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Abstract: This paper presents a comparison study of Gaussian 
Mixture Models for fingerprints image duplication and analysis. It 
also presents a new probabilistic Parametric Gaussian Mixture 
Model(GMM). The system is built around the likelihood ratio test 
for verification, using simple but effective GMMs for likelihood 
functions and a form of Bayesian adaptation to derive the models. 
The Computer simulation show that the developed new algorithms 
have the most optimal performance as compared to state of art 
algorithms GMMs, Generalized GMMs, Finite Bayesian learning 
for GMMS, Texture Synthesis and Improved Adaptive Algorithm. 
The performance of the presented algorithm was evaluated by 
Bovik Index, Entropy and Mean Square Error. 
 
Introduction: 
 
Fingerprints are the most popular biometric identifier. Human 
experts have been substituted by Automatic Fingerprint 
Identification Systems in fingerprint recognition and classification 
[22,23,24]. Fingerprint matching is a difficult problem due to large 
variability in different impressions of the same finger, partial 
overlap, non-linear distortion, variable pressure, skin condition, 
noise and quality of feature extraction methods, missing data of the 
images , specialized(forensics application) fingerprint databases. 
To solve this problem , we need to have a good synthetic 
fingerprint algorithm and also missing data reconstruction 
algorithm.   

Recently a Gaussian Mixture model has been used in image 
processing applications [29] to represent a given image by 
combination of gaussian models. In this paper, we present a new 
application of  Gaussian Mixture Models for Fingerprints Image 
Duplication and analysis. A Gaussian mixture model is a 
probabilistic model that assumes all the data points are generated 
from a mixture of a finite number of Gaussian distributions with 
unknown parameters.  
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i  are the weights with ),( , kkkN x  is a i-Gaussian 

distributions component of the mixture model with its own mean 
µk and variance shape k 

The standard GMM  uses a single adaptation or learning rate that is 
a compromise between the different rates of parameters. MMs 
were originally proposed in the paper by Friedman and Tee-Won 
Lee [1] to cope with slow-moving objects, though the standard 
formulation uses the update method proposed by Stauffer and 
Grimson [2] and [3]. In this approach each pixel is temporally 
modeled as a mixture of two or more Gaussians and is updated for 
each new image frame. The stability of the Gaussian distribution is 
evaluated to estimate if they are the result of a more stable 
background process or a short-term foreground process. Each pixel 
is classified to be background if the distribution that represents it is 
stable and above a threshold. The training of Gaussian Mixture 
Models can be accomplished using Expectation Maximization. 

The use of a GMM for representing feature distributions in a 
biometric system may also be motivated by the invention that the 
individual component densities may model so underlying set of 
hidden classes. For example, in speaker recognition, it is 
reasonable to assume the acoustic space of spectral related features 
corresponding to a speaker’s broad events, such as vowels, nasals 
or fricatives. These acoustic classes reflect some general speaker 
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dependent configurations that are useful for characterizing speaker 
density. 
The GMM approach has been adapted and extended by many 
researchers. Power and Schoonees [11] used hysteresis 
thresholding, introducing a faster and more logical application of 
the fundamental approximation of Stauffer and Grimson [10]. 
Other authors have improved the speed and adaptation rate of the 
model by updating the standard formulation . adaptively select the 
number of Gaussians used to model each pixel, employing a 
recursive computation to update the model parameters. Greggio et 
al.  proposed a self-adaptive GMM for real-time background 
subtraction, learning an initial description mixture from the first 
video frame. Martel-Brisson and Zaccarin  have extended the 
method to deal with shadows using a novel statistical model that 
copes with highly saturated scenes subject to complex, time-
varying parametric, suppressing false detection in regions where 
shadows cannot be detected. Shah et al. [4] propsed an parametric 
invariant background model using GMM and SURF featutres to 
quickly adapt local parameters. Yoshinaga et al. [4] applied a 
GMM to a local difference pattern. However, these methods 
remain unsatisfactory for the following reasons: (i) the temporal 
and spatial constraints of pixel dependencies are not addressed by 
these pixel-based algorithms; (ii) the algorithms are computed in 
RGB space, but these color components are not independent and so 
using a simplification of the covariance by a 3 × 3 identity matrix 
is not accurate and results in more false positive and false negative 
detections [3]; (iii) an established model with sufficiently small 
variance is unnecessarily duplicated; and (iv) the proportion of 
time over which a pixel will observe the background is assumed 
constant, but in reality it fluctuates constantly depending on the 
number of objects and their movement patterns. 

