

Intelligent Image Filtering using Multilayer Neural Network with
Multi-Valued Neurons
Igor Aizenberg; Texas A&M University-Texarkana;Texarkana, TX, USA

Abstract

Image filtering, regardless of whether it is denoising (low
pass filtering) or edge detection (high pass filtering) can be
considered as a machine learning problem. In fact, filtering is a
process of approximation of a desirable result. A filter is
considered good, if it approaches this ideal result better than other
filters. But any machine learning problem should be considered
from exactly the same standpoint. In this paper, we suggest to use
a multilayer neural network with multi-valued neurons (MLMVN)
as an intelligent image filter. After MLMVN is trained using a
number of n x n patches from different images to obtain a clean
patch from a noisy one, it can be used as an intelligent filter. It is
shown that this filter is robust, since it performs well on different
images, which did not participate in the learning process. It terms
of PSNR, this approach shows results comparable with other
filters commonly recognized as good. A specific advantage of the
presented approach is its ability to preserve small details carefully.

Introduction
There are numerous different filters and many of them have

become classical. The most of filters should be considered as
“engineered” algorithms where their designers know what they
want to achieve and use well determined certain techniques to
achieve their goals. Perhaps, BM3D filter [1] is the best example
of such well-engineered filters (it is also commonly recognized as
one of the most efficient nonlinear filters ever).

We would like to consider here the filtering problem from a
different standpoint. Instead of designing a filter we will let a
machine learning tool to learn what a filtering process is, and then
perform this process accordingly. Image filtering, regardless of
whether it is denoising (low pass filtering) or edge detection (high
pass filtering) can certainly be considered as a machine learning
problem. In fact, filtering is a process of approximation of a
desirable result. A filter is considered good, if it approaches this
ideal desirable result better than other filters. But any machine
learning problem should be considered from exactly the same
standpoint. Any machine learning tool learns a problem in terms of
better approximation of a desirable result. In such a case, on the
one hand, a machine learning tool remains a “black box” because
the researcher does not know what exactly the tool has extracted
from the learned data. But on the other hand, any machine learning
tool performs as a sophisticated nonlinear
interpolator/approximator. Learning from some representative
data, it can then be used to interpolate (approximate) or predict
other similar data, which did not participate in the learning process.

The use of machine learning in image filtering is not new. In
this paper, we will employ the idea first suggested in [2] and then
developed and presented in detail in [3], [4]. This idea is to filter
an image using a neural network, applying filtering to all pixels of
an n x n patch simultaneously and averaging then the results for
overlapping parts of patches. In [2]-[4], it was proposed to use a
classical multilayer feedforward neural network (the multilayer

perceptron, or simply MLP) with 3-4 hidden layers as an
intelligent filtering tool. Basically, the idea of filtering by patches
was originally proposed in [1] and employed in BM3D filter. In
[2]-[4], this idea was considered from the different standpoint.
While in BM3D filter statistically similar patches are blocked in a
group and then this group is filtered simultaneously, in the neural
intelligent approach developed in [2]-[4], it was suggested to learn
using a neural network how to create a clean patch from a noisy
one using the large number of patches taken from many different
images. Then a trained network is expected to filter patches from
other images, which were not presented in a learning set.

In this paper, we will employ the same idea of intelligent
image filtering using a neural network, which processes
overlapping patches after it was trained using a representative
learning set containing patches taken from different images. Hence
our first task is to create a learning set from a number of n x n
patches randomly taken from different images. Noisy patches will
be used as inputs (therefore a network will have 2n inputs) and the
corresponding clean patches will be used as desired outputs
(therefore the network will have 2n outputs). Then we need to
train a neural network. After a network is trained, it should be used
for filtering an image through dividing it into n x n overlapping
patches, filtering all pixels in each patch simultaneously and
averaging then the results for overlapping parts of patches. We will
have to find the optimal n (size of a patch), optimal topology of a
neural network, optimal size of a learning set, optimal number of
images used to create the learning set, and optimal offset for
overlapping patches to ensure the best filtering results. Basically,
we have to consider the same tasks, which were solved for MLP in
[2]-[4]. However, we will use here a different type of a neural
network. We suggest doing intelligent image filtering using a
multilayer neural network with multi-valued neurons (MLMVN)
[5]. This is also feedforward neural network with a standard
feedforward topology (where the outputs of all neurons from the
preceding layer are connected to the corresponding inputs of all
neurons from the current layer). However this network consists of
multi-valued neurons with complex-valued weights [6]. The latter
determines important advantages of MLMVN over many other
machine learning techniques. Being more functional, learning
faster and generalizing better, MLMVN significantly outperforms
MLP in many applications [5]-[7]. Hence it is very attractive to use
MLMVN as an intelligent filter hoping that it should be able to
outperform MLP when solving this problem.

