a temporal Gaussian weighting function, 

where the Gaussian window duration was one second. Then, the 

filtered averages were non-linear regressed [41] to match the 

perceived flicker visibility range in the human subjective study. 

Although the proposed model is able to predict small differences in 

flicker visibility over short periods (and long), flicker visibility 

rated by the subjects is very smooth owing to the limited speed of 

mouse movement using a hand. Hence, we applied temporal 

filtering before non-linearity regression. In agreement with the 

human percepts of flicker, the model can effectively predict 

temporal variations of flicker visibility, in which flicker visibility 

is strongly reduced when motion increases.  

Tables 1 and 2 show the performance of the proposed model 

using the Pearson’s Linear Correlation Coefficient (PLCC) and the 

Spearman Rank Order Correlation Coefficient (SROCC) after 

logistic nonlinear regression [41], respectively. Performance was 

compared with the neural network model (NNM) [31] on the LIVE 

Flicker Video Database. Although NNM predicts flicker visibility 

better in terms of correlations, the proposed model is highly 

competitive. Further, the proposed model has several advantages: 

the NNM method cannot produce a predicted flicker visibility map 

indicating details of spatiotemporal variations of flicker visibility, 

and it requires human results to train neural network parameters. 

By contrast, the proposed model predicts a detailed perceptual 

flicker visibility map without any prior human results.  

Conclusion and Future Work 
We have presented a perceptual flicker visibility prediction 

model based on a recently-discovered motion silencing 

phenomenon. The proposed model successfully predicts flicker 

visibility on both static and moving regions. The model not only 

provides a pixel-wise flicker visibility index, but also predicts 

silenced flicker in the presence of motion. The results show that 

flicker visibility predicted by the proposed model correlates well 

with human percepts of flicker distortions, and its performance is 

highly competitive with or outperforms current methods. 

We believe that the proposed flicker visibility model will be 

useful for augmenting automatic objective VQA methods by 

predicting suppressed flicker distortions. We have explored the 

tight coupling of motion and flicker visibility via a detailed model 

of spectral signatures. Understanding changes in the spectral 

signatures arising from multiple distortions would also be helpful 

when predicting distortion specific or generalized spatiotemporal 

distortion visibility. Future work could combine this model into 

modern VQA models. Also of interest are time-varying models of 

flicker density, which will require databases of time-varying data, 

similar to [7]. 
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