So, in order to solve this problem we need synthetic fingerprint 
images. Many alternatives have also been proposed to the GMM 
approach, including the following: an eigen background algorithm 
combined with a statistical parametric model; block-based one-
class background classifier ; saliency detection ; low-rank matrix 
factorization with iteratively re-weighted least squares (IRLS) ; 
self-organizing artificial neural networks  and ; adaptive patch-
based background modeling ; scale-invariant local ternary pattern 
operator and pattern kernel density estimation , to cope with 
parametric variation in the feature space; statistical modeling of the 
parametric effects ; incorporation of spatial relations of pixel pairs; 
color and gradient information  and ; and non-parametric density 
estimations. However, there are also drawbacks for these methods. 
The assumption of  model is that the foreground is only a small 
part of the entire image.  

The goal of this article is to compare commonly used GMMs for 
fingerprint duplication and to develop two parametric image 
models for fingerprint duplication (Parametric Image Model based 
on Improved Adaptive , genetic Algorithm and Finite Bayesian 
learning, Parametric Image Model generating image statistics 
based on  Generalized Gaussian ,  Finite Bayesian learning and an 

Image Enhancement algorithm). We need a Probabilistic 
Parametric Image Model because it can help in reconstruction of 
missing data of the images and generating  synthetic images for  
fingerprint matching. The remainder of the paper is organized as 
follows. We discuss the introduction with a given GMM in Section 
II, and present the maximum marginal likelihood estimator based 
algorithms for a GMM in Section III, and for an proposed new 
algorithm in Section IV. Computer Simulation results are 
presented in Section V. Section VI concludes the paper. 

State of art algorithms 

Mixture models should not be confused with models for 
compositional data, i.e., data whose components are constrained to 
sum to a constant value (1, 100%, etc.). However, compositional 
models can be thought of as mixture models, where members of 
the population are sampled at random. Conversely, mixture models 
can be thought of as compositional models, where the total size of 
the population has been normalized to [1].   
EM algorithm[3]: 
Form K-means clusters from a set of n-dimensional vectors 
1. Set ic (iteration count) to 1 
2. Choose randomly a set of K means m

1
(1), …, m

K
(1). 

3. For each vector x
i
, compute W(x

i
,m

k
(ic)), k=1,…K 

and assign x
i
 to the cluster C

j
 with nearest mean. 

4.  Increment ic by 1, update the means to get m
1
(ic),…,m

K
(ic). 

5. Repeat steps 3 and 4 until C
k
(ic) = C

k
(ic+1) for all k 

 
Ming-Hsuan Yang Algorithm Gaussian Mixture Models[1] 

 Calculate the Inputs Observation y, joint distribution 
p(S,k(y, k; θ)), conditional distribution pC|Y (c|y; θ), 
initial values θ (0) 

  Apply the EM(p(Y,S(y, c; θ)), pS|Y (c|y; θ),) algorithm. 
  Choose the iteration t ∈ 1, 2 
  Calculate the cost function k (t) ,S← pS|Y (s|y; θ (t−1)) 

(E-step)   
  Calculate phase values, θ (t) ← argmaxθ ,k (t), C 

[pY,S(y, C; θ)] (M-step) 
  Find the value of pY.,If θ (t) ≈ θ (t−1) then  
 Calculate the final parameter θ (t) 

 
Tee-Won Lee Generalized Gaussian Mixture Model [2] 

 Each training sample is assigned to one of the clusters. 
Denote the assignment function by η(·). Then η(i) = j 
means the ith training sample is assigned to the jth 
cluster.  

