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Abstract 

Image filtering, regardless of whether it is denoising (low 
pass filtering) or edge detection (high pass filtering) can be 
considered as a machine learning problem. In fact, filtering is a 
process of approximation of a desirable result. A filter is 
considered good, if it approaches this ideal result better than other 
filters. But any machine learning problem should be considered 
from exactly the same standpoint. In this paper, we suggest to use 
a multilayer neural network with multi-valued neurons (MLMVN) 
as an intelligent image filter. After MLMVN is trained using a 
number of n x n patches from different images to obtain a clean 
patch from a noisy one, it can be used as an intelligent filter. It is 
shown that this filter is robust, since it performs well on different 
images, which did not participate in the learning process. It terms 
of PSNR, this approach shows results comparable with other 
filters commonly recognized as good. A specific advantage of the 
presented approach is its ability to preserve small details carefully. 

Introduction  
There are numerous different filters and many of them have 

become classical. The most of filters should be considered as 
“engineered” algorithms where their designers know what they 
want to achieve and use well determined certain techniques to 
achieve their goals. Perhaps, BM3D filter [1] is the best example 
of such well-engineered filters (it is also commonly recognized as 
one of the most efficient nonlinear filters ever). 

We would like to consider here the filtering problem from a 
different standpoint. Instead of designing a filter we will let a 
machine learning tool to learn what a filtering process is, and then 
perform this process accordingly. Image filtering, regardless of 
whether it is denoising (low pass filtering) or edge detection (high 
pass filtering) can certainly be considered as a machine learning 
problem. In fact, filtering is a process of approximation of a 
desirable result. A filter is considered good, if it approaches this 
ideal desirable result better than other filters. But any machine 
learning problem should be considered from exactly the same 
standpoint. Any machine learning tool learns a problem in terms of 
better approximation of a desirable result. In such a case, on the 
one hand, a machine learning tool remains a “black box” because 
the researcher does not know what exactly the tool has extracted 
from the learned data. But on the other hand, any machine learning 
tool performs as a sophisticated nonlinear 
interpolator/approximator. Learning from some representative 
data, it can then be used to interpolate (approximate) or predict 
other similar data, which did not participate in the learning process. 

The use of machine learning in image filtering is not new. In 
this paper, we will employ the idea first suggested in [2] and then 
developed and presented in detail in [3], [4]. This idea is to filter 
an image using a neural network, applying filtering to all pixels of 
an n x n patch simultaneously and averaging then the results for 
overlapping parts of patches. In [2]-[4], it was proposed to use a 
classical multilayer feedforward neural network (the multilayer 

perceptron, or simply MLP) with 3-4 hidden layers as an 
intelligent filtering tool. Basically, the idea of filtering by patches 
was originally proposed in [1] and employed in BM3D filter. In 
[2]-[4], this idea was considered from the different standpoint. 
While in BM3D filter statistically similar patches are blocked in a 
group and then this group is filtered simultaneously, in the neural 
intelligent approach developed in [2]-[4], it was suggested to learn 
using a neural network how to create a clean patch from a noisy 
one using the large number of patches taken from many different 
images. Then a trained network is expected to filter patches from 
other images, which were not presented in a learning set. 

In this paper, we will employ the same idea of intelligent 
image filtering using a neural network, which processes 
overlapping patches after it was trained using a representative 
learning set containing patches taken from different images. Hence 
our first task is to create a learning set from a number of n x n 
patches randomly taken from different images. Noisy patches will 
be used as inputs (therefore a network will have 2n  inputs) and the 
corresponding clean patches will be used as desired outputs 
(therefore the network will have 2n  outputs). Then we need to 
train a neural network. After a network is trained, it should be used 
for filtering an image through dividing it into n x n overlapping 
patches, filtering all pixels in each patch simultaneously and 
averaging then the results for overlapping parts of patches. We will 
have to find the optimal n (size of a patch), optimal topology of a 
neural network, optimal size of a learning set, optimal number of 
images used to create the learning set, and optimal offset for 
overlapping patches to ensure the best filtering results. Basically, 
we have to consider the same tasks, which were solved for MLP in 
[2]-[4]. However, we will use here a different type of a neural 
network. We suggest doing intelligent image filtering using a 
multilayer neural network with multi-valued neurons (MLMVN) 
[5]. This is also feedforward neural network with a standard 
feedforward topology (where the outputs of all neurons from the 
preceding layer are connected to the corresponding inputs of all 
neurons from the current layer). However this network consists of 
multi-valued neurons with complex-valued weights [6]. The latter 
determines important advantages of MLMVN over many other 
machine learning techniques. Being more functional, learning 
faster and generalizing better, MLMVN significantly outperforms 
MLP in many applications [5]-[7]. Hence it is very attractive to use 
MLMVN as an intelligent filter hoping that it should be able to 
outperform MLP when solving this problem. 