As it will be shown below, MLMVN meets these expectations.
The network just with a single hidden layer, after it is trained using
a representative set of patches taken from different images, is able
to filter an image, which has not participated in the learning
process. This can be done without any significant smoothing of
small details. Thus MLMVN demonstrates its robustness and
shows results comparable with other filters commonly recognized
as good.

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.15.IPAS-013

IS&T International Symposium on Electronic Imaging 2016
Image Processing: Algorithms and Systems XIV IPAS-013.1

Multilayer Neural Network with Multivalued
Neurons (MLMVN)

MLMVN consists of multi-valued neurons (MVN) with
complex-valued weights, and this is its main distinction from a
classical feedforward neural network. Complex-valued neural
networks are as natural as the real-valued ones. Using complex-
valued inputs/outputs, weights and activation functions, it is
possible to increase the functionality of a single neuron and a
neural network, to improve their performance, and to reduce the
training time [6].

MVN, which is the first historically known complex-valued
neuron, implements a mapping between n inputs and a single
output. While MVN’s inputs and output are complex numbers
located on the unit circle, its weights are arbitrary complex
numbers. An input/output mapping of a continuous MVN is
described by a function of n variables)(1 nx ..., ,xf , : nf O O ,

where O is a set of points located on the unit circle. An
input/output mapping of a discrete MVN is also described by a
function of n variables)(1 nx ..., ,xf , : n

kf E O , where

 0 2 1, , ,..., k
k k k k kE      , 2 /i k

k e   , and i is an

imaginary unit. When an MVN output is also discrete, the last
function is transformed to : n

k kf E E , while if MVN inputs are

continuous and its output is discrete, this function becomes
: n

kf O E . Such a function can be represented using n+1

complex-valued weights as follows [6]:

)()(1101 nnn xw...xwwPx ..., ,xf  , (1)

where nx ..., ,x1 (, 1, ...,j kx E j n ) are neuron inputs and

n , ...,w,ww 10 are the weights. P is the activation function,

which is for the continuous and discrete MVN, respectively:

()() / | |iArg zP z e z z  (2)

2() if 2 arg 2 (1) ,j i j / k
kP z = e , j / k z j+ / k     (3)

where nn xw...xwwz  110 is the weighted sum, Arg z is

the main value of the argument of the complex number z.
The MVN learning is based on the error-correction learning

rule [6]:

   1 1
r

r r
r

CW W D Y X
n z   


, (4)

where X is the vector of neuron inputs complex-conjugated, n is
the number of neuron inputs, D is the desired output of the neuron,

()Y P z is the actual output of the neuron, r is the number of the

learning step, rW is the current weighting vector, 1rW  is the

following weighting vector, rC is a learning rate (it is complex-

valued in general, but in all simulations known so far 1rC  was

used. So in all simulations, which we have done in this work, we
used 1rC  either), and rz is the absolute value of the weighted

sum obtained on the rth learning step. A factor 1/ | |rz should be

used when correcting the weights of hidden neurons in a neural
network, which for the exact errors are not known. But it should
not be used for output neurons in a network, which for the exact
errors are known.

The use of MVN as a basic neuron in an MLMVN was
suggested in [5]. MLMVN is a feedforward neural network (like
MLP), but its significant distinctions and advantages are
determined by using MVN as its basic neuron. The most important
advantages of MLMVN are its higher functionality, better
generalization capability and simplicity of learning when
compared to MLP. MLMVN learning is derivative-free. Its
backpropagation learning algorithm [5]-[7] is based on the same
error-correction learning rule (4) as the one for a single MVN.

In this paper, we will employ the batch learning technique for
MLMVN recently suggested in [8]. This is a batch linear least
squares (LLS) learning algorithm, which drastically (two orders of
magnitude) reduces the number of learning iterations and learning
time keeping the same generalization accuracy as a regular MLVN
learning algorithm. Batch learning for a neural network is a
learning technique where, in each iteration, the weights are
adjusted for all learning samples simultaneously. This means that
the network errors shall be calculated first for all learning samples,
and then the adjustment factors should be found based on these
errors. In [9], it was suggested to use such a procedure to train
MLMVN with a single output neuron. A batch procedure was
applied only to the output neuron, while all hidden neurons were
trained in the regular way. Then in [8] this procedure was modified
and adapted to MLMVN with multiple output neurons.

Let us consider an MLMVN with n inputs, a single hidden
layer containing H neurons, and multiple neurons in the output
layer. Let us have a learning set containing M learning samples.
The network errors should be calculated as

*
2 2 2 2; 1,...,j j jD Y j N    . (5)

where 2jD is the desired output of the jth neuron from the 2nd

(output) layer; 2jY is the actual output of the same neuron, and

2N is the number of output neurons. Then these errors they should
be backpropagated as follows

*
2 2 2

2

1 ; 1,...,j j j N
t

   , (6)

where j2 specifies the jth neuron of the 2nd (output) layer;

2 1 1t N  , i.e. the number of all neurons in the preceding layer
(the first hidden layer where the error (6) will be then
backpropagated to) incremented by 1.