 Find the cluster covariance matrix. arg (min(,η (X ,N 
(i=1 − (i)) k ) 

 Find the observed data (incomplete): {x1, x2, ..., xn}, 
where n is the sample size. Denote all the samples 
collectively by x.  

 Complete data: {(x1, y1),(x2, y2), ...,(xn, yn)}, where yi 
is the cluster (component) identity of sample xi .  
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  Calculate the collection of parameters, θ, includes: ak , 
µk , Σk , k = 1, 2, ...,K. I 

 Find the parameters using the  likelihood function is: 
S(x|θ) = Xn (i=1) (log X )*K (k=1) which is the 
objective function of the EM algorithm  

Mixture Model using Bayesian learning(MMBL)[5] 
 E-Step: Calculate S(Φ|Φ c ).  
 M-Step: Choose S(Φ|Φ c ).  
  Find the  base measure parameters: λ, λ0, observed 

samples: x1, . . . , xn, and threshold ][n  

 min)}(],[{ nsnD   

The decision thresholds will be updated as follows, 
 This updates the splitting threshold to a value that goes 

linearly with the 
 initial value and the actual number of components used 

for the computation. 
 Calculate the remaining parameters mean, variance. 

Alexei A. Efros [4]Texture Synthesis 
 Image Quilting can be done by calculating the value of 

Ej (Expectation)using the Ei,j = ei,j + min(Ei1,j1, Ei1,j, 
Ei1,j+1), using the dijkshtra’s algorithm 

 For every location, search the input texture for a set of 
blocks that satisfy the overlap constraints (above and 
left) within some error tolerance. Randomly pick one 
such block. 

 Calculate (p) = f!0 Ireal : d(!0 ; !(p)) = 0 

Extended Gaussian Mixture Model for 
Fingerprints Image Duplication 

In this Section, we are going to discuss the steps that are 
implemented for the newly developed algorithms. The steps are as 
follows: Assume the image pixels as follows: 

            X = {x1, x2, ..., xN} .  

The general steps for the GMM is : 
Step 1: Decompose given data y[n] by combination of “similar” 
data by using k-mean (k-means clustering aims to partition 
the n observations into k (≤ n) sets S = {S1, S2, …, Sk} so as to 
minimize the within-cluster sum of squares (sum of distance 
functions of each point in the cluster to the K center).  
 
Step 2: This is an iterative procedure to compute the a Probabilistic 
Parametric Model or Gaussian Mixture Models 
component(µ,,𝑘) 
EM consists of two steps: 
Expectation step: the new parameters are estimated using the 
observed data and current estimates of model parameters 
Maximization step: The likelihood function is maximized under 
the assumption that we know the old parameters 

We use the following k-mean algorithm to determine the clustered 
data set: 
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x1,…, xN are data points or vectors of observations. Each 
observation (vector xi) will be assigned to one and only one cluster 
C(i) denotes cluster number for the ith observation Dissimilarity 
measure: Euclidean distance metric 

Match the parameters that are found using the EM algorithm:  

1. Initialize parameters: 
 
 

2. E-step       



n

i

T
kiikii

k
k xxx

N 1

1
     





n

i
ii

k

n
k x

N 1

1
  

3. M step     n
k

n

i
ii

k

n
k x

N
new  




1

1  

 

                         



n

i

new
kii

new
kii

k

new
k xxx

N 1

1
  

We calculate the bias vectors as follows: 
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Computer simulations Images used: 
 
 
 
 
 
 
 
 
Image 1 

  
       
Image 2 

 
Image 3 

 
Image 4 

 
Images Similarity Measure[11] 
There are many image similarity measures to compare two images 
[11,25-28]. In this article, we use Structural Similarity Image 
Measure [11]. 
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• Luminance comparison 
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• Structure comparison is conducted s(x,y) on these 

normalized signals (x- µx )/σx and(y- µy )/ σy 
 
Sr.
No
. 

