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Abstract 

In an earlier paper, it was shown that the neuron’s refractory 
period (the period of time after the neuron has fired before it can 
fire again) can serve as a short term local memory.  In particular, if 
an array of refractory neurons (the retina) trains over an image, is 
then offset, the trained pixel comparisons to the offset pixels are 
done globally across the entire array.  The refractory period is 
biologically based, and so is the offset; the offset is done by ocular 
microtremors.  Together, they provide a tool that can do grey scale 
boundary and texture segmentation. 
This paper significantly extends the capabilities of refractory neural 
nets by pointing out that refractory neurons can be arranged into 
XOR gates.  We have a ‘pixel-predictor’ and use an XOR gate to 
compare the sensing of a pixel to the prediction for that pixel.  If the 
two are the same, then nothing comes up from the gate.   If they are 
different, then a signal comes out and a modification is made to the 
pixel-predictor.  These predictors can be done at multiple levels of 
coarseness which effectively give us a multilayer classifier, i.e., a 
deep learning capability.   

Overview and Background  
Artificial Neural Networks (ANN) are core computational 

engines in the machine learning toolbox.  The vision community 
uses ANNs to achieve learning from massive learning sets and have 
garnered successes.  ANNs are based on biological facts, namely 
that learning in biologic neural systems can achieved by 
reinforcement of appropriate synaptic connections.  Using this 
approach, ANNs have parsed through massive data sets to find 
patterns that were not visible to the humans.  However, the 
biological neurons have more story to tell.  Namely they have a 
refractory period, a period of time after the neuron has fired before 
it can fire again, which is about 1 msec [1].  From the overall 
network perspective, if the neuron has fired, it is no longer in the 
network- this means the topology of the network has changed. This 
can be a much stronger effect than just modifying the synapse 
strength.  But what makes it powerful is that these neurons, with 
their refractory nature, can combine together to do significant 
processing of the raw sensory data stream that can enhance the ANN 
process.  In particular, it can locally perform the synapse weighting 
updates that backpropagation would provide. 

The use of refractory characteristics in neural nets could 
provide a significant new approach.  I presented a paper, “Refractory 
Neural Nets and Vision”, [2] at the 2014 Electronic Imaging 
Conference where it was shown that the neuron’s refractory period 
(the period of time after the neuron has fired before it can fire again) 
can serve as a short term local memory.  In particular, if an array of 
refractory neurons (the retina) that has trained over an image is now 
offset, then pixel comparisons of the trained to the offset is done 
globally across the entire array.  Biologically, the offset is done by 
ocular microtremors (OMTs). [3] In that paper, we showed they 
provided a tool that can do grey scale boundary and texture 
segmentation.   Figure 1 shows a test image done for the previous 
paper where we had two regions side by side, on fading from black 
on top to medium grey, the other fading from that same medium 

grey to white.  Thresholding would put one of those medium grey 
regions in the wrong segment.  Figure 2 shows that the RNN with 
the Ocular Microtremor can pick out the edge between these 
regions. 

 
 

 
Figure 1: Test RNN/OMT Process 

 

  
Figure 2:  The RNN and OMT discovers the Edge 

 
We see the edge revealed by the ‘flash’ effect: the brighter 

region sees even brighter pixels on its side; the darker region darker. 
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This fact of edge detection facilitated by OMT could well have 
bearing on one of the mysteries of vision, namely the perception of 
‘forbidden’ colors such as ‘yellowish blue’ or ‘redish green’ in 
defiance of Hering’s laws of color opponency.  Billock, et.al report 
on experiments where they “…used a dual Purkinje image eye 
tracker to retinally stabilize bipartite color fields whose hues and 
achromatic border contrast were controlled.” [4]  Note that if there 
is an OMT, the image stabilizer would shift the image to obviate the 
OMT movement so the shift that does the edge detection does not 
happen. With, equiluminant opposing colors, they report the 
segmentation disappears and since there is now no boundary, each 
color floods into the other’s region.  Billock et al report that 
perceptions of this were varied: Our subjects … were tongue-tied in 
their descriptions of these colors, using terms like ‘‘green with a red 
sheen,’’ or ‘‘red with green highlights.’’  We will expand on this in 
the later section ‘RNN Pixel Predictor’. 