As it will be shown below, MLMVN meets these expectations. 
The network just with a single hidden layer, after it is trained using 
a representative set of patches taken from different images, is able 
to filter an image, which has not participated in the learning 
process. This can be done without any significant smoothing of 
small details. Thus MLMVN demonstrates its robustness and 
shows results comparable with other filters commonly recognized 
as good. 
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Multilayer Neural Network with Multivalued 
Neurons (MLMVN) 

MLMVN consists of multi-valued neurons (MVN) with 
complex-valued weights, and this is its main distinction from a 
classical feedforward neural network. Complex-valued neural 
networks are as natural as the real-valued ones. Using complex-
valued inputs/outputs, weights and activation functions, it is 
possible to increase the functionality of a single neuron and a 
neural network, to improve their performance, and to reduce the 
training time [6]. 

MVN, which is the first historically known complex-valued 
neuron, implements a mapping between n inputs and a single 
output. While MVN’s inputs and output are complex numbers 
located on the unit circle, its weights are arbitrary complex 
numbers. An input/output mapping of a continuous MVN is 
described by a function of n variables )( 1 nx ..., ,xf , : nf O O , 

where O  is a set of points located on the unit circle. An 
input/output mapping of a discrete MVN is also described by a 
function of n variables )( 1 nx ..., ,xf , : n

kf E O , where 

 0 2 1, , ,..., k
k k k k kE      , 2 /i k

k e   , and i is an 

imaginary unit. When an MVN output is also discrete, the last 
function is transformed to : n

k kf E E , while if MVN inputs are 

continuous and its output is discrete, this function becomes 
: n

kf O E . Such a function can be represented using n+1 

complex-valued weights as follows [6]: 

)()( 1101 nnn xw...xwwPx ..., ,xf  , (1) 

where nx ..., ,x1  ( , 1, ...,j kx E j n  ) are neuron inputs and 

n  , ...,w,ww 10  are the weights. P is the activation function, 

which is for the continuous and discrete MVN, respectively: 

( )( ) / | |iArg zP z e z z   (2) 

2( )  if 2 arg  2 ( 1) ,j i j / k
kP z = e ,   j / k z  j+ / k      (3) 

where nn xw...xwwz  110  is the weighted sum, Arg z is 

the main value of the argument of the complex number z.  
The MVN learning is based on the error-correction learning 

rule [6]: 

   1 1
r

r r
r

CW W D Y X
n z   


, (4) 

where X  is the vector of neuron inputs complex-conjugated, n is 
the number of neuron inputs, D is the desired output of the neuron, 

( )Y P z is the actual output of the neuron, r is the number of the 

learning step, rW  is the current weighting vector, 1rW   is the 

following weighting vector, rC  is a learning rate (it is complex-

valued in general, but in all simulations known so far 1rC   was 

used. So in all simulations, which we have done in this work, we 
used 1rC   either), and rz  is the absolute value of the weighted 

sum obtained on the rth learning step. A factor 1/ | |rz  should be 

used when correcting the weights of hidden neurons in a neural 
network, which for the exact errors are not known. But it should 
not be used for output neurons in a network, which for the exact 
errors are known.  

The use of MVN as a basic neuron in an MLMVN was 
suggested in [5]. MLMVN is a feedforward neural network (like 
MLP), but its significant distinctions and advantages are 
determined by using MVN as its basic neuron. The most important 
advantages of MLMVN are its higher functionality, better 
generalization capability and simplicity of learning when 
compared to MLP. MLMVN learning is derivative-free. Its 
backpropagation learning algorithm [5]-[7] is based on the same 
error-correction learning rule (4) as the one for a single MVN. 

In this paper, we will employ the batch learning technique for 
MLMVN recently suggested in [8]. This is a batch linear least 
squares (LLS) learning algorithm, which drastically (two orders of 
magnitude) reduces the number of learning iterations and learning 
time keeping the same generalization accuracy as a regular MLVN 
learning algorithm. Batch learning for a neural network is a 
learning technique where, in each iteration, the weights are 
adjusted for all learning samples simultaneously. This means that 
the network errors shall be calculated first for all learning samples, 
and then the adjustment factors should be found based on these 
errors. In [9], it was suggested to use such a procedure to train 
MLMVN with a single output neuron. A batch procedure was 
applied only to the output neuron, while all hidden neurons were 
trained in the regular way. Then in [8] this procedure was modified 
and adapted to MLMVN with multiple output neurons. 

