
Video segmentation in presence of static and dynamic textures
Frantc V. A.(a), Makov S. V.(a), Voronin V. V.(a), Marchuk V. I.(a), Stradanchenko S. G.(a), Egiazarian K. O.(b); (a) Don State Technical
university, Dept. of Radio-Electronics Systems, Gagarina 1, Rostov on Don, Russian Federation, 344010; (b) Dept. of Signal
Processing, Tampere University of Technology, Korkeakoulunkatu 1, Tampere, Finland FI-33720

Abstract
This paper describes an approach to video sequence over–

segmentation. The objective is to split the video up to set of dis-
joint spatio–temporal regions with homogeneous texture proper-
ties. In the work we consider three possible types of regions:
static texture, dynamic texture and non-textured region. Video
over-segmentation is useful for wide range of applications, in-
cluding perceptual video coding, video-based object recognition
and high-level video segmentation. We treat the problem as a
labeling problem on a Markov Random Field. Observed data
are represented by output of fully-connected layer of convolution-
al neural network trained on static and dynamic textures. The
hidden states of our model represent appropriate region labels.
To provide robust over-segmentation we employ energy function
composed of terms associated with neighboring voxels similar-
ity and smoothness of obtained supervoxels. We show that our
approach is able to segment static and dynamic textures in simul-
taneous fashion. We have tested our approach on several video
sequences rich of static and dynamic textures and it has shown
promising results.

Keywords—over-segmentation, supervoxel, video segmenta-
tion, CNN-based video features, multilabel graph-cut

Introduction
Image and video segmentation has a long history and wide

range of applications in the field of computer vision [1]. In this
paper we present a novel approach to video over–segmentation
targeted to video coding and object detection applications. The
objective of our approach is to split the video sequence to several
disjoint regions according to their local appearance. We consider
as different static texture (ST), dynamic texture (DT) and non-
textured regions (NT). The goal is to determine spatio-temporal
regions with different static and dynamic textures within the source
video sequence. We refer to such regions as supervoxels in con-
trast to particular element of video sequence which we call voxel.
To be included in the same supervoxel neighboring voxels should
have similar texture in local neighbourhood. The main goal of our
approach is to mark each pixel of video stream with label unique
for each textured region. Various high-level computer vision and
video processing techniques could benefit from preprocessing in
such a way.

There is no universal definition of the term texture. Usually
texture is defined as partly regular and partly stochastic pattern.
In existing literature on the subject particular definitions depend
of particular task. It is widely agreed to be very subjective matter.
As well as still image textures the dynamic textures could be im-
portant during automatic video analysis [2]. Division of the video
sequence to regions with similar texture properties is useful tool
for many applications.

It’s widely acknowledged that the task of segmentation in
general cannot be tackled without particular application in the
mind. The problem of unsupervised segmentation is ill-defined
because semantically meaningful objects do not usually corre-
spond to homogeneous spatio-temporal regions described by ho-
mogeneous color, texture or motion. It makes the task of image
and video segmentation rather difficult and give a rise to over-
segmentation based techniques. Supervoxels obtained by over–
segmentation could be grouped to form semantically meaningful
segmentation by more high level approaches.

Despite to significant amount of papers on the subject there
are no approach suitable in different situations at the time. In this
paper we present framework for video sequence over-segmentation
based on deep convolutional neural network (CNN) features and
markov random field formalism to model relations among neigh-
boring voxels. The main contribution of this work is joint spatio–
temporal CNN-based features, specially suited for simultaneous
static and dynamic textures description. The aim is not to deter-
mine spatio-temporal boundaries of individual objects but rather
to provide elements of more high level that voxels for subsequent
processing.

Previous work
During recent years the subject of over-segmentation or even

hierarchical subdivision of video data was actively investigated by
researches in the field of computer vision and video processing.
Early approaches teded to produce supervoxel with partially oc-
cluded boundaries. The good overview of existing methods is
presented in work [1]. Authors empirically compare five state-of-
the-art superpixel algorithms for their ability to adhere to image
boundaries, speed, memory efficiency, and their impact on seg-
mentation performance. However, there are many plausible su-
pervoxel methods and little understanding as to when and where
each is most appropriate. Moreover the solid part of existing ap-
proaches are aimed to produce supervoxels without taking in ac-
count texture properties, only more low level ones.

