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Abstract

This paper addresses the problem of assessing full-reference
visual quality of images. A correlation between the obtained array
of mean opinion scores (MOS) and the corresponding array of
given metric values allows characterizing a correspondence of the
considered metric to HVS. For the database TID2013 intended for
a metric verification, a Spearman correlation is about 0.85 for the
best existing HVS-metrics. A simple way to improve an efficiency
of assessing visual quality of images is to combine several metrics:
as a product of two existing metrics in certain powers that can be
optimized or applying more complex structures to unify more than
two visual quality metrics. We show that clustering methods can be
efficiently used for this purpose. This method provides essentially
larger improvement of a combined metric performance compared
to the method based on their multiplication. Besides, our work
specially addresses assessing images with multiple distortions.
There are two such types in the modified LIVE database and two
others in TID2013. Spearman rank order correlation coefficient
(SROCC) between a combined metric and mean opinion score for
a considered database serves as a criterion for the metric
optimization. As the result of our design, the SROCC reaches 0.95
for the verification set of the database TID2013. This is
considerably better than for any particular metric employed as an
input where FSIMc is the best among them.

Keywords: full-reference image visual quality assessment,
combined metrics.

Introduction

Many applications of digital image processing require good
full-reference visual quality metrics [1, 2]. Among such
applications, it is worth mentioning lossy image and video
compression, watermarking, image denoising, etc. Although many
(more than 100) full-reference visual quality metrics (indices) have
been designed recently and most of them incorporate some
heuristics on human visual system (HVS), there is still a need in
more adequate universal visual quality metrics as well as in more
efficient image quality assessment (IQA) for particular
applications.

Design of new HVS-metrics and modification of existing ones
deal with several possible approaches. First, some new
peculiarities of HVS are taken into account to introduce quite
simple modifications into the existing metrics. The examples are
the groups PSNR—PSNR-HVS—PSNR-HVS-M—PSNR-HMA
[3] and SSIM—MSSIM—FSIM [4]. Second, more complicated
metrics are designed with an attempt to use positive features of
existing metrics and to avoid their drawbacks. Such metrics can be
treated as combined and their examples are the metrics proposed
by K. Okarma [5, 6], the metric BMMF [7], and some others [8, 9].
Within these approaches, one important aspect is how complex is a
newly designed metric? Another aspect is what is a performance
improvement with respect to (elementary, standard) metrics?
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To answer the last question, metric verification is usually
carried out for one or several existing databases. In particular,
these can be LIVE, Toyama, TID2008, TID2013, and others [10-
15]. For these databases, the observers (volunteers) have already
obtained estimates of image visual quality that have been
processed to provide mean opinion score (MOS) to database users.
Keeping in mind that HVS-metrics should be in a good
correspondence with this MOS, correlation coefficients between
the obtained array of MOS and the corresponding array of given
metric values are employed to characterize a metric performance
(adequateness). Rank correlation coefficients (more often
Spearman and less frequently Kendall rank order correlations)
have gained popularity for this task where their values approaching
to unity correspond to a closer similarity between a metric and
human perception of image quality. Note that the aforementioned
correlation coefficients are usually determined for images with all
types of distortions present in the database to characterize a
universality of the metric as well as for a subset or several subsets
of distortions to describe an applicability of a given HVS-metric
for a particular application where these distortions take place.

It is worth stressing that in practice images are corrupted by
multiple distortions. To take this into account, LIVE Multiply
Distorted Image Quality Database has been created [16, 17].
Besides, images with two types of multiple distortions are present
in TID2013 (such as denoised images and noisy images
compressed in a lossy manner).

The main contribution of this paper is the following. First,
simple combined metrics which, similarly to those in [5,6], are the
products of two standard metrics in a certain (optimized) power,
will be considered. Second, the combined metrics that jointly use
several standard metrics and employ data clustering principle, will
be designed. Third, a special attention will be paid to the cases of
multiple distortions present in aforementioned databases. The
designed metrics will be compared to the best existing
counterparts.

