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Abstract

Two-dimension discrete Fourier transform (2-D DFT) is a

fundamental tool in grays-scale image processing. In color ima-

ging, this transform is used to process separately color channels

and such processing does not consider interactions between the

color channels. The concept of the quaternion discrete Fourier

transform (QDFT) became a very popular topic in color ima-

ging. The color image from one of the color model, for instance

the RGB model, can be transformed into the quaternion algebra

and be represented as one quaternion image which allows to pro-

cess simultaneously of all color components of the image. In this

work, we describe the algorithm for the 2-D left-side QDFT which

is based on the concept of the tensor representation when the

color or quaternion image is described by a set of 1-D quater-

nion signals and the 1-D left-side QDFTs over these signals de-

termine values of the 2-D left-side QDFT at corresponding subset

of frequency-points. The efficiency of the tensor algorithm for cal-

culating the fast left-side 2-D QDFT is described and compared

with the existent methods.

INTRODUCTION

The discrete Fourier transform (DFT) with its fast algo-

rithm (FFT) plays a fundamental role in several application, such

as signal processing, image enhancement, image de-nosing, au-

dio/image/video compression, image encryption, watermarking,

compressive sensing, and communication systems [1]-[7]. The

traditional Fourier transform is used effectively for gray-scale

images. For color images, the processing in the frequency do-

main is reduced to processing separately color channels which do

not consider interactions between the color channels. The three

color channels of an image may be represented as a vector field of

quaternion numbers [8], allowing for simultaneous analysis of all

color data [14]-[20]. In the quaternion algebra, there are differ-

ent definitions of the 2-D quaternion discrete Fourier transform.

They include the two-sided 2-D QDFT, the left-side and right-side

2-D QDFTs [10]-[16],[59]. The fast QDFT algorithms are based

on representation of the QDFT by combinations of a few classi-

cal 1-D DFT transforms. This allows QDFT for fast numerical

implementation with the standard FFT softwares [60].

In this paper, we introduce the concept of the tensor rep-

resentation of the color image in the quaternion algebra [8]

which allows for effective calculation of the 2-D left-side 2-D

QDFT [9, 22]. The proposed tensor algorithm is compared with

the existent methods of calculation of the 2-D left-side QDFT.

The complexity of the described algorithms of the left-side 1-

D and 2-D QDFTs are given. The concept of the tensor repre-

sentation of 2-D and multidimensional images, fast algorithms,

and the theory of splitting the discrete Fourier transforms by

1-D DFTs of the splitting-signals that uniquely represent the

image was first introduced and developed by Grigoryan [24]-[30]

and used not only for fast calculation of the 1-D, 2-D, and 3-

D DFTs, cosine, Hadamard, and Hartley transforms [32]-[38],

and for image reconstruction from projections in computed to-

mography [40]-[51], image enhancement [21, 23],[39],[54]-[56],

and filtration [4, 57]. The main results of this theory and algo-

rithms of calculations of 2-D and 3-D DFTs of different orders

as mentioned in [49] were published by other authors by differ-

ent names [52, 53], including the discrete Radon transform [Gert-

ner, 1988], the fast multidimensional Radon transform [Labunets,

1999], the finite Radon transform [Matúš and J. Flusser, 1993],

the exact discrete Radon transform [Guèdon, Barba, and Burger

1995] the mojette transform [Guèdon and Normand, 2005], the

discrete periodic Radon transform [Hsung, Lun, and Siu, 1996],

the orthogonal discrete periodic Radon transform [Lun, Hsung,

and Shen, 2003], [A. Kingston, 2006], and the generalized finite

Radon transform [A. Kingston and I. Svalbe, 2007]. All these

names of transforms relate to the original tensor and modified ten-

sor representation which Grigoryan called the paired representa-

tion [25, 29, 30, 31, 4].

QUATERNION and COLOR IMAGES

The generalization of complex numbers and arithmetic is

known as hyper complex numbers, and we consider the quater-

nion arithmetic, where attend was made to add more imaginary

numbers similar to the imaginary unit i for complex numbers. To

get the arithmetic with the division the number of such units as

known should be 3 or 7, and the number 3 relates to quaternions.

