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Abstract
We present a novel method for single-image super-resolution

(SR). In natural images, spatial edges usually have smooth con-
tours. From this observation, we derive a fast edge-preserving
natural image prior using our proposed fast edge-directed in-
terpolation (EDI) method, and combine this prior with the well-
known sparse gradient prior into a maximum-a-posteriori (MAP)
formulation of the SR problem. We develop an efficient primal-
dual algorithm to solve the inverse problem. The application of
our edge-preserving prior adds little computational overhead and
the output produced by our method demonstrates that results are
better than those of the state-of-the-art conventional methods.

Introduction
A single-image super-resolution (SR) method takes a low-

resolution (LR) image as input and produces a high-resolution
(HR) image. This is an underdetermined inverse problem because
the input LR image does not contain the full HR image informa-
tion. The missing information is crucial in making the HR image
look sharp. In order to reconstruct the unknown HR image from
the input LR image, SR methods must therefore fill in the missing
information, using prior knowledge.

It is well-known that SR involves three tasks: upsampling,
deconvolution, and denoising. The upsampling task uses the input
LR image data to form the target HR image. However, the upsam-
pled image appears blurry because the upsampling step does not
account for the optical anti-aliasing employed by cameras. This
anti-aliasing is implemented via an optical low-pass filter—an op-
tical element such as a diffuser is introduced on the optical path.
This filter slightly blurs the signal incident on the camera’s image
sensor and suppresses the spatial frequencies above the Nyquist
limit. Another reason for blur is that the camera optics may not
be perfectly focused at the imaged target. The deconvolution step
accounts for this anti-aliasing blur when restoring the high spa-
tial frequencies in the captured image. Since these high spatial
frequencies have been suppressed during capture, the signal-to-
noise ratio tends to be poor in the high spatial frequencies, and
as a result the deconvolution step ends up enhancing the high-
spatial-frequency noise. A denoising task can reduce this noise.
While these three tasks can be applied successively to solve the
SR problem, a better alternative is a global optimization approach
that addresses all of these three aspects at the same time.

We argue that an edge-aware anisotropic filtering component
is desirable for SR. Many existing SR techniques use an isotropic
upsampling component, such as a bilinear or bicubic resampler.
However, since isotropic upsampling is essentially a convolution
with a sampling kernel, such techniques introduce additional blur
to the upsampled image on top of the anti-aliasing blur already
present. This additional blur makes it harder to deconvolve the
image. On the contrary, an edge-aware anisotropic filter can re-

duce the blurring of strong edges in the image, which makes SR a
better-posed problem.

The strength of our proposed method lies in its use of a prior
that assumes that image edges are smooth along their contours.
We call this prior a smooth contour prior. This prior is fast to
compute. We employ this prior in conjunction with the widely-
used sparse gradient prior. The sparse gradient prior is applicable
to many inverse problems in imaging, including SR. The sparse
gradient prior assumes that natural images are piecewise smooth
and thus prefers sharp spatial edges. However, it does not explic-
itly model the edges to be smooth (not jaggy) along their contours.
We find that our proposed smooth contour prior complements the
sparse gradient prior and helps to reconstruct the unknown pixel
values by interpolating along the contours of strong spatial edges.
This results in a strong combined prior. As a result, edges re-
constructed with our proposed method are both sharp and smooth
along their contours.

The proposed smooth contour prior uses an edge-directed
interpolation operator as the main building block. While any
edge-aware anisotropic filter would do, we propose a new method
which improves New Edge Directed Interpolation [16] in terms
of speed and stability. This improvement directly translates into
a reduction of the time complexity of our proposed smooth con-
tour prior. Since edge-preserving methods estimate scene edge-
directions explicitly or implicitly at every pixel, these methods
use sliding windows, i.e, they process a window around every
pixel. Larger windows provide more accurate estimates but gen-
erally require more processing. The implementation of our pro-
posed fast edge-directed interpolation (EDI) method (and there-
fore the evaluation of our proposed smooth contour prior) has a
time-complexity that is linear with the number of image pixels
and is independent of window size.

