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Abstract
Image stitching – the process of amalgamation of separate

image fragments to form a complete representation of the entire
scene – might become quite a challenging problem in the presence
of non-additive noises and/or brightness variability artifacts. An
additional degree of complication may further be inflicted in situ-
ations when one is dealing with large size data, as it is usually the
case in tiling microscopy. To overcome such difficulties, a novel
approach to the problem of image stitching is proposed here. In
the heart of the proposed solution is Wallis filtering, which is a
standard tool of image processing used for adaptive contrast ad-
justment and local image normalization. More importantly, Wal-
lis filtering allows representing a given image in terms of its nor-
malized version and associated local statistics. Subsequently, we
show that stitching the output of the Wallis filter is a much simpler
and much more stable task as compared to stitching the images in
their original domain. The proposed method has an additional
advantage of being computational efficient, which is particularly
important in tiling microscopy, where a typical height/width of
data images is on the order of tens of thousands of pixels.

Introduction
In imaging sciences, the process of combining together the

independently acquired fragments of a digital image to form a
complete representation of the entire scene is known as image
stitching or mosaicking [1]. Super-resolution, photo mosaicking,
video stitching, texture synthesis, and object insertion are exam-
ples of applications in which image stitching has been routinely
employed [2]. The present work is a result of application oriented
research as well. Specifically, it has been driven by the application
of image stitching in tiling microscopy (TM) – a common method-
ology used in optical microscopy to obtain high-resolution images
of large-area specimens [3]. In a typical TM setting, a given spec-
imen is mechanically shifted through a predefined filed-of-view,
which allows one to acquire a complete image of the specimen by
capturing its localized fragments. Such image fragments (conven-
tionally referred to as either tiles or, in the case of unidirectional
shifts, stripes) are subsequently combined together by means of
an image stitching procedure.

At its core, image stitching consists of two fundamental com-
ponents, viz. alignment and blending. As its name suggests, the
former is used to bring individual fragments of the entire image
into a close correspondence with respect to each other. Blending,
on the other hand, controls the image values over those regions
where the contents of its fragments happen to overlap. In the case
of TM, the use of ultra high precision servomotors in combination
with advanced electronics allows controlling the position of spec-
imens with a very high degree of accuracy, thereby making the
problem of image alignment somewhat less critical. Image blend-
ing, on the other hand, turns out to be a much less trivial problem
to solve, which makes it the main focus of this work.

The current arsenal of image blending tools is diverse. Thus,
for example, in situations when input image fragments (e.g., tiles)
do not exhibit any noticeable differences in their respective aver-
age brightnesses, effective blending can be achieved by means of
relatively simple methods such as optimal seam algorithms [4, 5]
and feathering (aka alpha blending) [3, 6]. Unfortunately, nei-
ther of the above techniques guarantees to produce seamless re-
sults when the average brightnesses of the input images do differ
considerably, as it is often the case in TM. In this respect, bet-
ter results can usually be obtained using pyramid blending [7],
which applies different feathering masks to different levels of a
multi-resolution decomposition of the input images. Alas, this
method is still not completely immune to the brightness variabil-
ity problem, which is a serious drawback considering its added
computational complexity. Recently, a group of blending algo-
rithms have been proposed based on the ideas of gradient-based
image editing [8]. The methods of this group exploit numerical
optimization to find an optimal solution whose gradient gives the
closest possible fit to the gradients of the input images with re-
spect to a predefined distance measure and boundary conditions
[9, 10, 11]. The dependence on image gradient (rather than image
values) makes such methods substantially less susceptible to the
brightness variability problem. Unfortunately, virtually all meth-
ods of this family exploit an additive model to account for various
sources of (both measurement and model) errors, which does not
seem to be an accurate enough assumption to be used in TM.

One of the most critical problems considerably complicating
image stitching in TM stems from the presence of brightness vari-
ability artifacts, which cause the average image brightness to vary
from tile to tile. The problem appears to be particularly acute in
the case of fluorescence microscopy, where it is common to adjust
the orientation of the focal plane/trajectory for each tile indepen-
dently so as to maximize the overall image contrast. However,
due to a highly nonlinear nature of the spatial distribution of stain
throughout the specimen volume, situations are frequent in which
the above adjustment causes the tiles to exhibit different patterns
of image brightness. As a result, there might be considerable mis-
matches between the values of acquired tiles in the areas of their
overlap.