Combining two and three metrics

The idea of joint use of two or more elementary (partial)
quality metrics is not new. The goal is to exploit advantages of the
used metrics and diminish the influence of their drawbacks. There
are several ways to jointly use elementary metrics. First, they can
be used as arguments of some function [5, 6]. Second, they can be
used as inputs of some ‘approximator’, e.g., a trained neural
network [8]. As it will be shown later, other ways are also possible.

Let us consider the first way of metrics combination.
Similarly to the approach of Okarma in [6], let us analyze the
combined metrics that can be presented as

M
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where M, M, are some already known HVS-metrics, a and b are
parameters to be optimized.

As metrics used in M,,,;, we have chosen those that are
among the best for TID2013 [13, 14]. These metrics are the
following: FSIM and its color version FSIMc [4], MSSIM [18],
SSIM [19], VSNR [20], VIF and VIFP [21], NQM [22], WSNR
[23], UQI [24], PSNR-HVS [25] and PSNR-HVS-M [26], PSNR-
HMA and PSNR-HA [3], SFF [27], SRSIM [28], IWSSIM [29],
IWPSNR [29], and MAD index [30].

As an optimization criterion, Spearman rank order correlation
coefficient (SROCC) determined for all 24 types of distortions
present in TID2013 between a considered combined metric and
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mean opinion score (MOS) has been used. The parameters a and b
varied in the limits from -2 to +5 with the step 0.05. This allows
taking into account such properties of the considered elementary
visual quality metrics as non-linearity and different range of
possible variation. Note that for all aforementioned metrics larger
values correspond to better visual quality.

The optimization results are presented in Table 1. We show
only three best pairs for a given metric. For example, for the
standard PSNR, the best results were obtained for the metrics SFF,
FSIMc, and PSNR-HA. Recall that the best result for one
elementary metric is provided by SFF and SROCC for it is equal to
0.8513.

Table 1. Results of optimization for the metric Mcomb1 using all distortions in TID2013

Metric Combination SROCC | Combination SROCC | Combination SROCC
-0.05
PSNR PSNR%® x SFF%% | 0.8513 | PSNR%® x FSIMc®® | 0.8510 EEEEH A1_?fo 0.8484
1.05 410 MSSIM 220 x MSSIM 370 x
MSSIM MSSIM x SFF 0.8613 FSIMc' 15 0.8529 PSNRHMAX-% 0.8335
SSIM SSIM %% x SFF2%° 0.8569 | SSIM®% x FSIMc*'® | 0.8517 SSIM>™ x 0.25 0.8298
: : PSNRHMA® :
VSNR VSNR® x SFF0.05 0.00 0.05 VSNR% x
x SFF 0.8513 | VSNR*® x FSIMc 0.8510 | poNRHA 0.8335
VIF VIF 2% x FSIMc>%® 0.8604 | VIF®% x SFF0® 0.8513 | VIF®'® x PSNRHMA’® | 0.8325
VIFP VIFP %% x gFp00° 0.8513 | VIFP®® x FSIMc®%® 0.8510 VIFP>® x 0.30 0.8356
: : PSNRHMA® :
NQM NQM %% x SFFO9 0.8513 | NQM®? x FSIMc%%® 0.8510 | NQM™% x PSNRHA'® | 0.8468
-0.05
WSNR WSNR %% x SFF®% | 0.8513 | WSNR®>® x FSIMc®® | 0.8510 \léVSS,\'j\‘gH A1.s’8 0.8478
ual uQI®® x SFro0® 0.8513 | UQI*® x FSIMc®%® 0.8510 | UQI®® x PSNRHA%® | 0.8187
PSNRHVSM®% x PSNRHVSM® x PSNRHVSM" x
PSNRHVSM | 7005 0.8513 | Lo\ \1-005 0.8510 | Ko\ R4S 0.8488
PSNRHVS™® x PSNRHVS*® x PSNRHVS®'® x
PSNRHVS SFFY05 0.8513 FSIMcY% 0.8510 PSNRHA* 0.8489
PSNRHMA x PSNRHMA%% x PSNRHMA? ' x
PSNRHMA SFF'10 0.8601 FSIMcY% 0.8583 SR_SIM1'35 0.8380
PSNRHA%® x PSNRHA%" x PSNRHA'? x
PSNRHA SEF08 0.8630 | Loy 0.8569 | | VPSNRO® 0.8502
FSIM FSIM®7® x SFF'® 0.8633 | FSIM™"® xFSIMc"™® | 0.8629 | PSNRHA>® x FSIM®®® | 0.8381
0.05
FSIMc FSIMc®™® x SFE°® | 0.8676 | VIF®% x ESIMc?™® 0.8604 E’gmﬁé\ém X 0.8583
SFF FSIMc™'® x SFF*® | 0.8676 | SFF'* x SRSIM""° 0.8661 | FSIM®"® x SFF'#® 0.8633
0.10
SRSIM SFF"% x SRSIM™™ | 0.8667 | FSIM®® x SRSIM®® | 0.8513 gg’;m!\s"ﬁ X 0.8380
0.85 015 FSIMc'® x PSNRHA'® x
IWSSIM SFF*° x IWSSIM 0.8576 IWSSIM?-18 0.8521 IWSSIM™™ 0.8288
SFFY% FSIMc™® x PSNRHA'? x
IWPSNR IWPSNR®® 0.8513 | |\ Voo RO 0.8510 | | VbSNRO1© 0.8502
. SFF%% FSIMc®% x PSNRHA%® x
MAD index MAD_indexo‘oo 0.8513 MAD_indexO'OO 0.8510 MAD_indexO‘Oo 0.8187
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An interesting result has been found for the first combination
where PSNR was used as M,. In the combinations with SFF and
FSIMc, the optimal parameter a occurred to be equal to 0 and
SROCC is equal to 0.8513. This means that, in fact, PSNR is
ignored in the combined metric. Similar results are observed for
some other pairs. Besides, an optimal b often occurs to be equal to
0.05. This usually means that the results for any b5 are the same
(e.g., SROCC is the same in the combination PSNR*® x SFF® for
any positive b).