Then the errors of the first hidden layer neurons are
2

,2 1
1 2

1

1 ()
1

N
j

i j i
j

w
n

  




  , (7)

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.15.IPAS-013

IS&T International Symposium on Electronic Imaging 2016
Image Processing: Algorithms and Systems XIV IPAS-013.2

where i1 specifies the jth neuron of the 1st (hidden) layer, ,2j
iw is

the ith weight of the jth neuron from the 2nd (output) layer, and n is
the number of network inputs.

The learning process shall continue until the root mean square
error of the network (averaged over all output neurons) drops
below a pre-determined desired tolerance threshold. Hence the
squared error of the network for the rth learning sample is

 
2 2

12

1 ; 1,...,
N

r jr
j

r M
N




   . (8)

where M is the number of learning samples and

   mod ; , 0,1,..., 1
r rr j r j rk k        (k is taken from

(3)) is a local error for the rth learning sample taken from the jth
output neuron. Then the MLMVN learning process (under RMSE
criterion) continues until RMSE drops below a pre-determined
desired tolerance threshold  :

1

1 M

r
r

RMSE
M




   . (9)

To adjust simultaneously the weights of the h th hidden neuron
(11,...,h N), we need to add the weight adjustment factors

[] []
0 ...h h

nw w  to its weights. For the h th hidden neuron and for
the j th learning sample must satisfy [8]

[] [] [] []
0 1 1 ...h h j h j h

n n jw w x w x        (10)

where 1 ,...,j j
nx x are the network inputs for the j th learning

sample. Actually, (10) can be considered as a system of M linear
algebraic equations in 1n  unknowns (adjustment terms)

[] []
0 ,...,h h

nw w  over the field of complex numbers. These

unknowns are the 0 1, ,..., nw w w  
In matrix-vector notation we can rewrite (10) as

[] []
1,1 1, 0 1

[] []
,1 ,

1

1

h h
n

h h
M M n n M

x x w

x x w





     
         
         


    


 (11)

or simply
[] []h hXa δ (11a)

In principle, if there exists an exact unique solution []ha to (11a),
we can adjust the weights [] [] []

0 1, ...,h h h
nw w w in a manner that

reduces the neuron’s error for all M learning samples
simultaneously. Then the adjusted weights ,1 ,1 ,1

0 1, ...,h h h
nw w w are

given by
[] [] []h h h w w a (12)

where
T[] ,1 ,1

0 ...h h h
nw w   w and

T[] ,1 ,1
0 ...h h h

nw w   w   .

System (11a) is typically overdetermined, meaning
1M n  . In this case, we can find a unique least squares

solution []ha that satisfies

[]

2[] [] []

[] † []

arg min

h

h h h

h h

 



a

a Xa δ

a X δ





(13)

where † H 1 H()X X X X is the pseudo-inverse of X and  H

denotes the conjugate-transpose (transjugation) operation. For
computer implementation purposes, †X can be efficiently
computed using the QR decomposition or the singular value
decomposition (SVD) of X . The adjusted weights of the hidden
neuron are then given by

[] [] []h h h w w a (14)

Eq. (13) and (14) are of course valid for any hidden neuron
1[], 1,...,h h N , and therefore provide a general LLS-based

learning rule for hidden neurons.
Once the weights of all hidden neurons are adjusted, and their

outputs are updated, we can apply the same procedure to adjust the
weights of output neurons. It is important to take into account that
before adjusting output neurons’ weights, we must update the
network errors according to (5) and the output neurons' errors
according to (6). It is straightforward to see that for the output
neurons (11a), (13), (14) are transformed to the following
equations, respectively:

[] [] [] []
1,1 1, 0 1

[] [] [] []
,1 ,

[] [] []

1

1

o o o o
H

o o o o
M M H H M

o o o

x x w

x x w





     
     

     
         

X a δ


    



(15)

 †[] [] []o o oa X δ (16)

[] [] []o o o w w a (17)

In (15)-(17),   2, 1,...,o o N is the index of an output neuron,
[]oX is the matrix of output neuron inputs, or equivalently the

matrix of hidden neuron outputs.
Namely, a particular entry []

,
o
j hx is given by

 [] [] []
, ,1 ,1 o h h

j h j j j nx y P x x    w (18)

where []h
jy is the output of the h th hidden neuron for the j th

learning sample, and  P is the MVN activation function (1).
Also, consistent with previously used notation,

T[] ,2 ,2
0 ...o o o

Hw w   w is the vector of original output neuron

weights, and
T[] ,2 ,2

0 ...o o o
Hw w   w   is the vector of adjusted

output neuron weights.
After the adjustment of output neuron weights, a learning

iteration is completed. This learning procedure is iteratively
repeated until the RMSE criterion (9) has been satisfied.