In view of the above said, the main goal of this work has
been to develop an image stitching tool which would be as im-
mune as possible to brightness variability artifacts. To this end,
we take advantage of Wallis filtering [12, 13] which allows rep-
resenting a given image in terms of its normalized version along
with its local statistics of the first and second order. Subsequently,
we show that stitching the output of Wallis filtering (followed by
back transformation) constitutes a simpler and much more stable
task as compared to stitching the images in their original domain.
The proposed method has an additional advantage of being com-
putational efficient, which is particularly important in TM, where
a typical image height/width is on the order of tens of thousands
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of pixels.

Image stitching
To set ground for subsequent developments, we begin with a

brief outline of two particular methods of image stitching, viz.
feathering [6] and gradient-based stitching [10]. Without any
loss of generality, we restrict our discussion to processing of two
grayscale images, namely u and v. Also, in what follows, both im-
ages are assumed to have already been properly aligned and thus
representing two fragments/views of the same scene. Formally, let
Ωu and Ωv denote the domains of u and v, respectively. Addition-
ally, the images are assumed to overlap over Ωw := Ωu∩Ωv 6= /0,
while the final (stitched) image g will be defined over the com-
bined domain Ω := Ωu∪Ωv. (See Fig. 1 for an example of a stan-
dard domain partition.) It is also instrumental to define extensions
of u and v on the combined domain Ω as follows

ũ(r) =

{
u(r), if r∈Ωu

0, otherwise
, ∀r∈Ω, (1)

and

ṽ(r) =

{
v(r), if r∈Ωv

0, otherwise
, ∀r∈Ω. (2)

Note that, as opposed to u and v, the extended images are defined
over the whole Ω.

Figure 1. Domain partition and example of a weighting function

As our next step, we define a weighting function (aka a feath-
ering mask) W , which has Ω as its domain of definition and takes
values in the interval [0,1], i.e., 0 ≤W (r) ≤ 1, for all r∈ Ω. We
also require W to be equal to 1 over Ωu\Ωw, while being equal
to zero over Ωv\Ωw. Finally, it is customary to work with contin-
uous (or even differentiable) weights, which suggests that W has
a slow transition over Ωw, where its values descend from a max-
imum of 1 to a minimum of 0. An example of such function is
shown at the bottom subplot of Fig. 1.

Using the above definitions of the relevant domains and the
weighting function W , it is now straightforward to describe the
method of image stitching by feathering, which consists in com-
puting the values of g as given by

g(r) =W (r)ũ(r)+(1−W (r))ṽ(r), ∀r∈Ω. (3)

Note that the values of g coincide with those of u and v over the
subsets Ωu\Ωw and Ωv\Ωw, respectively, whereas over the tran-
sition region Ωw, the values of g represent a convex combination
of the corresponding values of the input images. Due to this prop-
erty, stitching by feathering could be possibly described as one of
the most conservative approaches, in the sense that all the associ-
ated approximations are restricted to the transition/overlap region
Ωw exclusively. On top of that, feathering is undoubtedly one of
the most computationally efficient methods, which often makes it
a method of choice in applications where one deals with images of
relatively large dimensions (as it is the case in digital pathology)
[3].

Unfortunately, stitching by feathering fails to produce sat-
isfactory results in situations when the mean intensities of input
images differ considerably over Ωw. In such cases, more sophisti-
cated stitching methods need to be employed. Among such meth-
ods are gradient-based techniques [9, 10, 11]. Within this group of
methods, a typical way to recover a stitched image g is by means
of solving the following minimization problem

min
g

{∫
Ω

W (r)‖∇g(r)−∇ũ(r)‖p
pdr+

+
∫

Ω

(1−W (r))‖∇g(r)−∇ṽ(r)‖p
pdr
}
, (4)

with ‖ · ‖p denoting the p-norm of corresponding vectors. The
above formulation requires the gradient of an optimal g to be as
close as possible to the gradients of u and v (over their respective
domains of definition), with the nature of this “closeness” being
controlled by the value of p, typically set to be equal to either 1
or 2 [10]. It deserves noting that some authors suggest to concur-
rently minimize over both g and W , thereby allowing the weight-
ing function W to be chosen adaptively [11]. Unfortunately, the
resulting minimization problem ceases to be convex, which is
a serious drawback that is further exacerbated by a substantial
increase in computational complexity associated with the neces-
sity to control the smoothness, boundedness, and monotonicity of
W . Consequently, despite the improved generality of its formula-
tion, concurrently minimizing over g and W comes with weaker
guarantees of global convergence and (often prohibitive) compu-
tational burden, which altogether reduces the value of the method
for applications dealing with large-size images.