The complex numbers z = x + iy represent the points (x,y)
in the complex space C. Figure shows such a plane in part a. The

adding one new imaginary line to the complex plane does not re-

sult in a full arithmetic with multiplication and division. Instead,
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we may think to “add” similar complex planes, formally writing

this operation as C + jC as shown in part b.

FIGURE 1: (a) The complex plane C and (b) the abstract combi-

nation of two complex spaces.

For that, we can imagine two complex planes; one complex

plane C with numbers z1 = x1 + iy1 and another complex plane C

with numbers z2 = x2 + iy2. If we assume another imaginary unit,

j, then the following numbers can be considered:

q = z1 + jz2 = (x1 + iy1)+ j(x2 + iy2). (1)

We can denote such a double complex space C2 and call such a

representation of numbers q to be the (2,2)-representation.

Thus, the complex numbers z1 and z2 in this construction

play the same role as the real numbers x and y in the complex

numbers x+ iy. These new numbers q can be written as

q = x1 + iy1 + jx2 +( ji)y2

where the number (i j) should represent another number, or may

be an imaginary number unit, which will be denoted by k or −k,
i.e., k = ji or −k = ji. These numbers as elements of four (or

“quaternion” in Latin) are called quaternions and first have been

described by an English mathematician Hamilton [8].

The quaternion can be considered as a four-dimensional

generation of a complex number with one real part and three-

component imaginary part. The imaginary dimensions are rep-

resented as i, j, and k. In practice, the i, j, and k are orthogonal

to each other and to the real numbers. Any quaternion may be

represented in a hyper-complex form as

Q = a+bi+c j +dk = a+(bi+c j +dk),

where a,b,c, and d are real numbers and i, j, and k are three imag-

inary units with multiplication laws:

i j = − ji = k, jk = −k j = i,

ki = −ik = − j, i2 = j2 = k2 = i jk = −1.

The number a is considered to be the real part of Q and (bi+c j +
dk) is the “imaginary” part of Q. The quaternion conjugate Q̄ =
a− (bi + c j + dk). The property of commutativity does not hold

in quaternion algebra, i.e., Q1Q2 6= Q2Q1 for many quaternions

Q1 and Q2.
A quaternion number has four components, a real part and

three imaginary parts, which naturally coincides with the three

components, R(ed), G(reen), and B(lue) of a color pixel for 2-

D images. Therefore, a discrete color image fn,m in the RGB

color space can be transformed into imaginary part of quaternion

numbers form by encoding the red, green, and blue components

of the RGB value as a pure quaternion (with zero real part):

fn,m = 0+ i(rn,m + jgn,m +kbn,mk).

In quaternion imaging, each color triple is treated as a whole

unit [20], and it thus is expected, that by using quaternion ope-

rations, a higher color information accuracy can be achieved.

Left-side 1-D QDFT

As the generalization of the traditional Fourier transform, the

quaternion Fourier transform was first defined by Ell to process

quaternion signals [9]. In recent years, many works related to the

quaternion discrete Fourier transform (QDFT) and its application

in color image processing have been published [10, 11] and [17].

The computation the 2-D QDFT of a color image as a one unit,

not by color components separately, have found many interesting

application in image enhancement [12, 21, 54, 43].

Let fn = (an,bn,cn,dn) = an + ibn + jcn +kdn be the quater-

nion signal of length N. The left-side 1-D quaternion DFT (ls-

QDFT) is defined as

Fp = Q1(p)+ iQi(p)+ jQ j(p)+kQk(p) =
N−1

∑
n=0

W
np
µ fn,

where p = 0 : (N −1) and µ is a unit pure quaternion µ = im1 +
jm2 +km3, µ2 = −1. The kernel of this transform is

Wµ = WN;µ = exp(−µ2π/N) = cos(2π/N)−µ sin(2π/N).