This paper will expand on that by investigating how the RNN 
approach can learn from images and how it can develop classifiers 
at several levels in an unsupervised fashion, providing a deep 
learning capability.  Jordan and Mitchell in a recent article in 
Science [5] that surveys machine learning point out that “The most 
widely used machine-learning methods are supervised learning 
methods.”  Further, they state “One high-impact area of progress in 
supervised learning in recent years involves deep networks, which 
are multilayer networks of threshold units, each of which computes 
some simple parameterized function of its inputs.”  This paper will 
discuss a proof of concept study that indicates the RNN approach 
may provide the deep learning for vision in an unsupervised way  

Methodology 
The RNN approach is biologically inspired, but our aim in this 

paper is to investigate the computational impacts, not the biological.  
The computational architecture is a series of arrays where lower 
layers feed into higher layers.  We take a cellular automata/discrete 
event simulator (DES) approach where the control mechanism is 
time clicked (the clicks are nominally 0.5 msec, but we don’t have 
a clock – we loop from one click to the next).  So all of the arrays 
are updated at the same simulation clock time. Cellular automata 
would compute updates for all elements of all arrays.  We bring in 
DES philosophy and only run the update code for those array 
elements that have event changed inputs. 

The objective was ‘proof of concept’, not ‘image processing 
production code’, so we used Python instead of C++ or Java.  Python 
is fantastic for algorithm development.   It is interpreted instead of 
compiled, so one can immediately see the impact of changes. 

In the previous paper, we had two computational layers: the 
retinal layer and the aggregation layer.  At the bottom was the image 
layer.  It was fixed and fed into the retinal layer.  The retinal layer is 
an array of neurons that react to image layer pixel values directly 
below them and that array can be offset.  These neurons are 
implemented as finite state machines with the pixel value as input.  
The state transitions for a given retinal neuron, R(m,n)  are defined 
below:  
 If R(m,n) = 2  R(m,n) → 1      (1) 
 If R(m,n) = 1  R(m,n) → 0     (2) 
 If R(m,n) = 0         (3) 
  If  random(N) < Image(i,j)  
     R(m,n) → 2 and  

firing transmitted to  Aggregation(i,j) 
 Else    R(m,n) → 0 

These state transitions define the following behavior.  If the 
retinal neuron, R(m,n), is in state 2 or state 1, it cannot fire.  If it is 
in state 0, it goes through a stochastic determination based on the 
brightness of Image(i,j) as to whether it fires or not.  If not, it remains 
fire-able.  If it does fire, it goes into the first part of the latency period 
(state 2) and the fact of firing is carried to the (i,j)th elements of the 
aggregation layers where we aggregate over several OMTs.  To 
reiterate, upon an OMT, the information in the (i,j)th elements of the 
image get processed by the retinal layer into the (i,j)th elements of 
the aggregation layer.  The aggregation layer in a sense becomes a 
model of the image layer as developed by the retinal layer. 

The retinal layer is positioned on top of the image and each 
retinal neuron will react to the image pixel below it.  If the image 
pixel is very bright, if the neuron is fireable, it will likely fire 
immediately.  Then all those fired neurons will go into their 
refractory state, so all those will be unable to fire.  There may be 
some unfired neurons of the offset array that over the bright area that 
do fire, but altogether, the firings of neurons that had been over the 
bright areas would be significantly lower.  Conversely, if the retinal 
neurons had been over a dark area, they would likely not to have 
fired, so if the OMT moves them to over a bright area, a high 
proportion of these will likely fire.  Thus we should see a significant 
increase in the firing rate compared to what we see in the more 
interior bright region – colloquially it would be said we “see a flash.”   
And on the dark side, the OMT effect will produce darker output on 
that side of the boundary. 

At start up, we accelerate the stabilization by randomly setting 
the refractory, retinal neurons to be in the various refractory states.  
That way, at startup, only a portion will be fire-able and on the next 
click, another portion will become fire-able.  We still give it a few 
clicks to completely stabilize before we start the experiments. 