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.15.IPAS-013

IS&T International Symposium on Electronic Imaging 2016
Image Processing: Algorithms and Systems XIV IPAS-013.3

This algorithm is utilized in Matlab. The corresponding Matlab
functions along with the data used for simulations in this paper can
be found at http://www.freewebs.com/igora/ under “Download
Software Simulators and Data”.

Approach to Filtering using MLMVN
As it was mentioned above, our general approach to filtering is

basically similar to the one used in [2]-[4], but additionally to the
use of MLMVN instead of MLP we found that a simpler network
topology can be employed as well as there are some distinctions in
the implementation.

Thus the approach to filtering is as follows. A basic idea is to
filter not isolated pixels based on the information taken from their
local neighborhood, but to filter all pixels in an n x n patch
simultaneously. An image to be filtered shall be divided into
n x n overlapping patches. The smaller is the offset for creating
patches, the better final result should be expected.

Each n x n patch shall be filtered separately using a neural
network with 2n inputs and 2n neurons in the output layer. This
means that all pixels in the patch shall be processed simultaneously
based on the information only from the same patch. Each input of
the network represents the intensity value in the corresponding
pixel of the input patch. Each output neuron creates the output
intensity value in the corresponding pixel of the output patch.

In [2]-[4], MLP with 4 hidden layers, each containing 512
neurons was found the most efficient for solving the filtering
problem. However, we found experimentally that MLMVN with
just a single, but relatively big hidden layer learns much faster than
a network with multiple hidden layers, not losing the
generalization capability. The use of just a single hidden layer
makes it also possible to employ a batch linear least squares (LLS)
learning algorithm [8], which speeds up the learning process
drastically, also allowing for the extension of a learning set. Hence,
we employed 2 2

1n N n  network topology (here the first
2n n n  is the number of network inputs, 1N is the number of

hidden neurons, and the second 2n n n  is the number of
network output neurons and network outputs, accordingly).

To train MLMVN, a learning set containing the pixel
intensities from the noisy patches randomly selected from different
images as inputs and the pixel intensities from the patches of the
corresponding clean images as desired outputs was created.

For our experiments at this stage of this work we used additive
non-correlated Gaussian noise artificially generated for each image
with 0.2noise  where  is the standard deviation of the
corresponding clean image.

We employed MVN with discrete inputs and continuous output
in the hidden layer and MVN with continuous inputs and discrete
output in the output layer.

Since MVN and MLMVN, accordingly, have complex-valued
inputs and produce complex-valued outputs located on the unit
circle, a pretty standard approach was used to transform integer
input intensities into complex-valued inputs of the network and
complex-valued outputs of the network to the integer output
intensities. To avoid closeness of the “white” and “black” parts of
the intensity range  0,1,..., 255I  on the unit circle, we used

288k  in (3). This value was chosen experimentally. While, for
example, for 264k  and 384k  a learning process goes much

slower, for 288k  it goes much faster. This experimental finding
confirms considerations made in [10] where it was shown that a
multiple-valued discrete input/output mapping, being non
implementable using a neuron or a neural network in l-valued
logic, can be implementable in m-valued logic where l m . Thus
if the intensity j I , then the corresponding network input

located on the unit circle is 2 /288i je  . Since the output neurons
employ discrete activation function (3), then the output of each
output neuron is determined by (3) and the corresponding output
intensity equals j taken from (3) accordingly. Taking into account
that 288k  in (3) and to ensure that j I , the following
additional procedure was used to adjust the resulting intensities, if
necessary

255 272 255,
272 288 0.

j j
j j

   
   

After MLMVN is trained, it can then be used for performing
actual filtering. To filter an image, the overlapped patches with a
given offset shall be taken from an image, starting from its top-left
corner down to its bottom-right corner. Each patch shall be filtered
separately using MLMVN. Then, the final output intensity
 ,g x y in the pixel with the coordinates  ,x y shall be found

by averaging the resulting intensities  , , 1,...,i xyg x y i S in this

pixel from all xyS overlapping patches where this pixel appears

 
 

1
,

,

xyS

i
i

xy

g x y
g x y

S



.

Experimental Results
To test the approach presented above, a number of

experimental tests were performed.
The first question, which we had to answer, was: what size of a

patch should be optimal? After testing different sizes of patches,
we found that the best noise filtering results are obtained for the
patch size 15x15. The smaller patches yield the larger ones, while
starting from the 17x17 size the results practically do not show any
improvement, while both learning and filtering take significantly
longer time.

Then we also found that the smaller is the offset used for
creating patches, the better final result is obtained. Thus the best
offset is 1. So the more patches participate in the formation of
output intensity through pixel-wise averaging, the closer to its
expected ideal value this intensity is. This actually should be
expected from the known fact that averaging a large number of
different noisy realizations of the same image we may better
approach a corresponding clean image. Hence best offset for
overlapping patches is 1.