Let us consider an MLMVN with n  inputs, a single hidden 
layer containing H  neurons, and multiple neurons in the output 
layer. Let us have a learning set containing M  learning samples. 
The network errors should be calculated as  

*
2 2 2 2; 1,...,j j jD Y j N    . (5) 

where 2jD  is the desired output of the jth neuron from the 2nd 

(output) layer; 2jY  is the actual output of the same neuron, and 

2N  is the number of output neurons. Then these errors they should 
be backpropagated as follows  

 

*
2 2 2

2

1 ; 1,...,j j j N
t

   , (6) 

where j2 specifies the jth neuron of the 2nd (output) layer; 

2 1 1t N  , i.e. the number of all neurons in the preceding layer 
(the first hidden layer where the error (6) will be then 
backpropagated to) incremented by 1. 

Then the errors of the first hidden layer neurons are 
2

,2 1
1 2

1

1 ( )
1

N
j

i j i
j

w
n

  




  , (7) 

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.15.IPAS-013

IS&T International Symposium on Electronic Imaging 2016
Image Processing: Algorithms and Systems XIV IPAS-013.2



 

 

where i1 specifies the jth neuron of the 1st (hidden) layer, ,2j
iw  is 

the ith weight of the jth neuron from the 2nd (output) layer, and n is 
the number of network inputs. 

The learning process shall continue until the root mean square 
error of the network (averaged over all output neurons) drops 
below a pre-determined desired tolerance threshold. Hence the 
squared error of the network for the rth learning sample is 

 
2 2

12

1 ; 1,...,
N

r jr
j

r M
N




   . (8) 

where M is the number of learning samples and 

   mod ; , 0,1,..., 1
r rr j r j rk k         (k is taken from 

(3) ) is a local error for the rth learning sample taken from the jth 
output neuron. Then the MLMVN learning process (under RMSE 
criterion) continues until RMSE drops below a pre-determined 
desired tolerance threshold  : 
 

1

1 M

r
r

RMSE
M




   . (9) 

To adjust simultaneously the weights of the h th hidden neuron 
( 11,...,h N ), we need to add the weight adjustment factors 

[ ] [ ]
0 ...h h

nw w   to its weights. For the h th hidden neuron and for 
the j th learning sample must satisfy [8] 

[ ] [ ] [ ] [ ]
0 1 1 ...h h j h j h

n n jw w x w x         (10) 

where 1 ,...,j j
nx x  are the network inputs for the j th learning 

sample. Actually, (10) can be considered as a system of M  linear 
algebraic equations in 1n   unknowns (adjustment terms) 

[ ] [ ]
0 ,...,h h

nw w   over the field of complex numbers. These 

unknowns are the 0 1, ,..., nw w w     
In matrix-vector notation we can rewrite (10) as 
 

[ ] [ ]
1,1 1, 0 1

[ ] [ ]
,1 ,

1    
                  

1   

h h
n

h h
M M n n M

x x w

x x w





     
         
         


    


 (11) 

or simply 
[ ] [ ]h hXa δ  (11a) 

In principle, if there exists an exact unique solution [ ]ha  to (11a), 
we can adjust the weights [ ] [ ] [ ]

0 1, ...,h h h
nw w w  in a manner that 

reduces the neuron’s error for all M  learning samples 
simultaneously. Then the adjusted weights ,1 ,1 ,1

0 1, ...,h h h
nw w w  are 

given by 
[ ] [ ] [ ]h h h w w a  (12) 

where 
T[ ] ,1 ,1

0 ...h h h
nw w   w  and 

T[ ] ,1 ,1
0 ...h h h

nw w   w   . 