For the operation of the RNN, let’s return to the biology.  
Remembering that what we are expecting is a flash when a 
movement of the retinal array moves a portion of the retinal array 
from dark to light, we ask is there a biological process that does this.  
And there is indeed; it is the ocular microtremor (OMT) and it is 30 
Hz to 120 Hz peaking at around 83Hz. [3] This would equate to 
about 12 msec per microtremor.  Given that the absolute refractory 
period is 1 msec [1] we have about 12 refractory cycles per 
microtremor.  At two clicks per refractory period, this would be 24 
clicks per microtremor.  In the experiments discussed in the earlier 
paper [2] we had used 16 clicks per retinal array movement and that 
seemed to give us pretty good stabilization after the flash.  If the 
neuron fires, that is passed up to the aggregation layer indexed with 
the position of the image layer.  There will be several aggregation 
arrays.  Typically, these only get inputs from the retinal layer upon 
a microtremor movement (a ‘flash’).  There are arrays that only get 
inputs for particular microtremor movements.  There would be 
arrays for 1 pixel up or down, 2 pixels up or down, 1 pixel left or 
right, etc.  That earlier paper pointed out that these aggregate layers 
were important for texture discovery.  Passing a firing up to an 
aggregational layer  increments the value at the pixel index position 
of that layer.  

Another important aspect is that there are no cross-connections 
within the retinal layer.  This means that different portions of the 
processing of the retinal layer could be easily distributed, since it 
doesn’t require any information flow to other elements.  Similarly 
for the image itself.  There may be cross connections at some of the 
aggregational layers, but even these would be fairly local.  Lower 
level aggregations could be pipe-lined into higher level pipes using 
a stream-based approach.  In other words, we don’t have long scale 
correlations which confound distributed processing approaches.  All 
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this says that this approach is very amenable to Big Data techniques 
such as analytics, Hadoop MapReduce techniques, etc.   
 Let us here do a quick comparison to standard edge detection, 
namely Canny edge detection.  From a couple of on-line tutorials, 
the Canny edge detection can be described as follows. [6] [7]  A 
Guassian blur is applied to smooth out noise.  A Sobel operator is 
applied to find the maximal gradients.   Those pixels are used as the 
starting point of building the edge line.  In contrast, since the RNN 
is a stochastic process, the Gaussian blurring is not necessary.  In 
fact, it would wipe out the fine texture areas RNN detects 
coincidently with edge detection. [8]  Since the RNN process 
enhances the contrast between the boundary pixels on each side, the 
boundary lines can often be picked out by just doing differences in 
the horizontal and the vertical directions. 

This short term memory effect of the refractory period can also 
be of consequence in other portions of the computational process.  
Figure 3 shows a graphic from an earlier paper [2] that shows how 
to build an XOR circuit from refractory neurons.  Here is a quote 
from that paper as to how it functions: 

“To see the operation, a signal comes to neuron A. It gets 
transmitted to neuron A which fires (the heavy line indicates the link 
has sufficient weight to fire the neuron by itself) as well as to B1. 
From A, the signal gets transmitted to both A1 and A2, which will 
both fire, if A1 has not already fired. The dashed links leading from 
them to AC show that these are half weight links and both must fire, 
at the same time, for AC to fire. If a signal comes in to both A and B 
at the same time, both A1 and B1 will fire a beat early, so they will 
not be able to fire in concert with their partner. Both signals get 
squelched. However, a signal coming in on just one of them will get 
passed through.” Later in this paper, we will walk through this 
process. 

 

 
Figure 3: The XOR Circuit Built From RNN Components 

 
These XOR circuits can then be used to implement learning.  

For each pixel, we have an XOR circuit with the sensed value as one 
input and the predicted value as another.  If they are the same, either 
both fired or both unfired, there is no output.  If they are different 
there is and that initiates the learning process.   If the sensed value 
is 1 and the pedicted value is 0, then we increment the pixel-
predictor for that pixel.  For the other case, we would decrement the 
pixel-predictor. 

This XOR circuit is done by wiring together 11 extremely 
simple processors – that is they are defined by the three simple finite 
state machine rules above. If the retinal array was NxN, we would 
have an array of NxN XORs comprised of 11 neurons each.  If we 
physically had these, since they could all run in paralel, the 

processing would be extremely quick.  However, we don’t; this has 
to be implemented as a virtual array where we virtualy traverse the 
array, one XOR at a time and sequence them onto the CPU.  Run 
time grows as the square of the dimension; our test images are 
approximately 150x150, small enough for fast computation.  These 
are also fine for proof of concept since the images are so stark it is 
easy to grasp what the processing is doing.   