We made a number of experiments to find how many hidden
neurons should be used in MLMVN to get better filtering results.
On the one hand, it was discovered that the more hidden neurons
are used, the easier it is to train MLMVN with a smaller RMSE.
But on the other hand, a reasonably smaller network, even trained
with a larger RMSE may give better filtering results. This finding
can be explained from the following considerations. The more
neurons are used in a single hidden layer, the larger is
dimensionality of a space where we are trying to solve our
problem. This means that the easier is to train MLMVN with a

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.15.IPAS-013

IS&T International Symposium on Electronic Imaging 2016
Image Processing: Algorithms and Systems XIV IPAS-013.4

lower error. However, the larger is a space determined by a neural
network, the smaller part of it is used for fitting there all learning
samples. This in fact means that a network can be trained with a
smaller error. A problem is that if a working space determining by
a network is too big, this negatively affects this network’s
generalization capability. When a network “sees” an unknown
sample, it may “put” it too far from its desirable location in that big
space. In fact, when a working space is too large, there is always a
chance that any test sample can be put too far from its desirable
location. In our case this may negatively affect filtering
PSNR/RMSE. To take care of this issue for larger networks, it is
necessary to use larger learning sets accordingly. However, the
latter may extend the learning process significantly, leading to
more learning iterations and time needed to complete the learning
process. We used MLMVN with 1024, 1536 and 2048 hidden
neurons in our experiments. The results are shown and compared
below.

Another important experimental finding is that the more
images participate in the formation of a learning set, the better final
filtering results are obtained.

Let us now demonstrate our experimental results. As it follows
from our previous considerations, since the best results were
obtained for 15x15 patches, we will show the results only for these
patch size.

As for the images used in our experiments, there are pretty
classical images used worldwide and widely available, like “Lena”,
“Airplane F16”, “Cameraman”, “Boat”, “Bridge”, “Man”,
“Mandrill” along with other more than 100 images downloaded

from [11] and 300 more images (mostly different landscapes and
urban views from the author’s personal collection).
Our first experiment is interesting only from the standpoint of its
“extremal” nature. We used a single image (“Lena”) to create a
learning set containing 6000 15x15 patches, whose starting
coordinates were randomly selected. The learning process for
MLMVN containing 2048 hidden neurons took 43 iterations to
converge with RMSE=4.0 and 87 iterations to converge with
RMSE 3.0. Then the “Airplane F16” image (Figure 1), which was
not presented in the learning set, was filtered after Gaussian noise
with the standard deviation 0.2noise  was added to it (Fig. 2).
It is interesting that the network, being trained using the data taken
just from just a single pair of noisy/clean images is able to filter
other noisy images removing noise completely (Figure 3).
However, a disadvantage of this approach is “narrowing” of
histogram in a resulting image. This narrowing means lowering of
the standard deviation (and variance accordingly), especially in the
areas of high jump of intensities (what was “almost black” or
“almost white” becomes “dark gray” or “light gray” if there is an
intensity jump in the corresponding area). While noise can be
removed, this lowers PSNR for a filtered image due this narrowing
of its histogram.

It is important to mention that the same side effect (narrowing
of a histogram) we observe in all our experiments. However, the
more images are used to create a learning set and the bigger is the
learning set (the more patches are used for learning), the less the
resulting image is affected by this issue. Table 1 summarizes our
simulation results. In all testing experiments we employed ten
images, which were never used in our learning sets.

Table 1: Simulation Results: Summary of Learning and Filtering using MLMVN

of images
used in a

learning set

of learning
samples
(patches
used for
learning)

of hidden
neurons in
MLMVN

of
learning
iterations

Learning RMSE

Testing
Standard
Deviation
(average
over 10
images)

Testing
PSNR

(average
over 10
images)

Min PSNR/
Max PSNR

(over 10
images)

200 12,000 2048 284 5.0 8.18 30.44 25.90/
35.10

200 12,000 1536 271 5.5 7.88 30.69 26.50/
35.02

200 12,000 1024 165 6.3 7.57 30.94 27.24/
34.90

400 12,000 1536 302 5.8 7.74 30.82 26.82/
34.95

400 12,000 1024 155 6.7 7.44 31.07 27.59/
34.95

400 16,000 1024 153 7.05 7.30 31.21 27.90/
34.96

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.15.IPAS-013

IS&T International Symposium on Electronic Imaging 2016
Image Processing: Algorithms and Systems XIV IPAS-013.5

These simulations lead to some conclusions. It is important to
mention that MLMVN with 512 and 4096 hidden neurons were
also tested, but they yield significantly to MLMVNs with 1024,
1536 and 2048 hidden neurons in terms of the filtering quality.
Because of that the results for the networks with 512 and 4096
hidden neurons are not included in Table 1.

The experimental results show that the more representative is a
learning set, the better filtering results are obtained. In fact, all
networks (regardless of the number of hidden neurons used), which
were trained using the learning sets created from 400 images,
outperform the networks, which were trained using the learning set
created from 200 images.

