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Abstract 
Edges derived from abrupt luminance changes in images 

carry essential information for object recognition. Typical binary 
edge images (black edges on white background or white edges on 
black background) have been used to represent features (edges 
and cusps) in scenes. However, the polarity of cusps and edges 
may contain important depth information (depth from shading) 
which is lost in the binary edge representation. This depth 
information may be restored, to some degree, using bipolar edges. 
We compared recognition rates of 16 binary edge images, or 
bipolar features, by 26 subjects. Object recognition rates were 
higher with bipolar edges and the improvement was significant in 
scenes with complex backgrounds. 

Object recognition in edge images 
Human object recognition is complex process of 

interpretation. Various models of object recognition have been 
proposed including view-based models [1, 2] and structural 
description models [3, 4]. View-based models assume that objects 
are represented as collections of viewpoint-specific local features, 
while structural description models, such as the recognition by 
components model, which assumes objects are represented as 
configurations of simple volumes or parts (“geons” or geometric 
cones) and recognized using a bottom-up process [3, 4].Whether 
object recognition is either purely based upon a view-invariant 
structural description (object-centered models) or upon view-
specific features (view-based models) is arguable, however, edges 
and cusps are presumed to be visual system primitives in object 
recognition [1-5]. Therefore, a scene filtered to edge representation 
may be an effective visual descriptor for object recognition [4, 5].  
 Numerous edge detection methods have been developed [6-8] 
and said to effectively convey the essential feature of a scene to 
observers [5, 6, 9, 10]. However, Sanocki et al. [5] argued that 
edge representations in human vision were fundamentally different 
from those used in computational algorithms. Generally, edge 
detection algorithms merely locate edge pixels defined by 
luminance or color differences within a small region of the image 
[11] Differences exceeding a threshold are represented in black or 
white pixels on a contrasting background (i.e., binary edges). In 
comparison, edge or contour extraction in human vision is thought 
to be an abstraction of the scene using global information to 
combine edges that form regions, volumes, or some other 
intermediate-level processing (e.g., grouping, segmentation, etc.) 
[1-5]. 

Using cluttered scenes as stimuli may illustrate the difference 
between the efficacy of unipolar (i.e., binary edge) and bipolar 
features. The human vision converts the scene to edge information 
components by segregating the key objects and suppressing 
background clutter using global information and intermediate level 
processing. However, if an observer sees the edge image rather 
than the original image, segregating and the target object is more 

challenging in cluttered scenes because all edges from the scene 
are represented without the benefit of intermediate-level 
processing and global information. Edges from background clutter 
do not contribute to object recognition because they frequently 
interfere with the object edges [5, 10]. 

Sanocki et al. [5] compared object recognition between full-
color images and binary edge images, with and without manual 
removal of background clutter. The average recognition rate of 
binary edge images was only 45.7% (69% without background), 
significantly lower than full-color images (90.4% and 90.8% with 
and without background, respectively). Removal of background 
clutter significantly improved object recognition of edge 
representations but not of color images, presumably in part because 
humans are able to effectively suppress background clutter in color 
images. Processing that facilitates background clutter suppression 
in edge images [10] may improve object recognition. Additional 
information may indicate whether edges belong to background 
clutter or to the target object. 

Bipolar feature images 
Peli proposed a bipolar edge/feature detection algorithm 

motivated by a model of the human visual system [8]. Whereas 
unipolar edges only where luminance changes occur, bipolar edges 
represent the location and the polarity of the luminance transition 
(the bright and dark side), a cusp, or very narrow bars relative to 
their background. Based on phase congruence across scales in a 
multi-scale structure, the bipolar feature representation marks the 
darker and brighter sides of the edge as black and white lines, 
respectively, over a gray background.  

In natural scenes, the luminance difference across an edge can 
be caused by reflection changes within objects (caused by 
pigments) or differences in brightness between the background and 
an occluding object above, or in front of, the background. The 
polarity of such edges provides additional information about the 
relative reflections of objects and their components. In addition, 
edges can indicate the interaction between illumination and the 
shape of objects (shading). Occluding objects in front or above 
background surfaces will frequently cast shadows on the 
background resulting in the bright side of the occluding edge inside 
the object. This information may be revealed by bipolar edges as 
useful depth information that may aid in object and ground 
segmentation and thus help suppress clutter and aid in object 
recognition.  