The results which are essentially better than SROCC for the
metric SFF are marked by bold and underlined. As it is seen,
SROCC for the best combination (FSIMc®"> x SFE*?) reaches
0.8676. This is by 0.016 larger than for SFF used alone. The result
is not surprising since both combined metrics possess very good
individual performance and jointly contribute to improvement.
Quite close result is provided by the metric which is the product
SFF'* x SRSIM"'°. This shows that the metrics used as
elementary ones in the combined metric should be both good.
Desirably, they should belong to different groups to incorporate
different features of HVS.

Consider now a more sophisticated combined metric (the
second type of combined metrics) constructed as

M

comb?2

=M/ xMé’xM3C @
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where ¢ is the real-valued parameter. The optimization criterion
and the methodology was the same. Since now we have more
varied parameters, the step of the parameter variation is larger.
Only the best two combinations are shown in each line of Table 2.

The maximal obtained SROCC is equal to 0.8744 which is
slightly larger than that for the best M.,,,;;. This SROCC is
observed for the combined metric FSIM™* x FSIMc'* x
SR_SIM®®. This result is quite interesting since both variants of
the metric FSIM (grayscale FSIM and the color version FSIMc)
participate in it and they are in negative (-1.4) and positive (1.3)
powers, respectively.

Quite good combinations are also FSIM™!® x FSIMc'* x
SFF*® and PSNRHA’? x FSIMc*'® x SFF** both providing
SROCC of the combined metric with MOS over 0.87. Meanwhile,
optimization often produced results as, e.g., FSIMc'>® x SFF*** x
ITWPSNR*® which is, in fact, equivalent to the combined metric of
the first type FSIMc'* x SFF>*,

Therefore, a preliminary conclusion is the following: even
simple combinations of elementary metrics can produce
performance improvement, but a larger number of used elementary
metrics provide better results.