Turns out, the main problem of many existing approaches is
their high computational requirements. To address the problem
in the work [3] introduces superpixel algorithm, simple linear it-
erative clustering (SLIC), based on k-means clustering approach
to efficiently generate superpixels. Approach is rather simple and
well suited for still image over-segmentation but have lack of gen-
erality.

In the work [5] Liang et al. proposed the video supervoxel
generation algorithm using partially absorbing random walks to
get more accurate supervoxels in these regions. Authors aim to
use joint use of appearance and motion cues, which effectively
exploits the temporal consistency in video sequence. However,
approach tends to produce a lot of small regions in the case of
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highly textured videos.
The work [4] addresses the limitation caused by large mem-

ory requirement even for quite short video sequences when use
convinient techniques by proposing an approximation framework
for streaming hierarchical video segmentation motivated by da-
ta stream algorithms: each video frame is processed only once
and does not change the segmentation of previous frames. The
Chang et al. [5] have developed a generative probabilistic mod-
el for temporally consistent superpixels in video sequences. In
contrast to supervoxel methods, object parts in different frames
are tracked by the same temporal superpixel. The drawback of
such an approach susceptible to undersegmentation at coarse lev-
els and over-segmentation at fine levels, which make it a chal-
lenge to adopt the hierarchies for later use. The work by Xu et
al.[6] presents the method called the uniform entropy slice, seeks
a selection of supervoxels that balances the relative level of infor-
mation in the selected supervoxels based on some post hoc feature
criterion such as object-ness.

The interesting strategy to generate supervoxels is use of
probability graph-theory based strategies. It’s widely applied in
bunch of different computer vision problems. Another popular
way to address the problem is coarse-to-fine energy minimiza-
tion strategy for semantic video segmentation [7]. The strategy is
based on a hierarchical abstraction of the supervoxel graph that
allows us to minimize an energy defined at the finest level of the
hierarchy by minimizing a series of simpler energies defined over
coarser graphs. In [9] is introduced and addressed the problem of
video object cosegmentation, which concerns the task of segment-
ing the common object in a pair of video sequences. We present
a new algorithm that works on supervoxels in videos to solve
this task. The algorithm compute the intra-video relative motion
derived from dense optical flow and the inter-video co-features
based on Gaussian mixture models. The work [12] address spatio-
temporal detection of actions and events in video is a challenging
problem. Besides the difficulties related to recognition, a major
challenge for detection in video is the size of the search space de-
fined by spatio-temporal tubes formed by sequences of bounding
boxes along the frames.

In the task of activity recognition in videos [13] to segment
the video into supervoxels, we explore two recent video segmen-
tation algorithms. The proposed representation enables localiza-
tion of common regions across videos in both space and time.
Importantly, since the video segments are meaningful regions, we
can interpret the proposed features and obtain a better understand-
ing of why two videos are similar. Evaluation on classification and
retrieval tasks on two datasets further shows that Motion Words
achieves state-of-the-art performance. Based on the recent de-
velopments of visual recognition in static images, many concepts
have been successfully extended to video sequences. Similar to
object recognition in images, bag-of-features based methods have
recently shown excellent results for action recognition. Despite
recent developments, the representation of local regions in videos
is still an open field of research.

Despite the progress made in recent years there is still place
for investigation on the subject of video over-segmentation. How-
ever, most of the traditional supervoxel algorithms do not perfor-
m well in the regions with complex textures or weak boundaries.
These methods may generate the supervoxels with overlapping
boundaries.

DCNN–based supervoxels
In this section we describe our approach to video supervoxels

generation. The paper [3] – introduce the superpixel partitioning
problem in an energy minimization framework, and optimize with
graph cuts. Our energy function explicitly encourages regular su-
perpixels. We explore variations of the basic energy, which allow
a trade-off between a less regular tessellation but more accurate
boundaries or better efficiency. Our advantage over previous work
is computational efficiency, principled optimization, and applica-
bility to supervoxel segmentation. Authors achieve high boundary
recall on 2D images and spatial coherence on video. We also show
that compact superpixels improve accuracy on a simple applica-
tion of salient object segmentation.