We formulate the SR problem as a convex optimization prob-
lem, and for the solution we develop an efficient algorithm based
on the primal-dual optimization framework of Chambolle and
Pock [1]. Primal-dual optimization algorithms are not only effi-
cient, but are also easy to implement and have good convergence
properties. We demonstrate the performance of our algorithm on
a number of images. To summarize, our contributions are:

• A smooth contour prior which enforces smoothness along
the contours of the image edges and is complementary to
the sparse gradient prior.

• A fast edge-directed interpolation operator which applies the
smooth contour prior with a time complexity that is linear in
number of image pixels and independent of the window size
(Figure 1).

• A primal-dual optimization algorithm incorporating the
smooth contour prior with results better than the state-of-
the-art conventional methods and on par with the very recent
methods based on convolutional neural networks.
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Figure 1: A comparison of results and timings with respect to the
priors used in this paper. The SR reconstruction with the well-
known sparse gradient prior looks jaggy and over-sharpened. Our
fast edge-directed interpolation (EDI) algorithm can compute an
HR image very fast (∼ 0.2sec) but shows a few artifacts. Our pro-
posed combination of the two produces results with the highest
PSNR with a small time overhead added to the sparse gradient
prior reconstruction. PSNR in dB and computation times in sec-
onds are shown.

Previous work
Classical SR approaches such as the bilinear and bicubic re-

sampling methods reconstruct the unobserved pixels via isotropic
interpolation, and as a result these methods produce blurry HR
edges. More recent edge-aware anisotropic filtering approaches
perform interpolation along spatial edges so that the strong edges
do not appear blurry in the HR image. Wang and Ward [22] used
an explicit per-pixel estimation of the angle of the local isophote
or the equi-intensity contours. In contrast, other techniques such
as the edge-directed interpolation techniques [16, 19] make sta-
tistical estimations of the dominant directions of spatial edges in
the neighborhood. However, since these anisotropic interpolation
methods do not account for the spatial band limit of the LR image
signal, the resulting images appear slightly out of focus.

Edges provide strong visual cues, therefore it is important
that SR methods restore the sharpness of edges. Most approaches
focus on the edge structure “across” natural image edges (i.e., not
“along” their natural contours), and as a result they perform the
edge-aware reconstruction only indirectly. Farsiu et al. [6] com-
bined the bilateral filter with the sparse gradient prior. Recently,
Venkataraman et al. [21] used the Bilateral filter to regularize
their multiview SR algorithm. Markov random fields (MRF) are
also known to preserve edges in reconstruction [18, 23]. Dai et
al. [4] used a soft edge prior for alpha-matte SR. Their method
obtains soft edge reconstructions but gives up sharpness to obtain
edge smoothness along the alpha matte cut-edges. In very spe-
cific cases, such as building facades and other man-made objects
showing a repetitive structure, Fernandez-Granda and Candes [7]
apply a global transform to axis-align all scene edges so that the
sparse gradient prior can be applied without producing jaggies.
This method is not applicable to natural scenes with scene edges
in random configurations; however, it asserts that the detection
of dominant edge directions can help the sparse gradient prior,
which is otherwise oblivious of the edge directions. This further
justifies our claim that our proposed smooth contour prior works
in a complementary fashion to the sparse gradient prior.

Example-based, or more generally learning-based, methods

build an implicit prior knowledge base from preprocessed training
examples. These methods aim at learning image-patch-based SR
rules. Early work such as that by Freeman et al. [9] used nearest
neighbors search for looking up similar LR-HR examples for re-
construction. Later work aimed at leveraging various sources of
sparsity in the data. Methods such as Yang et al. [25, 26] and
He et al. [12] employ sparse coding and simultaneous LR-HR
dictionary learning. More recent related work investigated im-
proved nearest-neighbor strategies, and machine learning (ML)
techniques in general [14, 15]. The performance of such ML-
based techniques will always depend on the training on the pre-
viously seen or learned examples. Recently Zhu et al. [28] at
least partly overcame this limitation by introducing a deformation
model that allows patches to be deformed so that the learned dic-
tionary can be more expressive. Since a map from HR patches
to LR patches is many-to-one, a successful ML technique still re-
quires local image priors to avoid high-frequency artifacts. SR
methods using deep convolutional neural networks [5, 20] are in
some cases able to produce results that are a little better than ours
but require a huge amount of data for training as opposed to our
method which requires no training and is therefore applicable to
problems where training data is hard to obtain.