Refractory Neural Nets – Deep Learning 
 

Refractory Neural Net Adaptable Topologies 
 
That the Refractory Neural Nets can modify their topologies in 

response to different conditions is a novel computational tool with 
perhaps wide spreading utility.  We will explicate this by doing 
stepped snapshots of the behavior of an RNN XOR circuit, 
expanding on our earlier comments.  We will have a sequence of 
four figures showing the side by side (well actually up and down) 
comparison of the XOR behavior given the two inputs (from Image 
and from Prediction) ‘Agree” (the top, showing both ‘A’ and ‘B’ 
firing at input) and ‘Disagree’ (the bottom, showing ‘A’ firing and 
‘B’ not firing.)  Let’s see how these each play out.  

 
 

 
Figure 4: First Step of Exercise of XOR - Agree vs disagree 

 
In the top illustration of Figure 4: First Step of Exercise of XOR - 
Agree vs disagree, we see both Neuron A and Neuron B firing.  Each 
fires back into its own subnetwork, e.g. from ‘A’ to ‘AP,’, ‘B to BP’.  
But each also fires into the other network, namely ‘A’ to ‘B1’, ‘B’ 
to ‘A1’.  The bottom shows only ‘A’ fires and ‘B’ does not: that is, 
there is disagreement between the two inputs. 

The top illustration of Figure 5: Next Set Of Neurons Fire, 
shows the consequences of agreement between the two inputs: both 
‘A1’ and ‘AP,’ fire and both ‘B1’ and ‘BP,’ fire.  Thus from this point 
on, neither ‘A1’ nor ‘B1’ can be fired as they are both in their 
refractory states.  The bottom panel shows the consequences of 
disagreement.  ‘A’ fires and B does not.  Since ‘B’ did not fire, ‘A1’ 
does not get excited and does not fire.  Thus ‘A1’ is still fireable. 
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Figure 6: Third Stage Where Agreeing inputs Interfere with 
Each Other, shows how the two agreeing inputs interfere with each 
other.  ‘A2’ fires but ‘A1’ does not since it had fired on the previous 
beat.  Similarly, ‘B2’ fires but ‘B1’ does not.  On the lower panel, we 
see that since B did not fire, ‘A1’ did not fire.  Thus, when the wave 
front got there, both ‘A1’ and ‘A2’ could fire. 
 

 
Figure 5: Next Set Of Neurons Fire 

 
 
 

 
Figure 6: Third Stage Where Agreeing inputs Interfere with Each Other 

 
Figure 7: The Agrees extinguish Each Other top illustration 

shows since the pulses from ‘A1’ and ‘A2’ did not arrive 
simultaneously, ‘AC’ did not fire.  Similarly for ‘BC’.  That is, if the 
two inputs agree, they will extinguish each other. The lower 
illustration shows that if only ‘A’ fires, there will be a consequent 
pulse at the output.  With this, we can detect differences between 
predicted and the image at pixel levels.  The next section will discuss 
the implications of this in more detail. 

Another facet of this that is novel and perhaps a promising line 
of further examination is that effectively, the agreeing inputs cause 
an effective, temporary change to the network topology, as is seen 
in Figure 8:  Topology Changes for Agree.  Literature searches of 
Neural Nets have not shown any use of the refractory period in this 
way, particularly for use in vision processing.  S.K.Aityan in a 1994 
colloquium abstract [9] mentions the refractory neurons can be 
assembled into units that do all the binary logic functions including 
XOR, but I could find nothing that further expanded on this. 

 

 
Figure 7: The Agrees extinguish Each Other 

 
  
 

 
Figure 8:  Topology Changes for Agree 

 
The top panel of Figure 8 shows how the topology of the ‘A’ 

network is changed by the early firing of ‘A1’ due to excitement 
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from ‘B’.  This effectively deletes the link from ‘A1’ to ‘AC’ for the 
length of time of the refractory period. The bottom panel shows the 
‘A’ network is unchanged if ‘B’ is not also fired at the same time as 
‘A’.   

From a biological perspective, this XOR could have benefits in 
that activity only continues further up the line if what is seen is 
different than what is expected.  This decreases the amount of input 
into the higher levels, giving those the space to handle the 
idiosyncratic issues of non-normal events.  Importantly from a 
biological perspective is that less energy is required.  From a 
computational algorist view, we might ask how the energy 
requirements of the pixel-predictor are minimized.   