System (11a) is typically overdetermined, meaning 
1M n  . In this case, we can find a unique least squares 

solution [ ]ha  that satisfies 

[ ]

2[ ] [ ] [ ]

[ ] † [ ]

arg min

           

h

h h h

h h

 



a

a Xa δ

a X δ




 

(13) 

where † H 1 H( )X X X X  is the pseudo-inverse of X  and  H
 

denotes the conjugate-transpose (transjugation) operation. For 
computer implementation purposes, †X  can be efficiently 
computed using the QR decomposition or the singular value 
decomposition (SVD) of X . The adjusted weights of the hidden 
neuron are then given by 
 

[ ] [ ] [ ]h h h w w a  (14) 

Eq. (13) and (14) are of course valid for any hidden neuron 
1[ ], 1,...,h h N , and therefore provide a general LLS-based 

learning rule for hidden neurons.  
Once the weights of all hidden neurons are adjusted, and their 

outputs are updated, we can apply the same procedure to adjust the 
weights of output neurons. It is important to take into account that 
before adjusting output neurons’ weights, we must update the 
network errors according to (5) and the output neurons' errors 
according to (6). It is straightforward to see that for the output 
neurons (11a), (13), (14) are transformed to the following 
equations, respectively: 

 
[ ] [ ] [ ] [ ]
1,1 1, 0 1

[ ] [ ] [ ] [ ]
,1 ,

[ ] [ ] [ ]

1    
                  

1   

                

o o o o
H

o o o o
M M H H M

o o o

x x w

x x w





     
     

     
         

X a δ


    



 

(15) 

 †[ ] [ ] [ ]o o oa X δ  (16) 

[ ] [ ] [ ]o o o w w a  (17) 

In (15)-(17),   2, 1,...,o o N   is the index of an output neuron, 
[ ]oX  is the matrix of output neuron inputs, or equivalently the 

matrix of hidden neuron outputs.  
Namely, a particular entry [ ]

,
o
j hx  is given by 

 [ ] [ ] [ ]
, ,1 ,1    o h h

j h j j j nx y P x x    w  (18) 

where [ ]h
jy  is the output of the h th hidden neuron for the j th 

learning sample, and  P  is the MVN activation function (1). 
Also, consistent with previously used notation, 

T[ ] ,2 ,2
0 ...o o o

Hw w   w  is the vector of original output neuron 

weights, and 
T[ ] ,2 ,2

0 ...o o o
Hw w   w    is the vector of adjusted 

output neuron weights. 
After the adjustment of output neuron weights, a learning 

iteration is completed. This learning procedure is iteratively 
repeated until the RMSE criterion (9) has been satisfied. 
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This algorithm is utilized in Matlab. The corresponding Matlab 
functions along with the data used for simulations in this paper can 
be found at http://www.freewebs.com/igora/ under “Download 
Software Simulators and Data”. 

 

Approach to Filtering using MLMVN 
As it was mentioned above, our general approach to filtering is 

basically similar to the one used in [2]-[4], but additionally to the 
use of MLMVN instead of MLP we found that a simpler network 
topology can be employed as well as there are some distinctions in 
the implementation. 

Thus the approach to filtering is as follows. A basic idea is to 
filter not isolated pixels based on the information taken from their 
local neighborhood, but to filter all pixels in an n x n patch 
simultaneously. An image to be filtered shall be divided into  
n x n overlapping patches. The smaller is the offset for creating 
patches, the better final result should be expected.  

Each n x n patch shall be filtered separately using a neural 
network with 2n  inputs and 2n  neurons in the output layer. This 
means that all pixels in the patch shall be processed simultaneously 
based on the information only from the same patch. Each input of 
the network represents the intensity value in the corresponding 
pixel of the input patch. Each output neuron creates the output 
intensity value in the corresponding pixel of the output patch. 

In [2]-[4], MLP with 4 hidden layers, each containing 512 
neurons was found the most efficient for solving the filtering 
problem. However, we found experimentally that MLMVN with 
just a single, but relatively big hidden layer learns much faster than 
a network with multiple hidden layers, not losing the 
generalization capability. The use of just a single hidden layer 
makes it also possible to employ a batch linear least squares (LLS) 
learning algorithm [8], which speeds up the learning process 
drastically, also allowing for the extension of a learning set. Hence, 
we employed 2 2

1n N n   network topology (here the first 
2n n n   is the number of network inputs, 1N  is the number of 

hidden neurons, and the second 2n n n   is the number of 
network output neurons and network outputs, accordingly). 

To train MLMVN, a learning set containing the pixel 
intensities from the noisy patches randomly selected from different 
images as inputs and the pixel intensities from the patches of the 
corresponding clean images as desired outputs was created. 

For our experiments at this stage of this work we used additive 
non-correlated Gaussian noise artificially generated for each image 
with 0.2noise   where   is the standard deviation of the 
corresponding clean image. 

We employed MVN with discrete inputs and continuous output 
in the hidden layer and MVN with continuous inputs and discrete 
output in the output layer. 