Table 2. Results of optimization for the metric using all distortions in TID2013

Metric Combination SROCC | Combination SROCC
PSNR PSNR*® x FSIMc"*° x SFF>*° 0.8676 | PSNR*® x SFF*% x SRSIM**° 0.8661
MSSIM MSSIM % x FSIMc>™® x SFF**° 0.8678 | MSSIM*? x SFF*'% x SRSIM**° 0.8662
SSIM SSIM® x FSIMc"*° x SFF#%° 0.8676 | SSIM*® x SFF*% x SRSIM**° 0.8661
VSNR VSNR>® x FSIMc"*° x SFF?° 0.8676 | VSNR*® x SFF*% x SRSIM**° 0.8661
VIF VIF®% x FSIMc'*° x SFF#%° 0.8676 | VIF*® x SFF*% x SRSIM**° 0.8661
VIFP VIFP®® x FSIMc"® x SFF?%° 0.8676 | VIFP®® x SFF>% x SRSIM**° 0.8661
NQM NQM®% x FSIMc'*° x SFF#%° 0.8676 | NQM*® x SFF>*%® x SRSIM**° 0.8661
WSNR WSNR*® x FSIMc'*° x SFF?%° 0.8676 | WSNR>® x SFF*% x SRSIM**° 0.8661
ual uQI*® x FSIMc™*® x SFF**° 0.8676 | UQI*® x SFF>*® x SRSIM**° 0.8661
PSNRHVSM PSNRHVSM®® x FSIMc'® x SFF**® | 0.8676 | PSNRHVSM®® x SFF>® x SRSIM*® | 0.8661
PSNRHVS PSNRHVS®® x FSIMc"*° x SFF*%° 0.8676 | PSNRHVS®® x SFF*% x SRSIM**° 0.8661
PSNRHMA PSNRHMA'® x FSIMc"*° x SFF37° 0.8695 | PSNRHMA®>'"® x SFF**° x SR_SIM*® | 0.8678
PSNRHA PSNRHA>? x FSIMc*'® x SFF**° 0.8701 | PSNRHA"' x SFF>™° x SRSIM*®° 0.8681
FSIM FSIM™" x FSIMc™* x SR_SIM®*®° 0.8749 | FSIM""" x FSIMc™*° x SFF*®° 0.8717
FSIMc FSIM™' x FSIMc"* x SR_SIM®®° 0.8749 | FSIM""° x FSIMc"#° x SFF%° 0.8717
SFF FSIM™"° x FSIMc"*° x SFF*%° 0.8717 | PSNRHA’? x FSIMc*" x SFF**° 0.8701
SRSIM FSIM™' x FSIMc"* x SR_SIM®*®° 0.8749 | FSIMc*? x SFF*"® x SRSIM"®° 0.8683
IWSSIM FSIMc®'® x SFF*? x IWSSIM®° 0.8684 | SFF*'® x SRSIM*% x IWSSIM?° 0.8674
IWPSNR FSIMc"* x SFF?%° x IWPSNR*® 0.8676 | SFF*% x SRSIM**® x IWPSNR"® 0.8661
MAD index FSIMc"* x SFF2% x MAD index *%° 0.8676 | SFF*% x SRSIM**® x MAD index >% 0.8661
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Combining several metrics using clustering

Alongside with the combined metrics M,,,,;; and M., We
have proposed to design the combined metrics based on the
clustering. It allows using more than two or three particular
metrics. We have analyzed the cases from 2 to 8 metrics. Let us
keep in mind that more metrics means more possible combinations
at the design stage and more calculations at the stage when
combined metrics are used.For clustering based combined metrics,
the leaning stage was needed similarly to NN-based metrics [8].
Both learning and verification have been carried out for the
database TID2013 divided into equal parts (1500 images used for
training and 1500 for verification). Numerous combination sets of
the particular metrics chosen from the best 20 metrics randomly
have been exploited. A combined metric for a given image is
obtained as the result of corresponding particular metric
comparison with its threshold within the clustering tree till falling a
final cluster and assigning the combined metric value to it. This
value is obtained as an average MOS for a given cluster. Factors
that influence clustering efficiency are considered below.