Algorithm Image1 Image2 

 
 
 
 
1 

 
 
 
Original 
Image 

 
 
 
 
 
 
   
 
Q=1 

     

 
 
Q=1 

 
 
 
 
2 

 
 
 
Gaussian 
Mixture 
Model 

 
 
 
 
 
 
 
 
Q=0.3411 

 
 
 
 
 
 
 
 
Q=0.3756 
 
 

 
 
 
3 

 
Generalized 
Gaussian 
Mixture 
Model 
(GMM) 

 
 
 
 
 
 
 
Q=0.6475 

 
 
 
 
 
 
 
Q=0.6487 

 
 
 
 
4 

 
Generalized 
Gaussian 
Mixture 
Model using 
Bayesian 
learning 
(GMMB) 

   

 
 
Q=0.7692 

   
   
Q=0.7641 
 

 
 
 
 
5 

 
 
 
 
Texture 
Synthesis 
 

 
 
 
 
 
 
 
Q=0.5486 
 

 
 
 
 
 
 
 
Q=0.4474 
 

6 Genetic 
Algorithm 
 

 
Q=0.8612  

Q=0.8695  
7 Improved 

Adaptive 
Algorithm 
 

 
 
 
 
 
 
 
Q=0.8154 
 

 
Q=0.8612 

8 New 
Algorithm 
based on 
Generalized 
Gaussian 
and Finite 
Bayesian 
learning(GM
MBF) 

  
 
 
 
 
 
 
 
Q=0.8645 
 

 
 
Q=0.8748 

9 Image 
Enhancemen
t Algorithm 
for Gaussian 
Mixture 
Models and 
Finite 
Bayesian 
Model 
(GMMBE) 

 
 
 
 
 
 
 
Q=0.8745 
 

 
 
 
 
 
 
 
Q=0.8687 

10 New 
Algorithm 
Based on 
Improved 
Adaptive, 
genetic 
Algorithm 
and Finite 
Bayesian 
learning 
(GMMBFE) 

 
   Q=9279 

 
Q=9249 

 
 
 
 
 
 Algorithm Image3 Image4 
 
 
 
 
1 

 
 
 
 
Original 
Image 
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Q=1  
Q=1 

 
 
 
 
2 

 
 
 
Gaussian 
Mixture 
Model 

    
Q=0.3445 

 
Q=0.3718 

 
 
 
 
3 

 
 
 
 
GMM 

 
Q=0.6437 

 
Q=0.6472 

 
 
 
 
4 

 
 
 
 
GMMB 

   
Q=0.7664 

  

 
Q=0.7656 

 
 
 
5 

 
 
 
Texture 
Synthesis 
 

 
Q=0.5479 

 

Q=0.4452 
 
 
 
6 

 
 
 
Genetic 
Algorithm 

 

Q=0.8671 

 

Q=0.8645  

 
 
 
 
7 

 
 
 
Improved 
Adaptive 
Algorithm 
 

 
Q=0.8173 
 

 
Q=0.8629 

 
 
 
 
8 

 
 
 
 
GMMBF 

  
Q=0.8626 

 
 
Q=0.8738 

 
 
 
 
9 
 

 
 
 
 
GMMBE 

Q=0.8756  
Q=0.8646 

 
 
 
 
10 

 
 
 
 
GMMBFE 
 

    
Q=9274 

 
Q=9287 

 
Results (Image 1): 
 
Sr.N
o. 

Algorithm SSIM Entropy Mean 
Square 
Error 

 Original Image 1 845.74 0 
1 Gaussian Mixture 

Models, Ming-
Hsuan Yang,1999 
 

0.3411 
 

255.21 875.23 

2 GMM, Tee-Won 
Lee,2005 
 

0.6475 454.12 797.39 

3 GMMB. Nicola 
Greggio,2010  
 

0.7692 645.17 744.43 

4 Texture Synthesis, 
Andrea Rau,2010 
 

0.5496 
 

245.12 612.48 

5 Improved Adaptive 
Algorithm, Vahid 
Majidnezhad,2013 
 

0.8692 687.32 455.78 

6 Genetic Algorithm, 
Vahid 
Majidnezhad,2013 

0.8397 643.21 574.53 

7 GMMBF 0.8645 685.12 318.54 
8 GMMBFE 0.9249 723.69 219.64 
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Results (Image 2): 

Sr.N
o. 