The network containing 1024 hidden neurons, which was
trained using the learning set containing 16,000 samples taken
from 400 images outperforms the same network trained using the
learning set containing 12,000 samples taken from the same 400
images.

The larger is MLMVN (the more hidden neurons it employs),
the smaller is RMSE with which it can be trained. However, at the
same time, the smaller is MLMVN (the fewer hidden neurons it
contains), the lower standard deviation from the original clean
image (and the higher PSNR, accordingly) can be obtained even
with a larger training RMSE when filtering images containing
more small details. The latter does not mean that larger MLMVN
is always less efficient for filtering. But as it was mentioned above,
a network has more “degrees of freedom” in a larger space
determining by a bigger network. Evidently, for images containing
more small details this can be resulted in a larger deviation of the
result from the expected one in this larger dimensional space. A
smaller network, while yields a little bit to a larger one when
filtering images with fewer small details, outperforms it when
filtering images with more small details. Again, this property
stably holds although any smaller network yields any larger
network in its ability to reach a smaller learning PSNR value.

The smaller is MLMVN, the more images were used to create
a learning set, and the more learning samples are contained in the
learning set, the smaller is deviation in the results (this is clearly
seen from the last column of Table 1) because all these conditions
lead to better filtering of images containing more small details.

Let us now consider more examples.
Figure 4 presents the filtering result for the “Airplane F16”

noisy image shown in Figure 2. This image was obtained using
MLMVN with 1024 hidden neurons trained with the learning set
containing 16,000 learning samples (patches), which were taken
from 400 images, with the learning RMSE=7.05. Even visually
this image looks much better than the one from Figure 3 (because
its histogram is almost not narrowed). But in terms of
PSNR=34.96 the quality of this image is excellent. BM3D filter
with the noise standard deviation set to 15.0noise  applied to
the same noisy image shown in Figure 2 is resulted in about the
same PSNR=34.52 (see Figure 5). It is important to mention that
BM3D filter and MLMVN affect an image differently. While after

BM3D filtering no noise leftovers are visible at all, MLMVN
removes noise, but some of its “washed” leftovers are visible at the
homogenous areas (one may take a look at the big cloud and
compare the one in Figure 4 and Figure 5). BM3D filter preserves
sharp edges more carefully than MLMVN, however MLMVN
better preserves small details whose edges are not necessary sharp
(one may compare characters and digits on the one hand and
details of the mountain on the other hand in Figures 4 and 5,
respectively).

Exactly the same conclusion we can make analyzing and
comparing to each other images from Figures 8 and 9. Figure 8
presents the filtering result for the “Sailfish” noisy image shown in
Figure 7 (this noisy image was obtained from the original
“Sailfish” image shown in Figure 6 by adding Gaussian noise with
the standard deviation 0.2noise ) using MLMVN. Figure 9
presents the filtering result for the same image from Figure 7, but
using BM3D filter with the noise standard deviation set to

15.0noise  . We again observe comparable results, while
MLMVN very slightly outperforms BM3D filter (PSNR 33.53 and
33.24, respectively). Again noise is completely removed and sharp
edges are better preserved after BM3D filtering. Again, while
some “washed” noise leftovers are observed after filtering using
MLMVN, small details are better preserved.

Comparing other test images, we are coming to the same
conclusions. While BM3D filter removes noise completely and
better preserves sharp edges, it may “wash” small details. While
MLMVN may leave some “washed” noise leftovers and smooth
sharp edges, it better preserves the smallest details.

Let us consider another example. The “Train Station” test
image is shown in Figure 10. Its noisy version with Gaussian noise
with the standard deviation 0.2noise  added is shown in
Figure 11. Figure 12 presents the filtering result for the “Train
Station” noisy image shown in Figure 11 and filtered using
MLMVN. Figure 13 presents the filtering result for the same noisy
image filtered using BM3D filter. The “Train Station” image
contains a number of different textures, sharp edges and small
details. If we take a look at the small detailed walkway texture, we
clearly see that it is completely gone after BM3D filtering, while it
is pretty well preserved after filtering by MLMVN. While if we
take a look at pretty homogenous textures of the train cars under
windows or the rough above the walkway, we have to conclude
that their homogeneity is restored by BM3D filtering, however
they contain many “washed” noise leftovers after MLMVN
filtering. Since this image contains more different pretty
homogenous areas and sharp edges than small detailed textures,
BM3D filter shows better PSNR than MLMVN (33.34 and 31.51,
respectively).

The comparative results for all 10 test images are summarized
in Table 2. The best result for MLMVN 225-1024-225 trained with
RMSE=7.05 was taken.