There are numerous clustering techniques. Here we have
employed a popular method of k-means [31, 32]. For a good
operation of this method (correct calculation of cluster centers), it
is desirable to provide that set element coordinates have equal
scale and have linear variation scale. To ensure this, for all metrics
used in clustering, robust fitting of these metrics to MOS for the
database TID2013 has been done using the power functions as:

y=d*x*+1, 3)
where x is a metric, y denotes a fitted metric value in MOS

range, d, e, and f denote the coefficients obtained as a result of
fitting using standard Matlab tools (bisquare).A list of elementary
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metrics used in the cluster-based approach to combined metric
design and the obtained values of parameters d, e, and f are
presented in Table 3.

Then, we have carried out pair-wise clustering of these
metrics (SFF / PSNRHMA, FSIMc / PSNRHVSM, SRIM / VIF,
VSNR / PSNRHA). For training we have used a half (1500) of
MOS of the database TID2013 chosen from entire array of MOS
values randomly ("learning or training) set"). The remained 1500
MOS values have been used for the verification of clustering
quality, i.e., as a "verification set").

Table 3. Metrics and results of fitting

N | Metric D e f

1 | SFF -3.981 18.23 1.82

2 | PSNRHMA -265.2 -1.194 8.643

3 | FSIMc 3.751 10.63 2.06

4 | PSNRHVSM -1129 -1.916 6.128

5 | SRIM 3.806 19.8 1.92

6 | VIF 5.765 0.3881 -0.07862
7 | VSNR -46.18 -0.9676 6.608

8 | PSNRHA -526.4 -1.444 8.326

Entire set of elements has been distributed between 25 clusters for
each metric after fitting. If some cluster had less than 10 elements
(the influence of cluster number and minimal size will be discussed
below), then elements of this cluster are spread between larger
neighbor clusters. Fig. 1 presents clustering results for the
elementary metrics SFF and PSNRHMA.

Numbers of clusters and MOS values
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Figure 1. Result of clustering the metrics PSNRHMA and SFF
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Large black color digits show indices (numbers) of clusters
where we have got 19 clusters after reforming small size clusters.
Small digits show MOS for each element (particular image in the
database TID2013). MOS of images that fell into the same cluster
is shown by the same color to differ elements of neighbor clusters.
Note that such representation is useful in analysis of metric
drawbacks. For example, for clustering in Fig. 1, there are such
clusters found for which the results for one metric are obviously
incorrect. These are the results for the metric PSNRHMA for
cluster #11, the results for the metric SFF for cluster #7. There are
also clusters where there is a weak correspondence between MOS
and both metrics (e.g., cluster #3) and clusters where there is a
strong correspondence for both metrics and they can support each
other (cluster #2).

Then, for elements of each cluster and both metrics, their
fitting to MOS is accomplished using a first order polynomial:

y=g*x+h, “)

where x is a metric value for the cluster elements, y denotes a
forecasted MOS value, g and h are coefficients obtained by the
standard least mean square error (LMSE) fitting. For each cluster
and both metrics, the parameters g and h are saved (denote them as
g1, hy, g, hy) for the considered two metrics. The fitting errors
characterized by fitting RMSE (denote them as o; and o;) are
saved as well. Then, for the combined metric obtained by clustering
its value is determined according to the following algorithm:

1. Calculate the values of the first and second used metrics m;
and m, for a given image.

2. Using expressions (3) and parameters given in Table 3,
calculate the values of these metrics transformed by fitting into
MOS scale. Denote these new values as m,,; and m,,.

3. Find the cluster which is the closest to m,,; and m,.

4. According to expression (4) and the saved (for the
determined cluster) values g, h;, g, h,, 67 and o,, calculate the
resulting weighted value of the combined (integral) metric m; as

m; = (Mg + hy)/o) + (Mg, +hy)/65) / (o) + 63). ®)

Note that instead of weighted averaging (5) it is also possible
to set m; equal to m,,;, if 6| < 6, and m,, otherwise.