Given an angle φ , the multiplication of two quaternion num-

bers exp(−µφ) and f = a+ ib+ jc+kd can be written as

exp(−µφ) · f = (cos(φ)− [im1 + jm2 +km3]sin(φ))
·(a+ ib+ jc+kd)

= acos(φ)+(bm1 +cm2 +dm3) sin(φ)

+i [bcos(φ)− (am1 +dm2 − cm3) sin(φ) ]

+ j [ccos(φ)− (−dm1 +am2 +bm3) sin(φ) ]

+k [d cos(φ)− (cm1−bm2 +am3) sin(φ) ] .

(2)

This equation is simple to implement in calculation of the 1-D

left-side QDFT.

Let ϕnp be the angle (2π/N)np.For a real signal xn of length

N, we consider the traditional N-point DFT of a signal xn,

Xp =
N−1

∑
n=0

W
np

xn, p = 0 : (N −1),

where the kernel W = WN = WN;i = exp(−i2π/N) =
cos(2π/N) − isin(2π/N). We now define the following co-

sine and sine transforms being the real and imaginary parts of

this 1-D DFT:

Cx(p) = Real(Xp) =
N−1

∑
n=0

xn cos(ϕnp),

Sx(p) = −Imag(Xp) =
N−1

∑
n=0

xn sin(ϕnp),

(3)

where p = 0 : (N −1).
We denote the vector of coefficients (Cx(0),Cx(1), Cx(2),

. . . ,Cx(N − 1)) by C(x), and vector (Sx(0),Sx(1),Sx(2), . . . ,
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Sx(N−1)) by S(x). The four vectors composed by the coefficients

Q1(p), Qi(p), Q j(p), and Qk(p) are denoted by Q1, Qi, Q j, and

Qk, respectively. As follows from (2), the 1-D left-side QDFT can

be written as

Q1 + iQi + jQ j +kQk =
= C(a)+m1S(b)+m2S(c)+m3S(d)

= i [C(b)−m1S(a)−m2S(d)+m3S(c)]

= j [C(c)+m1S(d)−m2S(a)−m3S(b)]

= k [C(d)−m1S(c)+m2S(b)−m3S(a)] .

(4)

This equation can also be writen as

Q1 + iQi + jQ j +kQk =
= C(a)+m1S(b)+m2S(c)+m3S(d)

= i[−m1S(a)+C(b)+m3S(c)−m2S(d)]

= j[−m2S(a)−m3S(b)+C(c)+m1S(d)]

= k[−m3S(a)+m2S(b)−m1S(c)+C(d)].

(5)

Therefore, if we denote the N-point 1-D DFTs of the parts

an, bn, cn, and dn of the quaternion signal fn by Ap, Bp, Cp, and

Dp, respectively, we obtain the following algorithm of calculation

of the 1-D left-side QDFT:

Fp = Q1(p)+ iQi(p)+ jQ j(p)+kQk(p),

Q1(p) = Real(Ap)+m1Imag(Bp)

+m2Imag(Cp)+m3Imag(Dp)

Qi(p) = −m1Imag(Ap)+Real(Bp)

+m3Imag(Cp)−m2Imag(Dp)

Q j(p) = −m2Imag(Ap)−m3Imag(Bp)

+Real(Cp)+m1Imag(Dp)

Qk(p) = −m3Imag(Ap)+m2Imag(Bp)

−m1Imag(Cp)+Real(Dp)

(6)

where p = 0 : (N −1).
One can note that no more than 12N operations of real mul-

tiplications plus 4 times mDFT (N) are used for mQFT (N). Thus,

the number of operations of multiplication and addition equal

mQFT (N) = 4mFT (N)+12N and aQFT (N) = 4aFT (N)+12N.
We consider the case when N = 2r, r > 2. The paired trans-

form algorithm for the N-point DFT uses the real multiplications

and additions in numbers [4, 29, 23, 30]:

4×µFT (N) = 4× [2r−1(r−3)+2]

2×αFT (N) = 2× [(2r6− r2−3r−6)+ µFT (N)].
(7)

It is assumed that the complex multiplication is performed with

two additions and four multiplications. Since the calculation of

two N-point DFTs over the real signals can be reduced to one N-

point DFT of a complex signal, we assume that 2mFT (N) = 4×
µFT (N) and 2aFT (N) = 2×αFT (N). The number of operations

for calculating the N-point DFT of the real signal is twice less

than the number of operations for the transform of complex signal.