As the binary edge (Fig. 1b) presents only the location of 
luminance transitions it is harder for the viewer to segregate the 
object (watering pot) from background clutter (wire mesh and 
bags). In the bipolar feature image (Fig. 1c), the watering pot’s 
outer edges are white on the outside and black inside because of 
the contrast between the dark object and its bright background. 

Polarity at occluding edges may be the same as the luminance 
and shading, or it may conflict (darker object in front of a brighter
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Figure 1. Image of ‘Watering pot’ (a) Color image of the watering pot in front of wire mesh and other clutter (b) Canny [7] binary edge result, 5 of 13 (40%) 
subjects identified the watering pot. (c) Bipolar edge [8] result. The bipolar edges and cusps act as a depth cue and may help segregate the object from the 
background clutter. Recognition rate was noticeably improved to 92.3% (12 of 13).  Note that the images were scanned from prints resulting in artifactual 
outside edges interfering with the presentation. 

ground surface), for example, the dark watering pot in front of the 
lighter background in Fig. 1. Here (Fig. 1c) the dark pigmentation 
overcomes the weaker depth information with bipolar edges, 
causing the pot to appear more distant than the background. 
However, the white pot nozzle has an edge polarity consistent with 
its position in front of the relatively darker background, making it 
appear closer than the background.  

Due to the assumption that illumination typically comes from 
above, objects are expected to cast shadows below, therefore, the 
bottom side of shading edges are expected to be dark while the 
upper side of edges are bright. This shading effect lost in binary 
edges is preserved in bipolar edges and therefore provides a depth 
cue that could aid in object recognition [12]. A uniformly 
pigmented object like the body of the watering pot in Fig. 1 may 
have specular points or lines on glossy surfaces, represented as 
cusps in the bipolar edge image (e.g. the decorative flourish on the 
watering pot) or it may illustrate internal corners, which in a 
bipolar edge representation will preserve the object’s 3D structure. 
The various polarity effects may help observers recognize the 
scene and objects correctly, as they combine to provide additional 
depth cues. 

Methods 
We compared object recognition rates of bipolar edge images 

and binary edge images using the paradigm and image data set 
used by Sanocki et al. [5] This dataset contains 16 different office 
and household items at the center of a scene with varying levels of 
background clutter. The dataset is shared on our webpage 
(http://serinet.meei.harvard.edu/faculty/peli/), including original 
and filtered images. Twenty six normally sighted subjects (nine 
men) aged 21–67 participated. The study was approved by the 
Human Studies Committee of Massachusetts Eye and Ear and 
written informed consent was obtained from all participants.  
Object recognition performance is highly dependent on the 
difficulty of the image dataset. Since we were looking for relative 
improvement in object recognition with bipolar feature images, we 
were concerned about a possible ceiling effect. Therefore, we used 
the Sanocki dataset, in which subjects had 45.7% average 
recognition rate with binary edge images [5].  

The 16 images were split into two groups (A and B) based on 
recognition rates reported by Sanocki et al [5]. Images were sorted 
by the reported recognition rate and image pairs were formed from 
those with consecutive recognition rates. One image from each pair 
was assigned randomly to group A and the other to group B. The 
average recognition rate in Sanocki et al. was 46.5% and 44.9% for 

groups A and B, respectively, as shown in Fig. 4. Each subject 
viewed binary edge images from one of groups and bipolar feature 
images from the other group. The group presentations were counter 
balanced between subjects.  

We attempted to follow Sanocki et al.’s [5] method closely. 
Binary edges were calculated with the Canny edge detector [7] in 
Matlab R2013b (MathWorks, Natick, MA) and the three 
parameters (sigma, upper and lower thresholds) were manually 
selected as described by Sanocki et al. [5] (the exact parameters 
used by Sanocki et al. were not available to us). Bipolar feature 
images were generated by Peli’s method [8]. Peli’s algorithm has 
no free parameters, other than presumed angular image span, 
which we adjusted to attempt to equate the level of extracted 
features, from the binary and bipolar algorithms. The presumed 
image span affects the level of details represented by the detected 
features and the de-noising threshold. Although the bipolar feature 
images have more information of contrast polarity, we tried to 
have same contents and similar level of details in both edge images 
with adjusting the presumed image span in the bipolar algorithm. 
As shown in Figs. 1b and 1c, the details and level of features are 
similar in the binary edge and bipolar edge images.  