Note that, on one hand, a larger number of clusters and a
smaller limit on the minimal acceptable cluster size leads to more
accurate estimation of MOS according to (5) for the training set.
On the other hand, it is then difficult to accurately estimate
parameters used in expressions (4) and (5) which results in a less
accurate MOS estimation for the verification set and for other
practical images (which are not in TID2013). To have some trade-
off, one can use as initial number of clusters approximately 25 and
a minimal number of elements in small clusters as 0.5%...1% of
the total number of elements in the training set.

After pairwise clustering of elementary metrics, we have
carried out pairwise clustering of the obtained integral metrics. As
a result, two sets of clustering results have been obtained where the
first set takes into account the following metrics:  SFF,
PSNRHMA, FSIMc, and PSNRHVSM, and the second set
accounts for the metrics SRIM, VIF, VSNR, and PSNRHA.
Finally, at the final stage of clustering, all eight metrics have been
combined in the final integral metric.

Table 4 presents SROCC values for all stages of clustering.
Besides, for comparison, we give SROCC values for some
elementary and combined metrics, presented earlier in Tables 1 u
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2, for both sets. This allows us to analyze a variability of SROCC
depending on the used subset. Note that “training” and
“verification” have no meaning for the combined metrics.

Table 4. SROCC values for training and verifications sets

Metric Training Verificati
subset on subset
Separate metrics
FSIMc 0.845 0.857
SFF 0.850 0.853
PSNRHMA 0.809 0.817
PSNRHVSM 0.604 0.646
Metrics combined according to (1) and (2)
PSNRHMA®®SFF' 10 0.857 0.864
PSNRHMA®"® SFF*" FSIMc'° 0.866 0.874
FSIM™*° FSIMc"*° SRSIM*#° 0.871 0.879

Metrics combined by clustering of 2 metrics

PSNRHMA / SFF 0.867 0.864
PSNRHVSM / FSIMc 0.873 0.871
SRSIM / VIF 0.862 0.874
VSNR / PSNRHA 0.859 0.859

Metrics combined by clustering of 4 metrics

PSNRHMA / SFF / PSNR-HVS-

M / FSIMc 0.880

0.895

SRSIM/ VIF / VSNR / PSNRHA 0.898 0.896

Metric combined by clustering of 8 metrics

PSNRHMA / SFF / PSNR-HVS-
M/ FSIMc/ SRSIM/ VIF /
VSNR / PSNRHA

0.916 0.901

The analysis of data in Table 4 shows the following. First,
imperfectness of clustering results in less SROCC for the
verification set than that for the training set of all clustering based
combined metrics. Second, more elementary metrics are used in
clustering combined metric, larger SROCC is provided where the
largest value exceeds 0.9 for both training and verifications sets.

Data for some combined metrics obtained according to (1)
show that some combinations do not produce benefits compared to
the better elementary metric (see the results for the metric
PSNRHVSM*? x FSIMc"%). However, clustering based approach
allows reaching SROCC=0.873 for training and 0.871 for
verification sets, i.e., better than for any combined metric of the
type (1). Recall, that SROCC for FSIMc is equal to 0.857 and
SROCC for PSNRHVSM is only 0.646.

Analysis of data in Table 4 shows that the best positive effect
due to clustering for two elementary metrics is observed if one
metric is suited well for taking into account color distortions while
another metric is designed for grayscale images.

Fig. 2 presents the scatter-plot of MOS for the metric FSIMc
which has the largest SROCC for elementary metrics considered in
this paper. For the convenience of analysis, different levels of
distortions in TID2013 are presented in the scatter-plot by different
colors (the 1-st (smallest) level by green, the 2-nd level by cyan,
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the 3-rd level by blue, the 4-th level by red and the 5-th (highest)
level by black (note that MOS values in TID2013 are from almost
zero to approximately 7.2). The integer numbers from 1 to 24 in
the scatter-plot correspond to distortion type indices in TID2013
(totally, 24 types). Small letters of Latin alphabet from « to y near
numbers correspond to indices of reference images in the database
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from 1 to 25. Then, each point of the scatterplot can be easily
connected with the corresponding distorted image in TID2013. For
example, black mark 13b corresponds to the 5-th level of
distortions for the 13-th distortion type for the second reference
image (the letter b is at the second position in the alphabet); this
corresponds to the image 102 13 5.bmp of the database TID2013.