The encoding process can be divided into two stages: anal-
ysis and synthesis. On the stage of the analysis of the video se-
quence is segmented into non-overlapping regions. Each of the ar-
eas is classified. The options are not part of the redeveloped, static
texture, dynamic texture. The second step is to perform calcula-
tions descriptors for slices of the video sequence. Segmentation
is performed using the method multilabel graph cut optimization.
As a descriptor, a combination of local area descriptor HOF (his-
togram of optical flow) [10] and the exit convolution network [9].
The architecture of the network used by the convolution presented
on figure 1.

in cn1 p1 cn2 p2 cn3 cn4 cn5 p5 fc6 fc7 out
Figure 1: CNN for feature extraction

The paper [10] describe a new system for searching video
databases using free-hand sketched queries. But, this method does
not employ texture information. We parse space-time volumes
from video to form graph representation, which we match to s-
ketches under a Markov Random Field (MRF) optimization. The
MRF energy function is used to rank videos for relevance and
contains unary, pairwise and higher-order potentials that reflect
the colour, shape, motion and type of sketched objects.

The algorithm
A grayscale video sequence is typically modelled as a func-

tion u : Ω← R where Ω ⊆ R2 is usually a rectangle and u(x) is
the intensity of the grey level at the point x.

The most important aspect of the problem is features em-
ployed to describe important aspects of video sequence. It’s rather
difficult to make a decision’s based on raw data only. These meth-
ods open the possibility to use strong but computationally expen-
sive features since only a relatively small number of detection hy-
potheses need to be assessed. In this paper we make two contribu-
tions towards exploiting detection proposals for spatio–temporal
detection problems. First, we extend a recent 2D object propos-
al method, to produce spatio–temporal proposals by a random-
ized supervoxel merging process. We introduce spatial, temporal,
and spatio-temporal pairwise supervoxel features that are used to
guide the merging process. Second, we propose a new efficien-
t supervoxel method. We experimentally evaluate our detection
proposals, in combination with our new supervoxel method as
well as existing ones. This evaluation shows that our supervoxels
lead to more accurate proposals when compared to using existing
state-of-the-art supervoxel methods. The overall workflow of our
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approach is presented on figure 2.
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Figure 2: Proposed approach

Our approach are process one group of pictures at the time.
Schematic representation of the video sequence is presented on
the figure 3.

x

y time

Figure 3: The group of pictures (GOP)

We parse space-time volumes from video to form graph rep-
resentation, which we match to sketches under a Markov Random
Field (MRF) optimization. The MRF energy function is used to
rank videos for relevance and contains unary, pairwise and higher-
order potentials that reflect the colour, shape, motion and type of
sketched objects.

Assumptions and data representation
Another result of the algorithm is to classify types of blocks.

The descriptors used as a feature vector at the output of the second
layer is fully connected network convolution (fc7) in figure 1.

The network is composed of:

• Input unit of a video sequence
• Convolutional layer
• Filter bank, trained on the data

The novelty of our approach is to use hierarchical represen-
tations as video descriptors and global model based on markov
random field to simultenously segment and label blocks.

Training of convolution network is made on the basis of tex-
ture DTD. The basis of the approach is based on studying features.

The evaluation of the effectiveness of spending as follows. From
the binary stream removes all data related to the ejected blocks.
So as regression analysis involves finding mathematical expecta-
tion of a random variable depending on the available variables, it
is composed of additive random variable.

Energy function (Objective function)
To formulate the objective function we use Markov Random

Field formalism. The equation for pairwise potentials is:

Eint(x,y)= sx(x,y)·(I(x,y)−I(x+1,y))+sy(x,y)·ρint(I(x,y)−I(x,y+1))

(1)

where ρ is a monotonically increasing function of the fine ρ(d) =
|d|. The figure 4 illustrates an enlarged portion of the Markov
random field. Where Xx,y are hidden variables. Each latent vari-
able is connected to four neighbors ribs with weights w (indicated
by squares). The yellow color shows the observed data - descrip-
tor block. The external energy Eext(x,y) for each pixel depends
on the difference between the state of latent variable and the ob-
served value.