Subjects were seated 33 inches from a LCD monitor and the 
image width was 8 inches to approximately match the 14° angular 
size used by Sanocki et al. We explained the task to subjects 
during a training session where we presented two images 
(‘umbrella’ and ‘camera’) in both binary edge and bipolar feature 
versions. We also explained the difference between the binary 
edges and bipolar features (the meaning of edge polarity in bipolar 
feature: bar, line, and cusp) but did not suggest the polarity was a 
cue to depth. The likely position (i.e., image center) and size (i.e., 
the biggest object in the image) of the target objects were indicated 
to subjects during training. 

The test was performed in a dark room. The 8 binary edge 
images were presented first and followed by 8 bipolar feature 
images. At the beginning of the test in each condition, the trained 
‘umbrella’ image in that condition was displayed as an example. 
Each test image was preceded by an audible beep and disappeared 
1 second later, concurrent with a second beep. The subjects were 
then asked to name the object at the center or describe the use of 
the object if they could not name it. The operator wrote down the 
subjects’ responses gave neither feedback nor correction. In 
determining the response veracity, describing object usage was 
valued than more than a general description of the object’s shape. 
The next image was displayed after the subject pressed any button 
on the keyboard. 

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.16HVEI-111

IS&T International Symposium on Electronic Imaging 2016
Human Vision and Electronic Imaging 2016 HVEI-111.2

http://serinet.meei.harvard.edu/faculty/peli/


 

 

 
(a) 

 
(b)  (c) 

Figure 2. Image of ’Briefcase’ that was better recognized form binary edges than from bipolar edges (a) Original color image (b) Binary edge image calculated 
using the Canny detector. Average recognition rate was 53.9% (7 of 13 subjects). (c) Bipolar feature was detected by Peli’s method [8]. Due to the black color 
of outer briefcase, the depth from shading is inconsistently perceived in the bipolar feature. This might have reduced the recognition rate to 38.5% (5 of 13 
subjects) although contrast polarity is consistent with the depth for numerous bright objects in the same scene (e.g. papers on the shelves).   

Results 
Average overall object recognition rates for binary and bipolar 
images are given in Table 1 for both our subjects and Sanocki et 
al.’s results. Recognition rates for bipolar and binary images were 
79.3% and 71.6% respectively. The modest improvement was 7.7% 
and approached significance (p = 0.069). Note, however, that the 
recognition rate of our subjects, in the binary edge condition, was 
much higher than Sanocki et al.’s subjects although we used same 
dataset and edge filtering method (Canny detector). Our results and 
Sanocki et al.’s were correlated moderately (ρ = 0.53, p = 0.035).  

Table 1. Average recognition rate (%), standard error (SE), and 
significant level (p) between conditions 

 Bipolar 
Feature 

Binary 
Edge 

Binary Edge 
(Sanocki et al.) 

Average 
(%) 79.3 71.6 45.7 

SE 
(%) 2.8 3.1 4.4 

p 0.069 . 

Figure 4 shows recognitions rate for all images in each 
condition. Except for a few images that were recognized better in 
the binary edge condition, such as ‘Briefcase’ (binary edge = 53.9% 
vs. bipolar feature = 38.5%, p = 0.452; Fig. 2), ‘Lamp’ (100% vs. 
92.3%, p = 0.337), and ‘Microwave’ (76.9% vs. 69.2%, p = 0.674), 

the recognition rates of bipolar images were better or similar. Nine 
of the 16 images were recognized at above 80% from the binary 
edges, implying a ceiling effect that may limit the possibility of the 
getting an improvement with the bipolar edges. In the results for 
images in which a ceiling effect is not suspect, ‘Watering Pot’ 
(92.3% vs. 46.2%, p < 0.01) and ‘Sprinkler’ (53.8% vs. 0%, p < 
0.001) had significantly improved recognition rates in bipolar 
feature images. 

We further analyzed the results using binary logistic 
regression model in SPSS 11.5. The model correctly classified 94.9% 
of the correct recognitions and 78.4% of incorrect recognitions. 
The odds ratio [10] was 1.52 and approached significant level (p = 
0.069), indicating that the odds of recognition in bipolar feature 
image is 1.52 times more than the odds of recognition in binary 
edge image when holding all other variables constant. For example, 
if the recognition rate in binary edge image was 45.7% as found by 
Sanocki et al., the recognition rate for bipolar feature images is 
expected to be 54.5%.   