FSIMc vs MOS
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Figure 2. Scatter-plot of MOS values for FSIMc metric
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Analysis of the scatter-plot in Fig. 2 shows that the metric
FSIMc sufficiently underestimates visual quality for the 17-th type
of distortions (contrast changes) and considerably overestimates
quality for the 18-th type of distortions (change of color saturation)
and most images with distortion level #5 (that have low visual
quality). Meanwhile, the metric demonstrates good results for most
types of distortions for relatively low levels of distortions (from the
first to the third level).
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The scatter-plot for the combined clustering based metric (8
elementary metrics) is shown in Fig. 3.

It is seen well that a quality of evaluation has radically
increased for the 17-th and 18-th types of distortions and for the
fifth level of distortions. However, the correspondence between the
metric values of MOS is still worth improving.

Clustering of 8 metrics vs MOS
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Figure 3. Scatter-plot of MOS vs the designed combined clustering based metric that uses 8 elementary metrics
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Performance analysis for multiple distortions
The designed combined metrics M., and M,,,.;; have been

tested for three cases:

e  images with multiple distortions (md) in the LIVE Multiply
Distorted Image Quality Database (further denoted as
MDLIVE;

e all images in MDLIVE,;

e multiple distortions (## 9 and 21) in TID2013.

The obtained data are presented in Table 4. If it is written in
column 2 “only SFF”, it means that for M,,,;,; a=0 in (1).
Similarly, if it is written in column 6 “only SFF and FSIMc”, it
also means that =0 in (2).

First, we would like to present the results for the best three-
and four-component combined metrics proposed in [6] and applied
to images in TID2013. For three-component combined metric
(based on VSNR, NQM, and IFC), the SROCC for all 24 types of
distortions is equal to 0.7063. This is quite low value taking into
account that SROCC for elementary metric SFF is 0.8513. SROCC
for multiple distortions is 0.9027. This is not bad, however, at the
same time, not excellent (see data in Table 4 and analysis below).

Table 5. SROCC values for different combined metrics
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Similarly, for four-component combined metric proposed in
[6] (based on VSNR, NQM, IFC, and VIF), the SROCC for all 24
types of distortions is equal to 0.7061 (again low) and SROCC for
multiple distortions is equal to 0.9153. Thus, the optimization
results obtained in [6] for the database MDLIVE do not perform
too well for the other databases (in particular, for TID2013).

Data for images with multiple distortions (md) in the LIVE
Multiply Distorted Image Quality Database (the first case) allow
comparing the results of the combined metric optimization carried
out for one database (TID2013) with the results for the other
database. The best elementary metric SFF (according to analysis
for TID2013) produces SROCC equal only to 0.761, i.e. quite low.
The combined metric M,,,,;; based on FSIMc and SFF (see Section
2) produces SROCC equal to 0.7653. The best M,,,,;; occurs to be
based on IWSSIM and SFF and SROCC for it is equal to 0.7752.
The results for the second type of combined metric (M,,,.;,) are
even worse (see data in Table 4). SROCC in the best case is
slightly larger than 0.77 and it is not enough. This shows that the
optimization results for different databases differ a lot. We have
applied the designed combined clustering based metric. The
SROCC value for it is 0.74. Thus no benefit is provided.