Since MVN and MLMVN, accordingly, have complex-valued 
inputs and produce complex-valued outputs located on the unit 
circle, a pretty standard approach was used to transform integer 
input intensities into complex-valued inputs of the network and 
complex-valued outputs of the network to the integer output 
intensities. To avoid closeness of the “white” and “black” parts of 
the intensity range  0,1,..., 255I   on the unit circle, we used 

288k   in (3). This value was chosen experimentally. While, for 
example, for 264k   and 384k   a learning process goes much 

slower, for 288k   it goes much faster. This experimental finding 
confirms considerations made in [10] where it was shown that a 
multiple-valued discrete input/output mapping, being non 
implementable using a neuron or a neural network in l-valued 
logic, can be implementable in m-valued logic where l m . Thus 
if the intensity j I , then the corresponding network input 

located on the unit circle is 2 /288i je  . Since the output neurons 
employ discrete activation function (3), then the output of each 
output neuron is determined by (3) and the corresponding output 
intensity equals j  taken from (3) accordingly. Taking into account 
that 288k   in (3) and to ensure that j I , the following 
additional procedure was used to adjust the resulting intensities, if 
necessary 

255 272 255,
272 288 0.

j j
j j

   
     

After MLMVN is trained, it can then be used for performing 
actual filtering. To filter an image, the overlapped patches with a 
given offset shall be taken from an image, starting from its top-left 
corner down to its bottom-right corner. Each patch shall be filtered 
separately using MLMVN. Then, the final output intensity 
 ,g x y  in the pixel with the coordinates  ,x y  shall be found 

by averaging the resulting intensities  , , 1,...,i xyg x y i S  in this 

pixel from all xyS  overlapping patches where this pixel appears 

 
 

1
,

,

xyS

i
i

xy

g x y
g x y

S



. 

Experimental Results 
To test the approach presented above, a number of 

experimental tests were performed. 
The first question, which we had to answer, was: what size of a 

patch should be optimal? After testing different sizes of patches, 
we found that the best noise filtering results are obtained for the 
patch size 15x15. The smaller patches yield the larger ones, while 
starting from the 17x17 size the results practically do not show any 
improvement, while both learning and filtering take significantly 
longer time. 

Then we also found that the smaller is the offset used for 
creating patches, the better final result is obtained. Thus the best 
offset is 1. So the more patches participate in the formation of 
output intensity through pixel-wise averaging, the closer to its 
expected ideal value this intensity is. This actually should be 
expected from the known fact that averaging a large number of 
different noisy realizations of the same image we may better 
approach a corresponding clean image. Hence best offset for 
overlapping patches is 1. 

We made a number of experiments to find how many hidden 
neurons should be used in MLMVN to get better filtering results. 
On the one hand, it was discovered that the more hidden neurons 
are used, the easier it is to train MLMVN with a smaller RMSE. 
But on the other hand, a reasonably smaller network, even trained 
with a larger RMSE may give better filtering results. This finding 
can be explained from the following considerations. The more 
neurons are used in a single hidden layer, the larger is 
dimensionality of a space where we are trying to solve our 
problem. This means that the easier is to train MLMVN with a 
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lower error. However, the larger is a space determined by a neural 
network, the smaller part of it is used for fitting there all learning 
samples. This in fact means that a network can be trained with a 
smaller error. A problem is that if a working space determining by 
a network is too big, this negatively affects this network’s 
generalization capability. When a network “sees” an unknown 
sample, it may “put” it too far from its desirable location in that big 
space. In fact, when a working space is too large, there is always a 
chance that any test sample can be put too far from its desirable 
location. In our case this may negatively affect filtering 
PSNR/RMSE. To take care of this issue for larger networks, it is 
necessary to use larger learning sets accordingly. However, the 
latter may extend the learning process significantly, leading to 
more learning iterations and time needed to complete the learning 
process. We used MLMVN with 1024, 1536 and 2048 hidden 
neurons in our experiments. The results are shown and compared 
below. 

Another important experimental finding is that the more 
images participate in the formation of a learning set, the better final 
filtering results are obtained. 

Let us now demonstrate our experimental results. As it follows 
from our previous considerations, since the best results were 
obtained for 15x15 patches, we will show the results only for these 
patch size. 