 

The Refractory Neural Net Pixel-Predictor 
 
The XOR circuit is used to develop and refine pixel-predictors.  

In the current versions, the pixel-predictors are arrays sized the same 
as the retinal array and have non-negative integer values.  When 
presented with a new image, we also start with a pixel-predictor 
array which is zeroed out.  We do the clicks of the stabilization 
period, do the ocular microtremor (OMT) and collect flashes in the 
appropriate cell of the aggregate layer.  The pixel-predictor at this 
same time makes a prediction as to whether a given pixel would 
flash by making a stochastic choice based on the integer value in 
that position.  Both of these values are presented to the XOR and if 
there is no output (that is, both are the same), then there is no change 
to the pixel- predictor.  If not, then the pixel-predictor value is 
decremented if the pixel-predictor indicated the pixel fired and the 
pixel didn’t.  Conversely, if the pixel-predictor didn’t fire but the 
pixel actually did, then the pixel-predictor would be incremented.  
Since the firing process is stochastic, noise will slow down 
convergence of the pixel-predictor, but will not kill it.  Once we have 
a pixel-predictor, we can make programmatic changes to the 
predictor output to compare to other manifestations of the image.    

For proof of concept purposes, we will utilize four images that 
will help delineate this study’s problem space, two star shapes 
(Figure 9: The Star Shapes-4 point and 6 point) and two regular 
polygons (Figure 10: Regular polygons: Square and Hexagon).  
These are straightforward non-convex vs convex shapes.   These 
images are fed to the initial process which does the edge detection 
as we’ve described above.    

 
Figure 9: The Star Shapes-4 point and 6 point 

          
Figure 10: the Regular polygons-Square and Hexagon 

 
Figure 11: Coarse vs Fine processing 

Deep Learning and Classification 
In an earlier section, we saw how pixel-predictors would be 

developed by the using the RNN XOR circuit to do pixel by pixel 
comparison of the pixel-predictor to the presented image, updating 
the pixel-predictor as appropriate.  This comparison process can tell 
us of the degree of match between the presented image and any of 
the predictors currently in inventory.  However, in real 
circumstances, there will be such a plethora of different predictors, 
that this detail level comparison is not a feasible approach.  
However, we address this by augmenting the process that builds the 
pixel-predictors to also build coarser level predictors.  Figure 11 
illustrates the original fine level pixel-predictor and its coarser 
version.   

These coarser versions are built at the same time as the pixel-
predictors.  Namely, if we were to increment (decrement) pixel-
predictor[i, j], we would increment (decrement) coarse-pixel-
predictor[int(i/3), int(j/3)].  This builds a coarser array comprised of 
3x3 elements.  This reduces the number of compare operation by an 
order of magnitude. 
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Figure 12: 4-star and 6-star combined 

 
. 
Further, we can make coarse predictors that are a blend of 

several coarse images.  Figure 12 shows a blend of the 4-star and the 
6-star images.  The dark area in the center is where both images are 
black; the gray areas around that are where one is black and the other 
is background white.  And around that is where both images are 
white background.  Figure 13 shows the blend of square and 
hexagon. 

Given a training set of images, they could be processed for edge 
detection at the finest level, producing the different coarser level 
views as a side effect.  Figure 11 shows the development of two 
levels of processing for the 4-star.  The edge detection clearly shows 
on the fine level product (right hand side) where we see the pixels 
on the boundary on the bright side are much brighter than the other 
brights and the pixels on the dark side are darker than rest.  In the 
image on the left of Figure 11, the coarser view (responses were 
binned into 3x3 pixel buckets) we can see this boundary effect, but 
just barely.   