Recently, nonlocal self-similarity has been proven to be a
powerful natural image prior for denoising [3] and similar image
reconstruction problems [13]. A few recent work have leveraged
local self-examples as the source of the training data for SR. Glas-
ner et al. [10] utilized cross-scale self-similarities on an image
pyramid. Zhang et al. [27] combined nonlocal means and steer-
able kernels in order to leverage both nonlocal self-similarities
and edge preservation. He and Siu’s method [11] can be loosely
described as a non-local version of edge-directed interpolation
followed by a deconvolution: they perform a Gaussian process
regression to mine the structural similarities across 3×3 patches.
However, for SR, local methods are expected to perform just as
well as the more expensive nonlocal methods: Freedman and Fat-
tal [8] and more recently Yang et al. [24] have shown that self-
examples from the exact same location of an image patch but from
a different scale of the same image can produce plausible SR re-
constructions. An intuition behind this finding is that, while non-
local approaches can potentially strengthen the denoising compo-
nent of an SR solution, an edge-directed upsampling component
can reduce noise at the source by avoiding additional blurring due
to isotropic resampling. This has motivated us to develop the pro-
posed smooth contour prior using the proposed fast edge-directed
interpolation (EDI) algorithm.

Single-image super-resolution
We propose a new method for single-image super-resolution

(SR). Our method takes a low-resolution (LR) image as input and
produces a high-resolution (HR) image. In the following discus-
sion, we first describe the forward model: how an LR image is
formed from the latent HR image. We invert the forward model in
order to find the unobserved HR image from the input LR image.
This inverse problem, under the maximum-a-posteriori (MAP)
sense, becomes a convex optimization problem. We solve this
convex optimization problem with the primal-dual method [1].
This inverse problem is underdetermined, and we make it well-
posed by using two complementary priors: the well-known sparse
gradient prior, and a novel image prior that we propose, namely,
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Figure 2: A demonstration of the combined effect of the smooth contour prior and the sparse gradient prior with a Siemens star chart.
Enlarged parts of each image are shown are in the insets. Bicubic upsampled edges show jaggy artifact, that are missing in the EDI-
upsampled image. As EDI only performs upsampling and not deconvolution, its resulting edges are blurry, as seen by comparing the
orange insets. Reconstruction with the sparse gradient prior restores the sharp edges comparably to the ground truth. However, the
bottom-left corner of the green insets demonstrate that the sparse gradient reconstruction fails to restore high spatial frequencies around
the center of the star chart) and this is only as good as the bicubic upsampling result slightly sharpened. On the other hand, EDI can infer
higher frequencies because of its edge-directed interpolation. It is evident from the insets that our method combines the strengths of the
both approaches discussed above.

the smooth contour prior. We discuss the intuition behind this
proposed smooth contour prior. At the core of this novel prior is
our proposed fast edge-directed interpolation (EDI) algorithm we
develop later in this section.

SR as an inverse problem
Let x denote the unknown latent HR image, defined over the

set of pixels whose locations span Ω≡ [1,h]× [1,w]. Let z denote
the (partially observed) LR image, where the observed pixels are
centered at image locations Γ⊂Ω.

We follow the standard LR image formation model [17]. We
assume that the observed image has been properly anti-aliased
before it was captured, i.e., the spatial signal of the observed im-
age has been band-limited via a known low-pass filter s so as to
reduce aliasing in the captured data. We also assume that the ob-
served image has been corrupted by independent and identically
distributed (i.i.d.) additive white Gaussian noise (AWGN) η ,

z = (s⊗ x)|
Γ
+η , (1)

where ⊗ denotes two-dimensional convolution, and ·|
Γ

denotes
the restriction operator that selects the subset Γ.