As for the images used in our experiments, there are pretty 
classical images used worldwide and widely available, like “Lena”, 
“Airplane F16”, “Cameraman”, “Boat”, “Bridge”, “Man”, 
“Mandrill” along with other more than 100 images downloaded 

from [11] and 300 more images (mostly different landscapes and 
urban views from the author’s personal collection). 
Our first experiment is interesting only from the standpoint of its 
“extremal” nature. We used a single image (“Lena”) to create a 
learning set containing 6000 15x15 patches, whose starting 
coordinates were randomly selected. The learning process for 
MLMVN containing 2048 hidden neurons took 43 iterations to 
converge with RMSE=4.0 and 87 iterations to converge with 
RMSE 3.0. Then the “Airplane F16” image (Figure 1), which was 
not presented in the learning set, was filtered after Gaussian noise 
with the standard deviation 0.2noise   was added to it (Fig. 2). 
It is interesting that the network, being trained using the data taken 
just from just a single pair of noisy/clean images is able to filter 
other noisy images removing noise completely (Figure 3). 
However, a disadvantage of this approach is “narrowing” of 
histogram in a resulting image. This narrowing means lowering of 
the standard deviation (and variance accordingly), especially in the 
areas of high jump of intensities (what was “almost black” or 
“almost white” becomes “dark gray” or “light gray” if there is an 
intensity jump in the corresponding area). While noise can be 
removed, this lowers PSNR for a filtered image due this narrowing 
of its histogram.  

It is important to mention that the same side effect (narrowing 
of a histogram) we observe in all our experiments. However, the 
more images are used to create a learning set and the bigger is the 
learning set (the more patches are used for learning), the less the 
resulting image is affected by this issue. Table 1 summarizes our 
simulation results. In all testing experiments we employed ten 
images, which were never used in our learning sets.

Table 1: Simulation Results: Summary of Learning and Filtering using MLMVN 

# of images 
used in a 

learning set 

# of learning 
samples 
(patches 
used for 
learning) 

# of hidden 
neurons in 
MLMVN 

# of 
learning 
iterations 

Learning RMSE 

Testing 
Standard 
Deviation 
(average 
over 10 
images) 

Testing 
PSNR 

(average 
over 10 
images) 

Min PSNR/ 
Max PSNR 

(over 10 
images) 

200 12,000 2048 284 5.0 8.18 30.44 25.90/ 
35.10 

200 12,000 1536 271 5.5 7.88 30.69 26.50/ 
35.02 

200 12,000 1024 165 6.3 7.57 30.94 27.24/ 
34.90 

400 12,000 1536 302 5.8 7.74 30.82 26.82/ 
34.95 

400 12,000 1024 155 6.7 7.44 31.07 27.59/ 
34.95 

400 16,000 1024 153 7.05 7.30 31.21 27.90/ 
34.96 
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These simulations lead to some conclusions. It is important to 
mention that MLMVN with 512 and 4096 hidden neurons were 
also tested, but they yield significantly to MLMVNs with 1024, 
1536 and 2048 hidden neurons in terms of the filtering quality. 
Because of that the results for the networks with 512 and 4096 
hidden neurons are not included in Table 1.  

The experimental results show that the more representative is a 
learning set, the better filtering results are obtained. In fact, all 
networks (regardless of the number of hidden neurons used), which 
were trained using the learning sets created from 400 images, 
outperform the networks, which were trained using the learning set 
created from 200 images. 

The network containing 1024 hidden neurons, which was 
trained using the learning set containing 16,000 samples taken 
from 400 images outperforms the same network trained using the 
learning set containing 12,000 samples taken from the same 400 
images. 

The larger is MLMVN (the more hidden neurons it employs), 
the smaller is RMSE with which it can be trained. However, at the 
same time, the smaller is MLMVN (the fewer hidden neurons it 
contains), the lower standard deviation from the original clean 
image (and the higher PSNR, accordingly) can be obtained even 
with a larger training RMSE when filtering images containing 
more small details. The latter does not mean that larger MLMVN 
is always less efficient for filtering. But as it was mentioned above, 
a network has more “degrees of freedom” in a larger space 
determining by a bigger network. Evidently, for images containing 
more small details this can be resulted in a larger deviation of the 
result from the expected one in this larger dimensional space. A 
smaller network, while yields a little bit to a larger one when 
filtering images with fewer small details, outperforms it when 
filtering images with more small details. Again, this property 
stably holds although any smaller network yields any larger 
network in its ability to reach a smaller learning PSNR value.  

The smaller is MLMVN, the more images were used to create 
a learning set, and the more learning samples are contained in the 
learning set, the smaller is deviation in the results (this is clearly 
seen from the last column of Table 1) because all these conditions 
lead to better filtering of images containing more small details. 