Two 1-D DFTs with real inputs can be calculated by one DFT

with complex input [23]. Therefore, the number of operations

when calculating the 1-D left-side QDFT can be estimated as

mQFT (N) = 8µFT (N)+12N = 4Nr +16,
aQFT (N) = 4αFT (N)+12N = 2N(r +15)

−4(r2 +3r +4).

(8)

We should note that the same numbers of multiplication and ad-

dition are used for the 1-D right-side QDFT [58].

In the special case when µ = (i + j + k)/
√

3, equation (8)

can be written as

Fp = Q1(p)+ iQi(p)+ jQ j(p)+kQk(p),

Q1(p) = Real(Ap)+ [Imag(Bp)+ Imag(Cp)

+Imag(Dp)]/
√

3,

Qi(p) = Real(Bp)− [Imag(Ap)− Imag(Cp)

+Imag(Dp)]/
√

3,

Q j(p) = Real(Cp)− [Imag(Ap)+ Imag(Bp)

−Imag(Dp)]/
√

3,

Qk(p) = Real(Dp)− [Imag(Ap)− Imag(Bp)

+Imag(Cp)]/
√

3,

(9)

where p = 0 : (N−1). The number of operations of multiplication

and addition equal mQFT (N) = 4mFT (N)+4N, or 8N operations

of real multiplication less than in (8).

The Left-Side 2-D QDFT

The quaternion multiplication is not commutative and the

definition of the 2-D DQFT is not unique [11]-[13],[60]. Dif-

ferent DQFT can be used in image processing, including the left-

side, right-side, and two-side DQFTs. In this section, we consider

the left-side 2-D DQFT. The color image fn,m is considered to be

of size N×M which is transformed form RGB color model to the

quaternion subspace, namely the subspace of pure quaternions.

Let N0 be the g.c.d.(N,M) and N = N0N1, M = N0M1, and

K = M1N = N1M, where integers N1,M1 ≥ 1. The left-side 2-D

QDFT of the complex-in-quaternion image fn,m is defined as

Fp,s =
N−1

∑
n=0

W
np
N;µ

[

M−1

∑
m=0

W
ms
M;µ fn,m

]

,

where p = 0 : (N−1) and s = 0 : (M−1). This transform can also

be written as [13]:

Fp,s =
N−1

∑
n=0

M−1

∑
m=0

W
M1np+N1ms
K;µ fn,m,

where p = 0 : (N − 1) and s = 0 : (M − 1). Here, for a given

quaternion unit number µ , the basis exponential function is

WK;µ = exp(−2πµ/K) = cos(2π/K)−µ sin(2π/K).

This is the left-side 2-D QDFT.

The inverse left-side 2-D QDFT is calculated by

fn,m =
1

NM

N−1

∑
p=0

M−1

∑
s=0

W
−(M1 np+N1ms)
K;µ Fp,s,

where p = 0 : (N −1) and s = 0 : (M−1).
With the direct calculation, the separable 2-D left-side QDFT

requires N M-point 1-D left-side QDFTs and M N-point 1-D left-

side QDFTs. The 1-D left-side QDFT requires two 1-D DFTs.

Therefore, the row-column method uses 2N M-point 1-D DFTs

and 2M N-point 1-D DFTs.

As an example, Figure 2 shows the color image of size

1223×1223; the number 1223 is prime.
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FIGURE 2: The color ’‘girl Anoush” image.

Tensor Representation and the left-side 2-D QDFT

For the simplicity of calculation, we consider the N = M = K

case, i.e., when the left-side 2-D N ×N-point QDFT of the color-

in-quaternion image fn,m is

Fp,s =
N−1

∑
n=0

N−1

∑
m=0

W
np+ms
µ fn,m, p,s = 0 : (N −1). (10)

It is important to note that the kernel of this transform is

periodic,

W t+N
µ = cos(2π(t +N)/N)−µ sin(2π(t +N)/N)

= cos(2πt/N)−µ sin(2πt/N) = W t
µ ,

when t = 0 : (N − 1). Therefore, for the left-side 2-D QDFT, we

can apply the concept of the tensor representation [4, 43] and re-

duce the calculation and processing of this transform to proces-

sing of 1-D signals, which we call the color splitting-signals, or

the quaternion splitting-signals.