The image formation model (1) above describes the relation-
ship between the LR image z and the latent HR image x. In order
to estimate the latent HR image, we solve (1) for x. Since the
forward model constitutes convolution, downsampling, and cor-
ruption by noise, the inverse problem involves denoising, upsam-
pling, and deconvolution.

The maximum-a-posteriori (MAP) estimate of x can be ob-
tained via the minimization of an energy function composed of
two parts: an ill-posed data-fitting term corresponding to the for-
ward model, and prior terms for well-posedness. The data-fitting
term follows directly from (1) while for prior terms we apply the
sparse gradient prior and our proposed smooth contour prior,

min
x
‖z− (s⊗ x)|

Γ
‖2

2︸ ︷︷ ︸
data-fitting

+λTV‖∇x‖TV︸ ︷︷ ︸
sparse gradient

+
λE

2
‖x−E (x|

Γ
)‖2

2︸ ︷︷ ︸
smooth contour

,

(2)

where λTV and λE are regularization weights, ‖ ·‖TV is total vari-
ation (TV), and E : Γ→Ω is an edge-aware anisotropic filter.

Global optimization for reconstruction
We use the primal-dual method [1] to solve the convex opti-

mization problem (2). The primal-dual method is more efficient in
optimizing for the various norms involved. This iterative method
uses general projection operators, known as the proximal opera-
tors and denoted by “prox”, to iteratively converge to the optimum
solution. In order to derive the primal-dual algorithm, we first
rewrite our problem in the primal-dual form. We then develop the
corresponding algorithm from [1] and derive the proximal opera-
tors employed by this algorithm.

We first rewrite our convex optimization problem (2) as

min
x

G(x)+FTV(KTVx)+FE (KE x), (3)

where the data-fitting term is captured by G(·) defined as

G(x)≡ ‖z− (s⊗ x)|
Γ
‖2

2 , (4)

KTV and KE are linear transformations from the primal (image)
domain to respective dual domains defined as

KTVx≡ λTV∇x (5)

KE x≡ x−E (x|
Γ
) , (6)

and FTV and FE are functions defined as

FTV ≡ ‖ ·‖TV (7)

FE ≡
λE

2
‖ · ‖2

2. (8)

Although (3) is convex, solving it directly is not easy because of
the mixed `1 and `2 norms. Instead, we solve the corresponding
primal-dual saddle point problem which is an equivalent problem
and has the same optimum solution,

min
x

G(x)+max
yTV
〈KTVx,yTV〉−F∗TV(yTV)

+max
yE

〈KE x,yE 〉−F∗E (yE ), (9)

where ·∗ denotes the convex conjugate of a function, and yTV and
yE are slack variables defined over respective dual domains. In
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order to solve (9), we have developed an algorithm, based on [1],
which is presented below.

Initializing x̄(0) = x(0) = E (z),y(0)TV = 0,y(0)E = 0,and,

repeating until convergence, we get,

y(k+1)
TV = proxσF∗TV

(
y(k)TV +σKTVx̄(k)

)
(10)

y(k+1)
E = proxσF∗E

(
y(k)E +σKE x̄(k)

)
(11)

x(k+1) = proxτG

(
x(k)− τ

(
KT

TVy(k+1)
TV +KT

E y(k+1)
E

))
(12)

x̄(k+1) = x(k+1)+θ(x(k+1)− x(k)), (13)

where σ > 0, τ > 0 and θ are parameters of the algorithm that
determines the step sizes for the iterates. Convergence is guaran-
teed [1] when: (i) 0 < θ < 1, and (ii) στL2 < 1 where L is the
operator norm of the combined primal-to-dual linear map, i.e.,

L =

∥∥∥∥[ KTV
KE

]∥∥∥∥
op

. The proximal operator (prox) represents a

generalized projection [1] on to a feasible set. The three proximal
operators used in our algorithm are discussed below:
(a) proxτG, the proximal operator of the data fitting term, follows
directly from the definition of proximal operators,

proxτG (x0) = argmin
x

‖x− x0‖2
2

2τ
+G(x) (14)

= argmin
x

‖x− x0‖2
2

2τ
+‖z− (s⊗ x)|

Γ
‖2

2 . (15)

This is a linear least-squares minimization problem, which we
solve using the conjugate gradient method.