Discussion 
Bipolar features contain more information than binary edges 

because they represent the contrast polarity of contrast at edges. 
The bipolar feature images also distinguish edges from cusps and 
thin bars. Importantly, polarity can provide shading information 
and thus be a depth cue. The improvement we found in object 
recognition with bipolar features was modest and only approached 
significance. This might have been caused by a ceiling effect, (>80% 
correct recognition) that was present for 9/16 images. Two of the 3 
images that were recognized at less than 50% from the edge 
images were much better recognized from the bipolar features. 

The improvement in recognition might be caused by better
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Figure 3. Image of ’Sprinkler‘ that was much better recognized from bipolar images (a) Original color image (b) Binary edges image that no subject correctly 
recognized. (c) Bipolar edge image was recognized correctly in 53.9% (7 of 13 subjects) of presentations. The depth cues based on contrast polarity changes 
in the sprinkler might have helped to segregate the background and object. 
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Figure 4. Recognition rate for each object in all the test conditions. We divided Sanocki’s dataset into two groups based on their recognition results for counter 
balancing. As seen our subjects’ recognition rates were higher with the binary edge leaving little room for improvement with the bipolar processing (ceiling 
effect). 

segregation of object and background based on depth cues. Using 
contrast polarity, the subjects may have perceived depth from 
shading and more easily distinguish the object contrast polarity, the 
subjects may have perceived depth from shading and more easily 
distinguish the object of interest. In images with complex 
background clutter (e.g. Figs. 1 and 3), depth cues caused by 
illumination may have helped segregate object from background. 
However, luminance differences caused by pigment (darker than 
background) of local object could confound the depth cue.  

In this study, we only used luminance differences, and no 
color differences, in binary and bipolar feature detection 
algorithms. The bipolar features within the briefcase (Fig. 2c) 
caused incorrect perceived depth due to the reversed contrast 
polarity of the black color of the briefcase’s exterior. In typical 
illumination, the border between the inside and outside of the 
briefcase would have a black edge in the inner area (due to shading) 
and a white edge in the outer area. However, the polarity in Fig. 2c 
was reversed due to the black color of the briefcase, which may 
have caused a misrepresentation that affected its recognition rate. 

We did not investigate directly the impact of background 
clutter, nor depth cues from illumination, in this pilot study. In 
future studies, to reveal the impact of bipolar features in 
segregating the object from background clutter, controlling the 
complexity of background, or the illumination (e.g., direction and 
surface material: glossy or matte) may be necessary. To reduce the 
ceiling effect, shorter display times, or the use of lower resolution 
images, may be implemented.  

We used Sanocki et al.’s images in effort to prevent ceiling 
effect, as in their study low recognition rate (45.7%) was found. 
We used processing parameters similar to theirs and expected 
similar recognition rate. However, the recognition rate of our 
subject with binary filtered edge images was higher than theirs and 
the correlation between our and their results was just moderate. 
This might have caused lower impact of the bipolar filtering on 
object recognition. In future studies, we plan to use the binary edge 
images extracted from the bipolar feature image with removing 
negative or positive polarity edges. 

Since edge images are believed to provide useful 
representations for object recognition, adding high contrast edge 
information has been proposed as a way of enhancing image 
visibility for the visually impaired [13, 14]. Such enhancements 
have been implemented for video displays [15-17]. Both binary 
edges and bipolar edges have been employed in such studies. The 
approach has also been implemented in augmented reality where 
high contrast edges are added virtually to objects. Only binary 
(bright edges) can be added in optical see-through systems [18-20], 
however in video see-through systems bipolar edges may be used. 
A number of studies have demonstrated preference for enhanced 
images but performance improvements have not been frequently 
demonstrated. For the same reasoning, and due to the limited 
dynamic range of visual prosthetics (such as retinal implants being 
developed for the blind), many have proposed using binary edge 
representations for these systems. We have suggested that for 
systems that can provide more than two levels of stimulations (e.g., 
visual prostheses [10]) the bipolar edge representation may provide 
an advantage. This paper is a first attempt to test this hypothesis in 
high resolution images, and we predict a larger effect for lower 
resolution images typical in such systems. 
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