In the absolute scale, the left-side 2-D QDFT of the color

image is shown in Figure 3. This transform is shifted to the center.

FIGURE 3: (a) The left-side 2-D QDFT of the 2-D color-in-

quaternion ‘girl Anoush” image in the absolute scale and shifted

cyclicly to the center.

We consider the color image

fn,m = (rn,mi+gn,m j +bn,mk)

with zero real part in the quaternion algebra. The tensor rep-

resentation of the discrete image is the 2-D frequency and 1-D

time representation, when the image is described by a set of 1-D

splitting-signals of length N each,

χ : { fn,m}→
{

fTp,s = { fp,s,t ;t = 0 : (N −1)}
}

(p,s)∈JN,N
.

This transform, as mentioned in Introduction, in many publica-

tions is also named as discrete Radon transform.

Given (p,s), the components of the splitting-signal fTp,s are

the following sums (or ray-sums) of the image fn,m along the par-

allel lines on the Cartesian lattice

X = XN,N = {(n,m); n,m = 0,1, ...,(N −1)},

i.e.,

fp,s,t = ∑
(n,m)∈X

{ fn,m; np+ms = t mod N}.

This quaternion splitting-signal fTp,s = { fp,s,t ; t = 0 : (N − 1)} is

calculated as

fp,s,t = i(rp,s,t)+ j(gp,s,t)+k(bp,s,t)

= ∑
(n,m)∈Vp,s,t

fn,m = i



 ∑
(n,m)∈Vp,s,t

rn,m





+ j



 ∑
(n,m)∈Vp,s,t

gn,m



+k



 ∑
(n,m)∈Vp,s,t

bn,m



.

(11)

Here, for a given generator (p,s) from the set JN,N , we define the

following N subsets in the Cartesian lattice:

Vp,s,t = {(n,m) ∈ X ; np+ms = t mod N}, t = 0 : (N −1).

The imaginary components of the splitting-signals are the

splitting-signals of the red, green, and blue channels of the color

image.

The frequency-point (p,s) is called the generator of the

splitting-signal. The components fp,s,t are periodic by t, i.e.,

fp,s,t+N = fp,s,t . We denote this splitting-signal by the set

Tp,s =
{

(kp mod N,ks mod N); k = 0 : (N −1)
}

,

since the signal carries the information about the 2-D DFT at N

frequency-points of this set [30, 4],

Fkp mod N,ks mod N =
N−1

∑
t=0

fp,s,tW
kt
µ , k = 0 : (N −1). (12)

Indeed, the union of the family of disjoint subsets Vp,s,t , t = 0 :

(N − 1), is the Cartesian grid and, therefore, the following calcu-

lations hold:

N−1

∑
t=0

fp,s,tW
kt
µ =

=
N−1

∑
t=0

[

∑
np+ms=t mod N

(rn,m)i+(gn,m) j+(bn,m)k

]

W
kt
µ

=
N−1

∑
t=0

(

∑
np+ms=t mod N

(rn,m)i+(gn,m) j +(bn,m)k

)

W
k(np+ms)
µ

=
N−1

∑
n=0

N−1

∑
m=0

(

(rn,m)i+(gn,m) j +(bn,m)k

)

W
n(kp)+m(ks)
µ .

=
N−1

∑
n=0

N−1

∑
m=0

fn,mW
n(kp)+m(ks)
µ = Fkp mod N,ks mod N .

The set JN,N of frequency-points (p,s), or generators, of the

splitting-signals is selected in a way that covers the Cartesian lat-

tice XN,N with a minimum number of subsets Tp,s. For instance,
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when N = 2r, r > 1, the set JN,N contains 3N/2 generators and

can be defined as

JN,N =
{

(1,s);s = 0 : (N −1)
}

∪
{

(2p,1); p = 0 : (N/2−1)
}

.