(b) proxσF∗TV
, the proximal operator of the TV term, reduces to

pointwise shrinkage [1],

proxσF∗TV
(y0) =

y0

max(1, |y0|)
. (16)

(c) proxF∗E , the proximal operator of the convex conjugate func-
tion F∗E can be derived using Moreau’s Identity [1]. Moreau’s
Identity relates the proximal operator of a convex conjugate func-
tion (e.g. F∗E ) with the proximal operator of the original function
(e.g. FE ), and we get,

proxσF∗E (y0)≡ y0−σ prox 1
σ

FE

(y0

σ

)
, (17)

where the proximal operator of the original function proxFE
fol-

lows directly from the definition, and we get,

proxσF∗E (y0)≡ y0−σ

(
argmin

y

σ

2

∥∥∥y− y0

σ

∥∥∥2

2
+

λE

2
‖y‖2

2

)
=

λE

σ +λE
y0. (18)

This completes our algorithm. Next, we discuss the details of the
proposed smooth contour prior: the intuition behind it, and the
fast algorithm that computes it.

The smooth contour prior
The proposed smooth contour prior term promotes the recon-

structed image edges to be smooth along the natural contours of
edges, and thus it complements the sparse gradient prior. The EDI
operator E produces smooth contour, i.e., for some HR estimate
x∗ with smooth contour, E (x∗|

Γ
) is expected to produce the same

image x∗. In other words, the smooth contour prior term penal-
izes reconstructed edges that are not smooth along their contours.
Since, in contrast, the sparse gradient prior improves sharpness
across edges, these two priors complement each other. A simple
test case in Figure 2 demonstrates that the reconstruction quality
when both of the priors are applied is better than that when either
of them is applied separately.

Our choice of the anisotropic interpolation operator is made
based on the following criteria:
(a) Local calculations: Since non-local methods employ a search
for (patch or other) similarities in the image, the runtime complex-
ity tends to be much higher than that of local methods. Although
non-local methods are better for denoising [2] and similar image
reconstruction problems [13], local methods produce comparable
results for SR [8]. We therefore chose a local method for speed
without sacrificing the quality of reconstruction.
(b) Direct estimation of anisotropic interpolation coefficients:
Methods that depend on explicit edge detection [22] are prone
to discontinuity artifacts in case of edge mis-estimation. Our pro-
posed method can directly estimate the anisotropic interpolation
coefficients. In difficult cases (e.g., when our method is not con-
fident about a strong local edge) our method gracefully falls back
to bilinear interpolation and produces no noticeable discontinuity.
(c) Fast implementation: Anisotropic interpolation methods are
generally sliding-window algorithms. This means that the accu-
racy of such methods (such as the bilateral filter methods [6]) de-
pends on the amount of data available, i.e., the window size; but a
larger window usually results in a higher run-time. Our proposed
method has a run-time that is independent of the window size,
which makes it much faster than any other local method.

Our proposed fast edge-directed interpolation technique,
which we refer to as EDI, meets all of these criteria.

Fast edge-directed interpolation (EDI)
In this section, we present a fast edge-directed interpolation

(EDI) operator, the building block of our proposed smooth con-
tour prior. Our proposed method is based on [16], but is more
stable and much faster. The improved stability is due to the regu-
larized regression (25), and the speedup is from the proposed fast
two-pass calculations using summed column tables (29).

EDI copies the observed pixel values and estimates the un-
observed values from the known neighbors using anisotropic in-
terpolation. EDI derives the anisotropic interpolation coefficients
via sliding-window linear least-squares regressions.