) Mcomb1 Mcomb2
Metric \,C\,.?: bined MDLIV | MDLIV | TID201 | Combined with MDLIVE | MDLIV | TID2013
E(md) | E(Full) | 3(9,21) (md) E (Full) | (9,21)
PSNR only SFF 0.7610 0.8699 0.9257 only SFF and FSIMc 0.7653 0.8725 0.9407
MSSIM SFF 0.7478 | 0.8658 | 0.9311 SFF and FSIMc 0.7640 0.8719 | 0.9413
SSIM SFF 0.7532 0.8673 0.9261 only SFF and FSIMc 0.7653 0.8725 0.9407
VSNR only SFF 0.7610 0.8699 0.9257 only SFF and FSIMc 0.7653 0.8725 0.9407
VIF only SFF 0.7610 0.8699 0.9257 only SFF and FSIMc 0.7653 0.8725 0.9407
VIFP only SFF 0.7610 0.8699 0.9257 only SFF and FSIMc 0.7653 0.8725 0.9407
NQM only SFF | 0.7610 | 0.8699 | 0.9257 | only SFF and FSIMc 0.7653 0.8725 | 0.9407
WSNR only SFF 0.7610 0.8699 0.9257 only SFF and FSIMc 0.7653 0.8725 0.9407
uaQl only SFF 0.7610 0.8699 0.9257 only SFF and FSIMc 0.7653 0.8725 0.9407
PSNRHVSM | only SFF 0.7610 0.8699 0.9257 only SFF and FSIMc 0.7653 0.8725 0.9407
PSNRHVS only SFF 0.7610 0.8699 0.9257 only SFF and FSIMc 0.7653 0.8725 0.9407
PSNRHMA SFF 0.7374 0.8575 0.9427 SFF and FSIMc 0.7591 0.8692 0.9447
PSNRHA SFF 0.7238 | 0.8506 | 0.9493 | SFF and FSIMc 0.7530 0.8657 | 0.9492
FSIM SFF 0.7645 0.8713 0.9367 FSIMc and SRSIM 0.7705 0.8766 0.9564
FSIMc SFF 0.7653 0.8725 0.9407 FSIM and SRSIM 0.7705 0.8766 0.9564
SFF FSIMc 0.7653 0.8725 0.9407 FSIM and FSIMc 0.7708 0.8769 0.9430
SRSIM SFF 0.7684 0.8727 0.9436 FSIM and FSIMc 0.7705 0.8766 0.9564
IWSSIM SFF 0.7752 0.8780 0.9295 SFF and FSIMc 0.7572 0.8676 0.9421
IWPSNR only SFF 0.7610 0.8699 0.9257 only SFF and FSIMc 0.7653 0.8725 0.9407
MAD index only SFF 0.7610 0.8699 0.9257 only SFF and FSIMc 0.7653 0.8725 0.9407
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Data for the case two (all images in MDLIVE) demonstrate
that all presented combined metrics perform for MDLIVE well
enough. SROCC for SFF is 0.8699, i.e. larger than for all types of
distortions in TID2013. The metric M., based on FSIMc and
SFF produces SROCC equal to 0.8725. The best M., is again
based on IWSSIM and SFF and SROCC for it is equal to 0.8780.
These are quite high SROCC values. The best results for M,,,,;, are
at the same level (see data in Table 5). The largest SROCC is
observed for elementary metrics SFF, FSIM and FSIMc (0.8769).
Note that M,,,;,; and M., have not been re-optimized to
MDLIVE. The SROCC value for the best combined clustering
based metric is 0.86. This is approximately at the same level as the
best elementary metric.

Finally, for the case 3 (multiple distortions in TID2013), all
combined metrics perform well providing SROCC over 0.92 for
M.,..,; and over 0.94 for M.,,.,. For M., the best result is
provided by the combined metric on basis of PSNR-HA and SFF
(SROCC=0.9493). In turn, for M., the best performance is
observed for the metric on basis of elementary metrics SRSIM,
FSIM and FSIMc (SROCC=0.9564). The best clustering-based
combined metric produces SROCC exceeding 0.95, i.e. at the same
level with the best metrics.

CONCLUSIONS

We have considered two ways of combining several full-
reference visual quality metrics. The general tendency is that by
increasing the number of particular (input) metrics it is possible to
provide better performance characterized by SROCC calculated
between a combined metric and MOS. Such a combination can be
helpful for a metric universality (increasing SROCC for all types
of distortions) and for particular applications where multiple
distortions can be met. Optimization of a combined metric
performed for one database can be not efficient for other databases.
Clustering-based combined metric produces better results than
simple combinations of elementary metrics.
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