Eext(x,y) = w(x,y) ·ρext(X(x,y)− I(x,y)) (2)

I1,1 I1,2

x1,1 x1,2

I2,1 I2,2

x2,1 x2,2

Figure 4: Video model

Consider a multi-label segmentation task, where we want to
partition an image into object and background, i.e, we have to
decide for each pixel p whether it can be classified as ”object”
or ”background”. Informally speaking, a ”good” segmentation is
obtained when all pixels of the same class have similar intensities
(or colors) and if the boundaries between pixels labeled as ”ob-
ject” and ”background” are located such that adjacent pixels of
different labels have dissimilar intensities/colors. The mapping of
these criteria to the two terms of the energy of is straightforward
as follows:

EMRF = ∑
p

Ed(p)+ ∑
p,q∈N

Eint(p,q) (3)
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Within multi-label graph-cut technique in order to incorpo-
rate the data-driven terms Ed , two additional so-called terminal
nodes (one ”source” node s, and the sink t are introduced. Every
non-terminal node can be connected to s as well as t by addi-
tional edges eps and ept . The main workflow of our approach is
composed of several steps. We work with groups of the pictures
(GOP) of length 8 at the time. Figure 5 presents block-scheme of
our approach. Here Ed measure data fidelity can be derived from
an evaluation how well the observed data at pixel p fits into in-
tensity/color statistics obtained from pixels with known labelled,
which could, e.g. be brightness histograms of Gaussian mixture
models of color distributions. image features representation. The
interaction potentials Eint , which measure the cost of assigning d-
ifferent labels to adjacent pixels, can be based on the intensity or
color difference between neighbours p and q. This kind of energy
function can be modeled by an MRF, where each pixel p is rep-
resented by node. In accordance to the pixel grid, these nodes are
arranged in a rectangular two-dimensional grid. Adjacent nodes
p and q are connected by an edge epq. For example, a node p
can be connected to all nodes within its 4-neighborhood. Another
common choice is connecting all nodes. The weight wpq of each
edge epq represents the interaction potentials Eint(p,q) between
adjacent pixels. wpq of each edge epq represents the interaction
potentials Eint(p,q) between adjacent pixels. wpq should be hight
when the intensities/colors of p and q are similar.

Blocking

Descriptors
computation

Unary
potentials

computation

Binary
potentials

computation

Labeling by
multilabel
graph cut

Figure 5: Main workflow of proposed approach

The weights wps reflect the fidelity to the statistics of the
background pixels. Hence, wps should be high (and wpt low) if the
data observed at p fits well into the statistics of all known object
pixels. Respectively, wps should be low (and wpt high) when the
appearance at p is in accordance with background appearance. As
a summary, the whole setting is described by a graph G = (N,E).
If we consider the case of two labels, then segmentation now be
represented by a so-called graph cut. A cut C of a graph is a subset
of edges. For each cut C, we can define a so-called cut function
EC, which can be set to the sum of the weights of the edges it
severs:

EC = ∑
e∈C

we (4)

Consequently, the optimal segmentation can be found through
the minimum cut, e.g., the subset of edges which minimized:

C∗ = argmin ∑
e∈C

we (5)

MRF is an undirected graph where each node represents a
pixel in an image I, and each edge represents relation between
pixels. Each node is associated with a binary latent variable, yi

u ∈
0,1, indicating whether a pixel i has label u. We have ∀u ∈ L =
1,2, . . . , l, representing a set of l labels. The energy function of
MRF is written as

E(y) = ∑
∀i∈V

Φ(yu
i )+ ∑

∀i, j∈E
Ψ(yu

i ,y
v
j), (6)

where y, V , and E denote a set of latent variables, nodes, and
edges, respectively. Φ(yu

i ) is the unary term, measuring the cost
of assigning label u to the i-th pixel. For instance, if pixel i be-
longs to the first category other than the second one, we should
have Φ(y1

i < Φ(y2
i ). Moreover, Φ(yu

i ,y
v
j) is the pairwise term that

measure the penalty of assigning labels u,v to pixels i, j respec-
tively. The labeling problem is to assign a label from the label set
L to each of the sites S. The goal of GOP segmentation is to as-
sign a level fi from the set L = edge,nonedge to site i ∈ S, where
elements in S in the image pixel. The

f = { f1, . . . , fm} (7)

is called labeling of the sites in S in terms of the labels in L. When
each site is assigned a unique label, fi = f (i) can be regarded as a
function with domain S and image L. Because the support of the
function is the whole domain S, it is a mapping from set of sites
to set of labels:

f : S→ L (8)