The EDI operator E : Γ → Ω takes as input some partial
observations z, and produces a 2× 2 edge-aware anisotropic-
upsampled image x̂,

x̂≡ E (z). (19)

Since pixel values are already known over Γ, EDI obtains these
values directly from the input (Figure 4(a)),

x̂|
Γ
= z. (20)
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ti(r+a,c−b−1)ri(r,c)

=

ri(r,c−1)

− + + −

ti(r−a−1,c−b−1) ti(r−a−1,c+b)ti(r+a,c+b)

Figure 3: An illustration of the recurrence that lets us compute the area-sums incrementally and very fast. We calculate ri(r,c) from
ri(r,c−1) by adding and subtracting precomputed partial column sums ti, marked above with the red rectangles.

Ω1
Pixels

estimated in
EDI stage 1

Γ

Pixels with
observed

values

Ω2
Pixels estimated in

EDI stage 2

Γ∪Ω1
Pixels known after

EDI stage 1

45◦

Figure 4: An illustration of the two stages of EDI. The input LR
image pixels contribute to one-fourth of the target HR image pixel
grid Γ. The rest of the pixels are calculated in two stages: First,
the pixels in Ω1 are estimated via an anisotropic interpolation of
the diagonal neighbors. And second, half of the pixels are known
Γ∪Ω1, from which the remaining pixels Ω2 are estimated. The
second stage is algorithmically identical to the first rotated by 45◦.

For the unknown pixels in Ω−Γ, EDI runs the same anisotropic
filtering algorithm twice (Figure 4). The first stage estimates pix-
els in Ω1. In the second stage, the output of the first stage, i.e.,
values at pixels in Γ∪Ω1 rotated by 45◦ are input back to the same
algorithm which produces estimates of pixels in Ω2. Therefore,
without loss of generality, we limit our discussion to one stage.

EDI estimates each unobserved pixel separately. Let p ≡
(r,c) ∈ Ω1 denote the current pixel to estimate the value of. Let
�p denote the list of neighbors of p to interpolate from, where
|�|= 4 and �i p∈Γ, 1≤ i≤ 4. In particular, �1 p denotes the top-
left neighbor (the closest known pixel to the top-left of p), �2 p
the top-right neighbor, and so on. Then we obtain an estimate
of the unobserved pixel x̂(p) via a weighted interpolation of its
neighbors [16],

x̂(p) = ∑
|�|
i=1 αi(p)x̂(�i(p)), (21)

where α(p) ∈R|�| are the edge-aware anisotropic interpolation
coefficients. We determine α(p) by a linear least-squares regres-
sion over a window of size (2a+1)× (2b+1) centered around p
denoted by W (p),

α(p) = R(p)−1r(p), (22)

where R ∈R|�|×|�| is a 4×4 matrix defined as

Ri j(p)≡ ∑q∈W (p) x̂(�iq)x̂(� jq) (23)

and r ∈R|�| is a 4-vector defined as

ri(p)≡ ∑q∈W (p) x̂(�iq)x̂(q). (24)

In order to make the regression more stable, we propose to per-
form regularized regression instead of (22),

α̂(p) = (R(p)+µI)−1
(

r(p)+µ|�|−1
)
, (25)

where |�|= 4, and µ is a regularization parameter.
Since (25) is a small 4× 4 linear system, the overall com-

plexity is O(N), where N = hw is the number of pixels in the
image. The main bottleneck is (23) and (24): when implemented
in a straightforward manner, the complexity is O(N|W |). In con-
trast, our proposed algorithm has a time complexity of O(N), i.e.,
independent of the window size, which allows us to use a large
window size for obtaining accurate estimates of the interpolation
coefficients α .

We observe that (23) and (24) are sums over partially-
overlapping (sliding) windows, and therefore partial sums can
speed up the process. Without loss of generality, we show cal-
culations for ri(p), 1 ≤ i ≤ 4. Ri j can be computed in a similar
fashion. We use two O(N) passes: first we obtain an intermediate
data structure, the summed column table ti, and then we calculate
ri, for all pixels in Ω1.