The tensor representation is unique, and the image can be de-

fined through the 2-D DFT calculated by (12), or directly from the

tensor transform, as shown in [4, 23, 41]. Since 3N/2 splitting-

signals compose the tensor representation, the calculation of the

2-D DFT is reduced to 3N/2 one-dimensional N-point DFT, in-

stead of 2N such transformation in the traditional row-column

method.

It should be noted, that the total number of components of

3N/2 splitting-signals equals N2 +N2/2, which exceeds the num-

ber N2 of points in the image. On the other side, many sets

Tp,s, with generators (p,s)∈ JN,N have intersections at frequency-

points. In the N = 2r case when r > 1, the color image is described

by 3N/2 quaternion splitting-signals and 2-D QDFT of the image

is split by the 3N/2 1-D QDFT of these signals. The tensor trans-

form is therefore redundant. This redundancy can be removed and

the 2-D DFT can be calculated in a more effective way, by using

the modification of the tensor representation, which is called the

paired transform [4, 30].

The tensor representation is very effective in another case of

most interest when N is a prime, since the number of required

sets Tp,s is N + 1 and the sets intersect only at the point (0,0).
Now, we implement the concept of the tensor representation for

the quaternion images. In this case, the number of such signals

and 1-D QDFT equals (N + 1), because the set of generators can

be taken as

JN,N =
{

(1,s);s = 0 : (N −1)
}

∪{(0,1)}.

We consider the representation of this image at frequency-

point (p,s) = (1,4). The components of the quaternion splitting-

signals of the red, green, and blue channels, which are generated

by this frequency-point (1,4) are shown in Figure 4 in parts a, b,

and c, respectively.
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r
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130
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115
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b
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FIGURE 4: The (a) red, (b) green, and (c) blue components of

the splitting-signal f1,4,t.

In this case N = 1223. The set of N + 1 = 1224 such triplet

splitting-signals of length N each describe the color-in-quaternion

image as well as its 2-D QDFT. The splitting-signal

f1,4,t = (r1,4,t)i+(g1,4,t) j +(b1,4,t)k, t = 0 : (N −1),

is referred to as the color splitting-signal in the quaternion space.

The N-point left-side 1-D QDFT of this splitting-signal is shown

in Figure 5 in the absolute scale (and with the normalized actor

of 1/N2) only for the real part of the transform in part (a) and the

i-component of the imaginary part in b.
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FIGURE 5: The (a) real and (b) i-component of the 1223-point

left-side QDFT of the quaternion splitting-signal f1,4,t.

In the absolute scale, the 1-D left-side QDFT of the splitting-

signal is shown in Figure 6 in part a after shifting to the center.

The 1-D QDFT this splitting-signal coincides with the 2-D left-

side QDFT of the image at frequency-points of the set T1,4 which

are shown in part b.
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FIGURE 6: (a) The 1-D left-side QDFT the quaternion splitting-

signal f1,4,t (in the absolute scale), and (b) the location of

frequency-points of the set T1,4 on the Cartesian grid.

Figure 7 illustrates the quaternion 2-D left-side QDFT. The

real part of this quaternion transform is shown in part a in the

absolute scale, and the imaginary part as three-component data is

shown in the RGB color model in part a.

(a) (b)

FIGURE 7: (a) The real part and (b) the imaginary part of the

left-side 2-D QDFT of the 2-D color-in-quaternion ‘girl Anoush”

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.15.IPAS-192

IS&T International Symposium on Electronic Imaging 2016
Image Processing: Algorithms and Systems XIV IPAS-192.5



image in the absolute scale and shifted cyclicly to the center. All

1-D and 2-D quaternion left-side DFTs were calculated for the

unit number µ = (i+2 j +k)/
√

6.

When N = 2r and integer r > 1, the number of N-point 1-D

QDFTs required to calculate the N ×N-point 2-D QDFT equals

3N/2. For N > 2 prime, the number of N-point 1-D QDFTs re-

quired to calculate the N ×N-point 2-D QDFT equals N + 1. It

should be noted, that the tensor transform is of size N(N + 1) =
N2 + N > N2, but it is not redundant since we can represent the

image by one full splitting-signal, let say { f1,0,t ; t = 0 : (N −1)},
and N other signals as { fp,1,t ; t = 0 : (N − 2)}. The sum of com-

ponents of splitting-signals is the same and equals the area (S) of

image, i.e.,

N−1

∑
t=0

fp,1,t = S =
N−1

∑
n=0

N−1

∑
m=0

fn,m,

for all p = 0 : (N −1). Therefore,

fp,1,N−1 = S−
N−2

∑
t=0

fp,1,t .