Algorithm SSIM Entropy Mean 
Square 
Error 

 Original Image 1 664.23 0 
1 Gaussian Mixture 

Models, Ming-
Hsuan Yang,1999 
 

0.3756 
 

178.74 841.23 

2 GMM, Tee-Won 
Lee,2005 
 

0.6487 369.76 752.39 

3 GMMB Nicola 
Greggio,2010  
 

0.7641 487.32 737.43 

4 Texture Synthesis, 
Andrea Rau,2010 
 

0.4474 
 

278.96 656.48 

5 Improved Adaptive 
Algorithm, Vahid 
Majidnezhad,2013 
 

0.8294 475.32 494.78 

6 Genetic Algorithm, 
Vahid 
Majidnezhad,2013 

0.8695 574.39 571.53 

7 GMMBF 0.8675 573.12 369.54 
8 GMMBFE 0.9252 627.69 245.64 
Results (Image 3): 

Sr.N
o. 

Algorithm SSIM Entropy Mean 
Square 
Error 

 Original Image 1 746.39 0 
1 Gaussian Mixture 

Models, Ming-
Hsuan Yang,1999 
 

0.3445 
 

259 818.23 

2 GMM, Tee-Won 
Lee,2005 
 

0.6473 454.12 753.39 

3 GMMB. Nicola 
Greggio,2010  
 

0.7671 4617 797.43 

4 Texture Synthesis, 
Andrea Rau,2010 
 

0.5463 
 

269.12 674.48 

5 Improved Adaptive 
Algorithm, Vahid 
Majidnezhad,2013 
 

0.8664 671.32 486.78 

6 Genetic Algorithm, 
Vahid 
Majidnezhad,2013 

0.8356 618.21 543.53 

7 GMMBF 0.8663 693.12 396.54 
8 GMMBFE 0.9259 769.69 275.64 
Results (Image 4): 

Sr.N
o. 

Algorithm SSIM Entropy Mean 
Square 
Error 

 Original Image 1 963.17 0 
1 Gaussian Mixture 

Models, Ming-
Hsuan Yang,1999 
 

0.3411 
 

245.21 863.23 

2 GMM, Tee-Won 
Lee,2005 
 

0.6475 463.12 755.39 

3 GMMBNicola 
Greggio,2010  
 

0.7678 663.17 771.43 

4 Texture Synthesis, 
Andrea Rau,2010 
 

0.5456 
 

271.12 656.48 

5 Improved Adaptive 
Algorithm, Vahid 
Majidnezhad,2013 
 

0.8694 644.32 479.78 

6 Genetic Algorithm, 
Vahid 
Majidnezhad,2013 

0.8342 647.21 578.53 

7 GMMBF 0.8676 697.12 394.54 
8 GMMBFE 0.9296 736.69 222.64 
 

Computational Complexity: 

The softwares used for the coding pupose is MATLAB R2013a. 
The time complexity for the algorithm  is about 3.265 seconds on a 
WINDOWS 7 PC which has made it relatively fast. 

 Conclusion:  

This new algorithm presents a comparison study of Gaussian 
Mixture Models for Fingerprints Image Duplication and analysis. 
The performance of presented. Algorithms were evaluated by 
SSIM Index, Entropy and Mean Square Error  and we obtain the 
best results . The state of art Gaussian Mixture Models cannot be 
directly apply to fingerprint image duplication problem. We get the 
best fit statistical model for the finger print model Images which 
has the minimum pixel distances as compared to the original 
images. The GMMBFE algorithm implemented gives the best 
results upto 92%  of the original image for its similarity. The future 
work includes improving the quality  
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