In the first pass, we precompute an intermediate summed col-
umn table ti of size h×w to hold partial columnwise sums where
every element is a sum of all the (known) products corresponding
to that location and above it, and we get,

ti(r,c) = ∑
1≤ j≤r,( j,c)∈Γ

x̂(�i( j,c))x̂( j,c). (26)

We obtain the O(N) complexity by computing each element of t
incrementally as,

ti(r,c) =


0, if r ≤ 0 or c≤ 0

ti(r−1,c), if (r,c) /∈ Γ

ti(r−1,c)+ x̂(�i(r,c))x̂(r,c),otherwise.

(27)

In the second pass, we process pixels in a row-major order
to obtain ri. To achieve the O(N) overall complexity, we reor-
ganize the terms in (24) to obtain each element ri(r,c) with a
constant number of operations: from the previously computed
element ri(r,c− 1) and conjunctions and disjunctions of partial
column sums (Figure 3) as

ri(r,c)≡
r+a

∑
j=r−a

c+b

∑
k=c−b

z(�i( j,k))z( j,k) (28)

=ri(r,c−1)

− ti(r+a,c−b−1)

+ ti(r−a−1,c−b−1)

+ ti(r+a,c+b)

− ti(r−a−1,c+b). (29)
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[24]*Oursground truth [8]*(c) 4x4

(b) 4x4

(a) 2x2

ground truth
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Ours

Ours

(a-1)

(a-2)
[15]*

[15]*

[11]

[11]

35.13/0.9928 34.97/0.996132.25/0.9858

30.90/0.9088 29.83/0.8820 30.62/0.9063

(b-2)

(b-1)

(c-1)

(c-2)

ground truth

ground truth
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Ours

Ours

Ours [15]*

[15]*

[8]*

[11]

[11]

31.49/0.9384 27.49/0.8911 31.34/0.9389 [24]*
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(d-2)

[5]* [20]*33.12/0.9504 33.28/0.951332.95/0.9442

Figure 5: A few dyadic SR experiments with our algorithm. Each row represents one data set. On each set, the first image on the left
is the ground truth (GT), the second image is our SR result, the third and the fourth images are results from baseline methods as cited
below the image. The SR factor is listed under the ground truth image. PSNR and SSIM are listed under each image, the best numbers
are shown in bold. Images courtesy of respective sources marked with a ’*’. Insets on the right are presented in the same order as the
full-size images. Insets are enlarged by a factor of 4 with point sampling.

Results
Implementation details. We have used 13×13 windows for es-
timating per-pixel EDI weights. This EDI method performs 2×2
upsampling. For other SR factors we re-apply our method: For
4× 4 SR, we apply our algorithm twice. For 3× 3 SR, we com-
pute the 4×4 super-resolved image and bicubic-downsample it by
a factor of 3/4. The default parameter values in our implementa-
tion are: µ = 0.001, σ = 0.6, θ = 0.9 and λTV = λE = 0.0025.

We have implemented EDI as a Matlab executable (MEX-
file). It takes about 0.24 seconds to compute a 512×512 upsam-

pled image from an input 256×256 image. This time complexity
scales linearly with number of pixels as expected. We have imple-
mented the primal-dual SR algorithm in Matlab. In most cases, for
a 512× 512 HR target image, our Matlab implementation takes
less than one minute to reach within 0.2dB of the final solution,
and takes less than three minutes to converge to the final solution.
The most expensive operation is the computation of proxτG, the
proximal operator of the data-fitting term. The experiments were
run on an Intel Core i7 1.9GHz machine.