For the above reasons, in this work, we adopt the more con-
ventional formulation of (4), while setting p = 2. Although less
robust in comparisom to the case of p = 1, the above choice of
the norm offers considerable practical advantages (while yielding
stable and useful solutions as demonstrated later in this paper).
In particular, Theorem 2 in [10] shows that, under rather general
conditions, setting p = 2 allows one to reduce (4) to an equivalent
minimization problem of the form

min
g

{∫
Ω

‖∇g(r)−F‖2
2dr
}
, (5)

where

F(r) =W (r)∇ũ(r)+(1−W (r))∇ṽ(r), ∀r∈Ω. (6)

In other words, the optimal g minimizes L2-distance between its
gradient and the vector field F , which is nothing else but the result
of stitching of the gradients of u and v.
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The problem in (5) is a classical (convex) optimization prob-
lem, whose associated Euler-Lagrange optimality condition leads
to the Poisson equation of the form

∇
2g = ρ in Ω,

∂g
∂n

= 0 on ∂Ω, (7)

with ρ := div(F) and ∂g/∂n denoting the directional derivative
of g along the normal n to the boundary ∂Ω of Ω. Note that
the Neumann boundary conditions used in (7) correspond to sym-
metric (aka reflective) boundary conditions on g, which are com-
mon throughout imaging sciences [14]. Moreover, under the as-
sumption on domain Ω to be rectangular, the problem (7) admits a
closed-form solution, which is obtained through inverse filtering
in the domain of discrete cosine transform (DCT) [15]. Specifi-
cally, let Ω be a N×M uniform rectangular lattice, and let C be
the inverse filter defined according to

C[k, l] =

{
0, if k = l = 0,
[2cos(πk/N)+2cos(πl/M)−4]−1 , otherwise,

(8)

where k = 0,1, . . . ,N − 1 and l = 0,1, . . . ,M− 1. Then, denot-
ing by DCT and DCT−1 the operators of direct and inverse DCT,
respectively, the unique solution to (7) is given by

f = DCT−1{DCT{ρ} ·C}, (9)

where the dot stands for point-wise matrix multiplication. It goes
without saying that the relatively high computational efficiency
of DCT renders the gradient-based stitching particularly attractive
in a variety of practical settings, and especially when large-scale
images are involved. For the convenience of referencing, in what
follows, the above method will be referred to as Poisson stitching,
with its computational structure outlined in Algorithm 1 below.

Algorithm 1 Poisson stitching
procedure POISSON(u,v,W,C)
ũ← extend u using (1)
ṽ← extend v using (2)
F ←W ·∇ũ+(1−W ) ·∇ṽ(r)
g← DCT−1{DCT{div(F)} ·C}
return g

Despite its solid theoretical foundation, Poisson stitching
still has a number of limitations, the least critical of which stems
from the property of the inverse filter to have a zero response at
k = l = 0. This property suggests that the mean value of resulting
g is always equal to zero, which is a rather mild deficiency that is
easy to rectify by offsetting g by a constant value so as to make the
result saturate a desired dynamic range. A more series limitation
of the method, however, is related to its underlying assumptions.
In particular, from the viewpoint of statistical estimation, the form
of the cost functional in (5) suggests that F is considered to be a
noisy version of ∇g, with the noise being of an additive and Gaus-
sian nature. Unfortunately, the above assumption does not seem
to be well-justified in TM, where actual noises are, in fact, Pois-
sonian. It would neither be right to apply the additive & Gaussian

model to describe the brightness inhomogeneity artifacts caused
by nonuniform spatial distribution of fluorescence across a given
specimen.

The inadequacy of statistical modelling implied by (5) with
respect to the nature of actual imaging artifacts/noises inherent
in TM severely affects the effectiveness and reliability of Poisson
stitching. The problem becomes particularly acute in the case of
large-scale images. Indeed, it is easy to see that, in a close vicin-
ity of zero frequency (aka DC), the gain of the inverse filter C is
on the order of −max{N2,M2}/π2, which reaches astronomical
values when N and/or M approach the size of tens of thousands.
On such conditions, even the slightest inaccuracies induced by the
“model-measurement mismatch” tend to destabilize the solution,
thereby rendering it completely unreliable. As futile as it sounds,
however, the situation can be salvaged by means of a simple pro-
cedure detailed in the next section.