Let us now consider more examples. 
Figure 4 presents the filtering result for the “Airplane F16” 

noisy image shown in Figure 2. This image was obtained using 
MLMVN with 1024 hidden neurons trained with the learning set 
containing 16,000 learning samples (patches), which were taken 
from 400 images, with the learning RMSE=7.05. Even visually 
this image looks much better than the one from Figure 3 (because 
its histogram is almost not narrowed). But in terms of 
PSNR=34.96 the quality of this image is excellent. BM3D filter 
with the noise standard deviation set to 15.0noise   applied to 
the same noisy image shown in Figure 2 is resulted in about the 
same PSNR=34.52 (see Figure 5). It is important to mention that 
BM3D filter and MLMVN affect an image differently. While after 

BM3D filtering no noise leftovers are visible at all, MLMVN 
removes noise, but some of its “washed” leftovers are visible at the 
homogenous areas (one may take a look at the big cloud and 
compare the one in Figure 4 and Figure 5). BM3D filter preserves 
sharp edges more carefully than MLMVN, however MLMVN 
better preserves small details whose edges are not necessary sharp 
(one may compare characters and digits on the one hand and 
details of the mountain on the other hand in Figures 4 and 5, 
respectively). 

Exactly the same conclusion we can make analyzing and 
comparing to each other images from Figures 8 and 9. Figure 8 
presents the filtering result for the “Sailfish” noisy image shown in 
Figure 7 (this noisy image was obtained from the original 
“Sailfish” image shown in Figure 6 by adding Gaussian noise with 
the standard deviation 0.2noise  ) using MLMVN. Figure 9 
presents the filtering result for the same image from Figure 7, but 
using BM3D filter with the noise standard deviation set to 

15.0noise  . We again observe comparable results, while 
MLMVN very slightly outperforms BM3D filter (PSNR 33.53 and 
33.24, respectively). Again noise is completely removed and sharp 
edges are better preserved after BM3D filtering. Again, while 
some “washed” noise leftovers are observed after filtering using 
MLMVN, small details are better preserved. 

Comparing other test images, we are coming to the same 
conclusions. While BM3D filter removes noise completely and 
better preserves sharp edges, it may “wash” small details. While 
MLMVN may leave some “washed” noise leftovers and smooth 
sharp edges, it better preserves the smallest details. 

Let us consider another example. The “Train Station” test 
image is shown in Figure 10. Its noisy version with Gaussian noise 
with the standard deviation 0.2noise   added is shown in 
Figure 11. Figure 12 presents the filtering result for the “Train 
Station” noisy image shown in Figure 11 and filtered using 
MLMVN. Figure 13 presents the filtering result for the same noisy 
image filtered using BM3D filter. The “Train Station” image 
contains a number of different textures, sharp edges and small 
details. If we take a look at the small detailed walkway texture, we 
clearly see that it is completely gone after BM3D filtering, while it 
is pretty well preserved after filtering by MLMVN. While if we 
take a look at pretty homogenous textures of the train cars under 
windows or the rough above the walkway, we have to conclude 
that their homogeneity is restored by BM3D filtering, however 
they contain many “washed” noise leftovers after MLMVN 
filtering. Since this image contains more different pretty 
homogenous areas and sharp edges than small detailed textures, 
BM3D filter shows better PSNR than MLMVN (33.34 and 31.51, 
respectively). 

The comparative results for all 10 test images are summarized 
in Table 2. The best result for MLMVN 225-1024-225 trained with 
RMSE=7.05 was taken. 

 

Table 2: Simulation Results: Comparison of Filtering using MLMVN and BM3D filter 
 

Test Images 1 2 3 4 5 6 7 8 9 10 Average 

MLMVN PSNR 31.51 29.78 28.43 30.28 28.49 27.90 33.53 32.29 34.92 34.96 31.21 
St. Div. 6.77 8.27 9.66 7.80 9.60 10.26 5.37 6.19 4.57 4.55 7.30 

BM3D PSNR 33.34 30.35 29.97 30.37 29.88 29.34 33.24 32.71 36.43 34.52 32.01 
St. Div. 5.48 7.74 8.09 7.72 8.17 8.69 5.55 5.60 3.84 4.79 6.60 
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Figure 1. The “Airplane F-16” - original image (was 
not used in the learning sets) 

Figure 2. The “Airplane F-16” image corrupted by 
additive Gaussian noise with the standard deviation 

0.2noise   

Figure 3. The image from Figure 2 filtered with 
MLMVN after using a learning set created from the 
6000 patches taken from a single image. Learning 
RMSE= 4.0; PSNR=32.35. Image histogram is 
narrowed. 