Experiments and analysis. In order to validate the performance
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Ours(a) 3x3

(b) 3x3

ground truth

Oursground truth

[4]*[16]

[26] [15]*24.17/92.1823.93/91.22

(a-1)

(b-2)

(b-1)

23.28/90.41

ground truth

ground truth

Ours

Ours [15]*[26]

[4]*[16]26.43/0.9512 26.12/0.9473 26.07/0.9552

(a-2)

Figure 6: A few nondyadic SR experiments with our algorithm. Nondyadic SR ratios are not natively supported by our method but can be
implemented by downsampling from SR with the smallest larger dyadic ratio. This comes with the potential cost of a small performance
loss, which is why in (b) above our method falls a little behind the baseline methods despite producing plausible results. (The organization
of the images and insets is similar to Figure 5).

of our SR method, we have run our algorithm on a number of
test images and compared our results with several state-of-the-art
methods. Figure 5 shows a few results of dyadic SR, with two
baseline results per test case. Figure 6 shows a few results on
nondyadic SR. The supplemental material may be consulted for
full resolution images and additional results and comparisons.

Our method takes a reconstruction approach to SR, and
therefore it does not produce high-frequency artifacts as produced
by nearest-neighbor search-based methods such as [11] shown in
Figure 5(a-1).

Methods based on convolutional neural networks such as [5,
20] produce slightly better results, although our result can repro-
duce details better in some cases as shown in 5(d-1).

Since our method is EDI-based, jaggies are easy to avoid,
particularly when a dominant edge is present. This is evident from
Figure 6(a). SoftCuts [4] has produced noticeable jaggies in 6(a-
1) and 6(a-2) whereas both NEDI [16] and our method produced
straight edge contours.

When compared to methods based on self-examples, in Fig-
ure 5(c), we see that all of [24], [8], and our method have been
able to restore the strong edges, e.g., the outline of the face. The
strength of the nonlocal methods is evident from the repetitive
texture areas, such as the section of the woolen hat shown in inset
(c-2). However, the dependence on self-similarity is a weakness
as well; [8] has turned the eyelashes into sharp features on the
eyelids in inset (c-1), whereas our method produces a plausible
reconstruction free of such sharp artifacts. Our method also re-
constructed the details of the eye and in the pupil better in (c-1).

Our method produces results that are slightly better than the
state-of-the-art method due to Kwon et al. [15]. We present three
comparisons with [15]; two dyadic cases in Figure 5, test cases (a)
and (b), and a nondyadic case in Figure 6(b). For test case 5(a) and
5(b), our result has better PSNR and/or SSIM, although it is hard
to visually identify much difference from the results presented
in [15]. In test case 5(e), our method also outperforms SR meth-
ods that are based on joint LR-HR dictionary learning [12, 26].
Since many HR image patches can explain a LR image patch,

strong local image priors such as our proposed combination of
priors is needed for SR reconstruction.

Limitations. In case of more than one locally dominant edge
or no dominant edge at all, e.g. a fine texture such as foliage or
fur, our algorithm might not accurately estimate the anisotropic
interpolation coefficients for upsampling as shown in Figure 5(c-
2). The smooth contour prior falls back to bilinear interpolation to
avoid discontinuity artfacts, and our method essentially becomes a
sparse gradient-based reconstruction method in these image areas.

An SR factor of larger than 2× 2 is not natively supported
by our method since EDI is designed for upsampling by 2× 2.
Other dyadic factors are also possible via successive application
of our method, but nondyadic factors such as 3×3 involve a bicu-
bic downsampling step in which our result may lose sharpness.
Our 3×3 reconstruction in Figure 6(b) suffers a small 0.24dB dip
in PSNR, since we obtain the final result by downsampling our
dyadic intermediate 4×4 reconstruction.

Conclusion
In this paper we have presented a new method for single-

image super-resolution (SR). We observe that spatial edges usu-
ally are not only sharp across, but also smooth along the con-
tours. We have proposed a novel smooth contour prior based on
our observation. We have combined the proposed smooth contour
prior with the sparse gradient prior; this combination models two
complementary aspects of natural images and produces better HR
reconstructions. We have also proposed a fast edge-directed inter-
polation algorithm that makes a fast application of the proposed
smooth contour prior possible. Finally, we have also developed an
efficient primal-dual SR algorithm that implements these priors.
Our proposed SR method produces better results than the state-of-
the-art conventional methods, and most of the methods that em-
ploy machine learning techniques and train on large datasets. We
believe that this new image prior will be applicable to other simi-
lar image reconstruction problems.
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