This smoothing allows us to compare in a defocused way.  
Things will kind of look like others if we can ignore details 

 So for a sample image, S, the classifier could first look at the 
coarsest version of S, S0, and compare that to the coarse predictors 
for best match.  Each of those are the result of a merging of a set of 
predictors at the next level of fineness that ‘look like each other’.   
Once we have found the best matching coarse level predictor, we 
can then look at its finer level predictors and find which best match 
to our sample image in its next finer resolution, S1  

 This hierarchical approach, coarser to finer, provides an 
exponential lever on operational complexity.  Effectively, this 
multilayered hierarchy of increasingly finer pixel-predictors has the 
same effectiveness as ‘deep networks’ Jordan and Mitchell [5] 
allude to  

[Author’s aside:  Infants have a very low visual acuity that gets 
better – could it be that they are developing these coarser level 
predictors and don’t even try the fine level (even though they could 
physically parse the image at that finer level] 
 

 
Figure 13: Hex and Square combined 

Let’s look at how this hierarchy of predictors might be achieved.  
Figures 12 and 13 show the aggregated predictors for the 4-star/6-
star aggregate and the hex/square aggregate.  Figure 13, for 
example, is the result of taking the predictor for the coarse hex and 
the predictor for the coarse square and merging them as images.  
That is, each pixel is the average of that pixel position for the hex 
and for the square.  I.e. HS[i,j] = (H[i,j] + S[i,j])/2.  If we added on 
a third image, A, then HSA[i,j] = ((HS[i,j]*2) + A[i,j])/3, each image 
contributing a 1/3  share.  The goal is to find a partition of the 
training images at their coarsest level so that the partitions differ 
little internally, but differ significantly with other partitions.  This of 
course is classic clustering.  The results of merging within each 
cluster a coarse image that can act as the exemplar for that cluster.  

 

 
Figure 14: DIFFERENCE of 4-star to hex  
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Figure 15: Difference of 4-star and  6-star  

It is desired to do this clustering in an unsupervised fashion.  
The training images (coarse level versions) are presented to merge 
process in sequence.  The   incoming image is compared to the 
current exemplars using the difference function.  Figures 14 and 15 
above show this difference function.  The exemplar with the 
smallest difference is chosen as the cluster and the incoming image 
is merged into that.  However, if the differences to all the current 
exemplars is too large, the incoming image becomes the initial 
exemplar of a new cluster.  Once we believe we have converged on 
the exemplar set at the coarsest level, we can take the images in a 
cluster and build up the exemplar set for that cluster at the finer 
level.  The Merge process provides us a hierarchical classifier which 
is 1) done unsupervised and 2) robust to noise (since the base 
processes are stochastic) 
 

 
Figure 16: 4-star on the hex-square exemplar 

 
 

 
Figure 17:  Small 4-star on the 4-star-6-star exemplar 

 

Discussion and Further Direction 
Buesing et al in their recent paper [10] start off with the 

following statement:  
“Attempts to understand the organization of computations in 

the brain from the perspective of traditional, mostly deterministic, 
models of computation, such as attractor neural networks or Turing 
machines, have run into problems: Experimental data suggests that 
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neurons, synapses, and neural systems are inherently stochastic, 
especially in vivo, and therefore seem less suitable for implementing 
deterministic computations.” 

The authors of that article look to defining a probabilstic based 
analysis of a neural computational network  They include the 
refractory period as part of the Markov Chain Monte Carlo process.  
However, they do not in that paper consider that the refractory 
period can actually change the topology of the network.  Even 
though this change only lasts a millisecond, for the events in that 
msec, that modified topology is what they see and the outputs of that 
network reflect the input values and the modified topology.     

Thus we have a possible new approach to computation:  
‘dynamic network intelligence’ where the network’s topology is 
affected by the inputs and the history, as well as the synapse 
weightings of the ANN-like components.  This approach is 
inherently stochastic, so fits into reality based processes.   

Enhancements envisoned for the RNN code set include the 
separation of segment boundary pixel-prediction from segment 
region color/texture pixel-prediction and the development  of 
rotational and dilational programatics.  Achievng the first, the 
boundary detection, would definitely help with the second since we 
could then deal with substantially smaller sets.  

 
 

Summary 
 

 
This paper has discussed several novel insights that could be 

of use in the image processing toolbox.  The refractory period can 
provide short term memory which, combined with the ocular 
microtremor gives us a local convolution-like process globally 
over the retinal array.  Texture determination is a by-product of 
this edge detection.  The refractory period can cause temporary 
changes to the vision network topology; in particular XOR gates.  
The XOR gates compare what is predicted to what is seen.  
Differences can be used to modify the predictor.  This can be done 
at several nested layers of coarseness, providing a deep learning 
capability. 
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