Figure 4. The image from Figure 2 filtered with 
MLMVN containing 1024 hidden neurons after 
using a learning set created from the 16000 
patches taken from 400 images. Learning 
RMSE=7.05; PSNR=34.96. Small details are mostly 
preserved. 

Figure 5. The image from Figure 2 filtered using 
BM3D filter with the 15.0noise  ; PSNR=34.52. 
Some small details are gone after filtering. 

Figure 6. The “Sailfish” image, which was not used 
in the learning sets (the original image) 

Figure 7. The “Sailfish” image from Figure 5 
corrupted by additive Gaussian noise with the 
standard deviation 0.2noise   

Figure 8. The image from Figure 7 filtered with 
MLMVN containing 1024 hidden neurons after 
using a learning set created from the 16000 
patches taken from 400 images. Learning 
RMSE=7.05; PSNR=33.53. Small details are mostly 
preserved. 

Figure 9. The image from Figure 7 filtered using 
BM3D filter with the 15.0noise  ; PSNR=33.24. 
Some small details are gone after filtering. 
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Figure 10. The “Train Station” image, which was not used in the learning sets 
(the original image) 

Figure 11. The “Train Station” image from Figure 10 corrupted by additive 
Gaussian noise with the standard deviation 0.2noise   

Figure 12. The image from Figure 11 filtered with MLMVN containing 1024 
hidden neurons after using a learning set created from the 16000 patches 
taken from 400 images. Learning RMSE=7.05; PSNR=31.51. The walkway 
texture is mostly preserved, but “washed” noise leftovers remain in a number of 
homogenous areas. 

Figure 13. The image from Figure 11 filtered using BM3D filter with the 
15.0noise  ; PSNR=33.34. The walkway texture is gone, but noise is also 

completely gone. 

 
 
As we see from Table 1, MLMVN slightly outperforms BM3D 

filter for 2 images out of 10; slightly yields, but shows comparable 
results on 4 images out of 10 and yields to BM3D on 4 images out 
of 10. Based on the statistics, which we got from this experiment, 
we have to conclude that as for this moment MLMVN slightly 
yields to BM3D filter, but nevertheless shows a comparable result. 
MLMVN better preserves small details and highly detailed 
textures, however, some “washed” noise leftovers remain in a 
resulting image. At the same time, BM3D filter better preserves 
sharp edges and removes noise completely. 

About the same results were reported in [2]-[4] for MLP (when 
compared to BM3D filter), however, MLMVN used in this paper 
contains 4 times less hidden neurons than MLP employed in [2]-
[4]. Moreover, all hidden neurons in MLMVN used in this paper 
are located in a single hidden layer, while 4-layer network, which 
requires significantly more operations and time for its training, was 
employed in [2]-[4]. 

It is important to mention that previously MVN was used for 
image filtering as a part of a cellular neural network [12] and also 
MLMVN was used as a high pass filter for edge detection [13]. 
But basically, in both those earlier works a pretty standard 

approach to spatial domain filtering based on the local 
neighborhood processing, which creates an output for a single 
pixel, was implemented. Particularly, the results reported in [12] 
were just comparable with order statistic filters, but they were not 
better. Definitely, MLMVN filtering presented in this paper gives 
significantly better results. 

Conclusions and Furture Work 
It was shown that MLMVN can successfully be used as an 

intelligent filter. It outperforms MLP because it makes possible to 
use a simpler network with just a single hidden layer and to get the 
learning algorithm converged much faster employing a batch LLS-
based learning algorithm. 

Since the more images are used to create a learning set, the 
better filtering results are obtained, a very clear direction for the 
further work is to use learning sets based on more images and 
improve the results in this way. 

It should also be interesting to discover whether all estimations 
of the resulting intensities from overlapping patches should be 
used to obtain the resulting intensities or for example, those 
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located closer to the borders of the patch should be ignored (or 
some weights should be assigned to different estimations 
depending how far from the center of a corresponding patch they 
are located). 

Another interesting direction for the further work is to apply 
the same approach for edge detection, especially for edge detection 
on noisy images (to suppress noise and detect clean edges). 

It should also be considered whether MLMVN can be used in 
about the same way for restoration of blurred images. 

Another attractive continuation of this work can be study of 
how to use MLMVN for filtering in the frequency domain. In fact, 
a complex-valued neural network can be potentially a great tool to 
process complex-valued data in the Fourier domain. 
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