Each N-point 1-D left-side QDFT can be calculated by two

complex N-point 1-D DFTs. Here, we note for comparison, that

the number of N ×N-point 2-D left-side QDFT in the traditional

row-column wise algorithm requires 2N N-point 1-D left-side

QDFTs, or 4N N-point complex 1-D DFTs.

The representation of the color and quaternion image by the

1-D splitting-signals allows us not only calculate the 2-D left-side

QDFT, but to reconstruct the image directly from the splitting-

signals,or the direction images defined by the splitting-signals.

Similar to the gray-scale images [4],[39]-[42], the direction image

from the signal fp,s,t is calculated by

dn,m = d
n,m;p,s =

1

N
fp,s,(np+ms) mod N (13)

where n,m = 0 : (N −1).

(a) (b) (1,1)−DI

(c) (1,2)−DI (d) (1,4)−DI

FIGURE 8: (a) The color image and direction images generated

by (p,s) equal (b) (1,1), (c) (1,2), and (d) (1,4).

Figure 8 shows the color image in part a, and the direction

images generated by three frequency-points (p,s) = (1,1), (1,2)
and (1,4) in parts b, c, and d, respectively. These direction images

were amplified by the factors of 1.5,1.5, and 1.85, respectively.

For this example when N = 1223, the color image 1223×
1223 is the sum of such 1224 direction images {dn,m;p,s; (p,s)∈
J1223,1223} which represents the inverse tensor transform.

In general case when N is prime, all (N + 1) cyclic-groups

Tp,s intersect only at points (0,0). The following statements hold:

Statement 1: The quaternion image fn,m of size N×N, where

N > 2 is a prime, can be calculated as the sum of (N + 1) direc-

tional images:

fn,m = ∑
(p,s)∈JN,N

dn,m;p,s

=
1

N

[

N−1

∑
p=0

fp,1,(np+m) mod N + f1,0,n

]

,

n,m = 0 : (N −1).

(14)

The reconstruction of the color and quaternion images by

direction images has place for other cases of N. For instance for

the N = 2r case, we can use the modified tensor representation

which is similar to the paired representation for the 2-D gray-scale

images (see for details [4, 23, 5]).

Statement 2: The quaternion discrete image of size N ×N,
where N = 2r, r > 1, can be composed from its (3N−2) direction

images as

fn,m = ∑
(p,s)∈J′N,N

dn,m;p,s

=
1

2N

r−1

∑
k=0

1

2k ∑
(p,s)∈2kJ

2r−k ,2r−k

f
′

p,s,(np+ms) mod N

+
1

N2
f
′

0,0,0 .

(15)

Here, the components f ′p,s,t are components of the paired repre-

sentation [25, 27, 30, 4] which are defined from the tensor repre-

sentation by

f
′

p,s,t = fp,s,t − f
′

p,s,t+N/2 .

The last addendum in the formula represents the mean value of

the image, which we denote by E [ f ],

E [ f ] =
1

N2
f
′

0,0,0 =
1

N2
S.

Conclusion

The 2-D left-side quaternion discrete Fourier transform

(QDFT) is decribed in the tensor representation in the quater-

nion algebra wherein the color image can be transformed from

for such color models, as RGB or XYZ. The color and quaternion

images are uniquely described by a set of quaternion splitting-

signals which allow to calculate the 2-D left-side QDFT by a

minimum number of 1-D left-side QDFTs. The proposed ten-

sor algorithm was shown uses less number of multiplications as

the existent algorithms. The tensor representation is revealing the

structure of both right- and let-side 2-D QDFT, is effective, and

allows for transferring the processing of color and quaternion ima-

ges through 1-D splitting-signal.
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