Table 2: Simulation Results: Comparison of Filtering using MLMVN and BM3D filter

Test Images 1 2 3 4 5 6 7 8 9 10 Average

MLMVN PSNR 31.51 29.78 28.43 30.28 28.49 27.90 33.53 32.29 34.92 34.96 31.21
St. Div. 6.77 8.27 9.66 7.80 9.60 10.26 5.37 6.19 4.57 4.55 7.30

BM3D PSNR 33.34 30.35 29.97 30.37 29.88 29.34 33.24 32.71 36.43 34.52 32.01
St. Div. 5.48 7.74 8.09 7.72 8.17 8.69 5.55 5.60 3.84 4.79 6.60

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.15.IPAS-013

IS&T International Symposium on Electronic Imaging 2016
Image Processing: Algorithms and Systems XIV IPAS-013.6

Figure 1. The “Airplane F-16” - original image (was
not used in the learning sets)

Figure 2. The “Airplane F-16” image corrupted by
additive Gaussian noise with the standard deviation

0.2noise 

Figure 3. The image from Figure 2 filtered with
MLMVN after using a learning set created from the
6000 patches taken from a single image. Learning
RMSE= 4.0; PSNR=32.35. Image histogram is
narrowed.

Figure 4. The image from Figure 2 filtered with
MLMVN containing 1024 hidden neurons after
using a learning set created from the 16000
patches taken from 400 images. Learning
RMSE=7.05; PSNR=34.96. Small details are mostly
preserved.

Figure 5. The image from Figure 2 filtered using
BM3D filter with the 15.0noise  ; PSNR=34.52.
Some small details are gone after filtering.

Figure 6. The “Sailfish” image, which was not used
in the learning sets (the original image)

Figure 7. The “Sailfish” image from Figure 5
corrupted by additive Gaussian noise with the
standard deviation 0.2noise 

Figure 8. The image from Figure 7 filtered with
MLMVN containing 1024 hidden neurons after
using a learning set created from the 16000
patches taken from 400 images. Learning
RMSE=7.05; PSNR=33.53. Small details are mostly
preserved.

Figure 9. The image from Figure 7 filtered using
BM3D filter with the 15.0noise  ; PSNR=33.24.
Some small details are gone after filtering.

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.15.IPAS-013

IS&T International Symposium on Electronic Imaging 2016
Image Processing: Algorithms and Systems XIV IPAS-013.7

Figure 10. The “Train Station” image, which was not used in the learning sets
(the original image)

Figure 11. The “Train Station” image from Figure 10 corrupted by additive
Gaussian noise with the standard deviation 0.2noise 

Figure 12. The image from Figure 11 filtered with MLMVN containing 1024
hidden neurons after using a learning set created from the 16000 patches
taken from 400 images. Learning RMSE=7.05; PSNR=31.51. The walkway
texture is mostly preserved, but “washed” noise leftovers remain in a number of
homogenous areas.

Figure 13. The image from Figure 11 filtered using BM3D filter with the
15.0noise  ; PSNR=33.34. The walkway texture is gone, but noise is also

completely gone.

As we see from Table 1, MLMVN slightly outperforms BM3D

filter for 2 images out of 10; slightly yields, but shows comparable
results on 4 images out of 10 and yields to BM3D on 4 images out
of 10. Based on the statistics, which we got from this experiment,
we have to conclude that as for this moment MLMVN slightly
yields to BM3D filter, but nevertheless shows a comparable result.
MLMVN better preserves small details and highly detailed
textures, however, some “washed” noise leftovers remain in a
resulting image. At the same time, BM3D filter better preserves
sharp edges and removes noise completely.

About the same results were reported in [2]-[4] for MLP (when
compared to BM3D filter), however, MLMVN used in this paper
contains 4 times less hidden neurons than MLP employed in [2]-
[4]. Moreover, all hidden neurons in MLMVN used in this paper
are located in a single hidden layer, while 4-layer network, which
requires significantly more operations and time for its training, was
employed in [2]-[4].

It is important to mention that previously MVN was used for
image filtering as a part of a cellular neural network [12] and also
MLMVN was used as a high pass filter for edge detection [13].
But basically, in both those earlier works a pretty standard

approach to spatial domain filtering based on the local
neighborhood processing, which creates an output for a single
pixel, was implemented. Particularly, the results reported in [12]
were just comparable with order statistic filters, but they were not
better. Definitely, MLMVN filtering presented in this paper gives
significantly better results.

Conclusions and Furture Work
It was shown that MLMVN can successfully be used as an

intelligent filter. It outperforms MLP because it makes possible to
use a simpler network with just a single hidden layer and to get the
learning algorithm converged much faster employing a batch LLS-
based learning algorithm.

Since the more images are used to create a learning set, the
better filtering results are obtained, a very clear direction for the
further work is to use learning sets based on more images and
improve the results in this way.

It should also be interesting to discover whether all estimations
of the resulting intensities from overlapping patches should be
used to obtain the resulting intensities or for example, those

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.15.IPAS-013

IS&T International Symposium on Electronic Imaging 2016
Image Processing: Algorithms and Systems XIV IPAS-013.8

located closer to the borders of the patch should be ignored (or
some weights should be assigned to different estimations
depending how far from the center of a corresponding patch they
are located).