All the sites have the same label set L. In the MAP-MRF la-
beling, P( f |d) is the posterior distribution of an MRF. An impor-
tant step in Bayes labeling of MRF’s is to derive this distribution.
Here we use a simple example to illustrate the formulation of a
MAP-MRF labeling problem. The problem is to segment video
to several disjoint regions Ω = {Ω1,Ω2}. Assuming that the im-
age surfaces are flat, the the joint prior distribution of f is:

P( f ) =
1
Z

e−U( f ) (9)

Here U( f ) = ∑i is the prior energy for the type of surface. The
MAP estimate is equivalently found by minimization the posterior
energy function f ∗ = argmin f U( f |d). There is only one param-
eter is this simple example, σi. When it is determined, U( f |d) is
fully specified and the MAP-MRF solution is completely defined.
The prior model depends on the type of the scene we expect. In
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image analysis, it is often one of the Gibbs models. The likeli-
hood model depends on physical considerations such as the sen-
sor process (transformations, noise, etc.). It is often assumed to
be Gaussian. The parameters in both models need to be specified
for the definitions of the models to be complete. The sites in S are
related to one another via a neighborhood system. A neighbor-
hood system of S is defined as Ni is the set of sites neighboring i.
For our goal we use simple pair-wise cliques.

Let F = {F1, . . . ,Fm} be a family of random variables defined
on the set S in which each random variable Fi takes a value fi in L.
The family F is called a random field. We use the notation Fi = fi
. A set of random variables F is said to be a Gibbs random field on
w.r.t. N if and only if its configurations obey a Gibbs distribution.
A Gibbs distribution takes the form

P( f ) = Z−1× e−
1
T U( f ) (10)

where Z = ∑ f∈F. Due to Markov-Gibbs Equivalence stated by
Hammersley-Clifford markov random field could be represented
using equivalent GRF. . When learning from video, x and y are
image patches (expressed as ectors) at identical spatial locations
in sequential frames, and z is a latent representation of the trans-
formation between x and y. The energy of any joint configuration
{y,z;x} is converted to a conditional probability by normalizing
it with the partition function, Z(x) = ∑y,z exp(−E(y,z;x)) which
is intractable to compute exactly since it involves a sum over all
possible configurations of the output and latent variables. How-
ever, we do not need to compute this quantity to perform either
inference or learning. Given an input-output pair of image patch-
es, {x,y}, it follows from quations that

p(zk = 1|x,y) = σ(∑
i j

Wi jkxiy j +bk) (11)

where σz = 1
1+exp(−z) is the logistic function. Maximinizing the

marginal conditional likelihood, p(y|x), over parameters θ = {W,b,c}
is difficult for all but the smallest models due to the intractabil-
ity of computing Z. Learning, however, still works well if we
approximately follow the gradient of another function called the
contrastive divergence (CD).

Experimental results
The main goal of our approach is to segment video sequence

(or group of pictures in particular) to disjoint set of voxels – 3D
blobs of arbitrary shape. Video should be segmented in such a
way that each voxel will be ”uniformely textured” in some way.
We consider two kinds of texture – static texture and dynamic tex-
ture. Segmentation is carried out within macro blocks of size 8×8
or 16×16. Experimental results for 3 subsequent frames of video
sequence ”controlled burn” are presented on figure 6. Supervox-
els are separated by yellow edges. Regions with static textures
are marked by green color. Dynamic textures are market by blue
color. As you can see, proposed method give results consistent
with human perception.

Conclusion
The paper presents a video segmentation algorithm. We treat-

ed this problem as a labeling problem on a Markov Random Field

using energy function composed of terms associated with neigh-
boring voxels similarity and smoothness of obtained supervoxels.
Observed data are represented by output of fully-connected layer
of convolutional neural network trained on textures. Proposed ap-
proach shown promising results on several video sequences with
static and dynamic textures.
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Frame 1 Frame 2 Frame 3
Figure 6: Segmentation results for the video sequence ”Controlled burn”
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