Another interesting direction for the further work is to apply
the same approach for edge detection, especially for edge detection
on noisy images (to suppress noise and detect clean edges).

It should also be considered whether MLMVN can be used in
about the same way for restoration of blurred images.

Another attractive continuation of this work can be study of
how to use MLMVN for filtering in the frequency domain. In fact,
a complex-valued neural network can be potentially a great tool to
process complex-valued data in the Fourier domain.

Acknowledgement
The author greatly appreciates Prof. Karen Egiazarian’s

suggestion to try to use MLMVN for this intelligent approach to
image filtering.

Image processing with BM3D filer was done using the Matlab
implementation available online from the web page devoted to
BM3D filter by its authors [14].

References
[1] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image

denoising by sparse 3-D transform-domain collaborative filtering”.
IEEE Transactions on Image Processing, vol. 16, no 8, pp. 2080–
2095, 2007.

[2] H. C. Burger, C. J. Schuler, and S. Harmeling, “Image denoising: Can
plain Neural Networks compete with BM3D?”, in Proceedings of the
2012 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR-2012), pp. 4321-4328, 2012.

[3] H. C. Burger, C. J. Schuler, and S. Harmeling, “Image denoising with
multi-layer perceptrons, part 1: comparison with existing algorithms
and with bounds”, available online at
http://arxiv.org/pdf/1211.1544.pdf, 2012.

[4] H. C. Burger, C. J. Schuler, and S. Harmeling, “Image denoising with
multi-layer perceptrons, part 2: training trade-offs and analysis of
their mechanisms, available online at
http://arxiv.org/pdf/1211.1552.pdf, 2012.

[5] I. Aizenberg and C. Moraga, "Multilayer Feedforward Neural
Network Based on Multi-Valued Neurons (MLMVN) and a
Backpropagation Learning Algorithm", Soft Computing, vol. 11, no
2, pp. 169-183, 2007.

[6] I. Aizenberg, “Complex-valued neural networks with multi-valued
neurons, Springer”, Hidelberg, 2011.

[7] I. Aizenberg, D. Paliy, J. Zurada, and J. Astola, "Blur Identification
by Multilayer Neural Network based on Multi-Valued Neurons",
IEEE Transactions on Neural Networks, vol. 19, no 5, pp. 883-898,
2008.

[8] E. Aizenberg and I. Aizenberg, “Batch LLS-based Learning
Algorithm for MLMVN with Soft Margins”, Proceedings of the 2014
IEEE Symposium Series of Computational Intelligence (SSCI-2014),
pp. 48-55, 2014.

[9] I. Aizenberg, A. Luchetta, and S. Manetti, “A modified Learning
Algorithms for the Multilayer Neural Network with Multi-Valued
Neurons based on the Complex QR Decomposition”, Soft
Computing, vol. 16, pp. 563-575, 2012.

[10] I. Aizenberg, “A Periodic Activation Function and a Modified
Learning Algorithm for a Multi-Valued Neuron”, IEEE Transactions
on Neural Networks, vol. 21, no 12, pp. 1939-1949, 2010.

[11] Test Images. University of Granada Image Data Base. Available
Online http://decsai.ugr.es/cvg/dbimagenes/

[12] I. Aizenberg and C. Butakoff, “Image Processing Using Cellular
Neural Networks Based on Multi-Valued and Universal Binary
Neurons”, Journal of VLSI Signal Processing Systems for Signal,
Image and Video Technology, vol. 32, pp. 169-188, 2002.

[13] I. Aizenberg, S. Alexander, J. Jackson, T. Neal, J. Wilson, and K.
Kendrick, “Intelligent edge enhancement using multilayer neural
network based on multi-valued neurons”, SPIE Proceedings, vol.
7870 (Proc. of SPIE Congress “Electronic Imaging 2011”), March
2011, pp. 7870004-1 – 7870004-11.

[14] Image and video denoising by sparse 3D transform-domain
collaborative filtering. Block-matching and 3D filtering (BM3D)
algorithm and its extensions. Tampere University of Technology.
Online http://www.cs.tut.fi/~foi/GCF-
BM3D/index.html#ref_software

Author Biography
Igor Aizenberg received his MS in mathematics from Uzhhorod National
University (Ukraine) (1982) and his PhD in computer science from
Dorodnitsyn Computing Center of the Russian Academy of Science (1986).
Then he worked in academia and industry in Russia, Ukraine, Belgium,
Israel, Finland, Germany, and USA. Since 2006 he is with Texas A&M
University-Texarkana (Texarkana TX, USA) where he is currently
Professor of Computer Science and Director of the Computational
Intelligence Lab. His main research areas are complex-valued neural
networks and image filtering.

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.15.IPAS-013

IS&T International Symposium on Electronic Imaging 2016
Image Processing: Algorithms and Systems XIV IPAS-013.9