Proposed method
The principal idea of the proposed approach is based on the

notion of Wallis filtering, which is a standard image processing
tool used for adaptive contrast adjustment [12, 13]. The filter ex-
ploits a fundamental result in statistics stating that if x is a random
variable obeying a Gaussian distribution with mean µ and stan-
dard deviation σ , i.e., x ∼N (µ,σ), then its normalized version
x′ := (x− µ)/σ is distributed according to N (0,1). In appli-
cation to imaging, the filter operates with the local means and
variances of a given image f . To define these statistics, let N(r)
denote a local neighbourhood of some arbitrary (yet fixed) pixel
r. Also, let {w(r′)}r′∈N(r) be a set of shift-invariant weights that
satisfy ∑r′∈N(r) w(r′) = 1, for all r. Then, the local means of f
can be computed according to

fm(r) = ∑r′∈N(r) w(r′) f (r′), (10)

for all r∈ Ω. Similarly, the local variances of f can be computed
as given by

fs(r) = ∑r′∈N(r) w(r′)
(

f (r′)− fm(r)
)2
. (11)

Subsequently, using fm and fs (which can be viewed as two im-
ages of the same size as f ), one can computed a normalized ver-
sion fn of the original image according to

fn(r) = ( f (r)− fm(r))/
√

fs(r), (12)

for all r. Equivalently, we could write fn = ( f − fm)/
√

fs, with
the slash denoting point-wise division and

√
fs being an N×M

array obtained by element-wise application of square root to the
respective elements of fs.

Algorithm 2 Wallis filtering
procedure WALLIS( f ,h)
fm← f ∗h
fs← ( f · f )∗h− fm · fm
fn← ( f − fm)/

√
fs

return fn, fm, fs

Note that the cost of computing fn is dominated by the cost
of computing fm and fs, which amounts to two convolutions. To
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see that, we assume N(r) to be a rectangular neighbourhood of
size LN ×LM and choose h to be a convolution kernel defined by
h = (LNLM)−11LN 1T

LM
, with 1LN (resp. 1LM ) being a column vec-

tor of ones of length LN (resp. LM). Then, Wallis filtering can be
implemented using Algorithms 2 specified above. Here, the sym-
bols · and / denote point-wise multiplication and division, while
∗ stands for the operation of 2-D convolution. Note that, due to
the separability of h, the 2-D convolution can be reduced to a se-
ries of 1-D convolutions along the row and column directions us-
ing kernels hN = (LN)

−11LN and hM = (LM)−11LM , respectively.
Moreover, often better estimation results can be obtained when
the “box” kernels are replaced with “bell-shaped” ones. Thus, the
results reported in this paper have been obtained using Gaussian
filters of standard deviation σh.

Before moving forward, it is worthwhile noting that, in prac-
tice, it is common to further modify the results of Wallis filter-
ing according to fn ·α +β (with α,β ≥ 0 being either scalars or
N×M arrays) with the obvious substitution α =

√
fs and β = fm

restoring the original image f . It is also instructive to observe
that while fm and fs contain information about local variations of
the brightness and contrast of f across its domain of definition,
the normalized image fn contains information on structural varia-
tions and finer details (e.g., edges, textures, etc.) In other words,
brightness variability artifacts present in the original image f are
likely to persist in fm and fs, whereas affecting fn to a much lesser
degree. The latter observation lies in the heart of the proposed
stitching algorithm and is further illustrated in Fig. 2. The up-
per subplots of the figure show two images (u and v) acquired by
means of tiling fluorescence microscopy (TFM). The images are
required to be stitched in the horizontal direction, which seems
to be a rather non-trivial task in view of the obvious differences
between the images’ brightness. Indeed, in this case, stitching by
feathering produces a noticeable seam as can be seen in the left-
most subplot at the bottom of Fig. 2. However, when the same
stitching routine is applied to the normalized versions of u and v,
the output no longer exhibits any noticeable artifacts, as shown in
the rightmost subplot of the same figure.

Although encouraging, the above result is obviously prema-
ture to be used to devise a workable solution. The main reason
for this is that stitching of normalized images produces results
which are devoid of local brightness and contrast information. On
the other hand, this information is still contained in the mean and
variance images, which therefore need to be properly stitched as
well. To this end, we propose the following stitching strategy:

1. First, the input images u and v are subjected to Wallis filter-
ing, resulting in their respective triples of outputs, namely
{un,um,us} and {vn,vm,vs}.

2. Due to the “flattened” nature of the normalized images un
and vn, their stitching can be performed by means of a stan-
dard feathering procedure, as defined by (3). The resulting
image is denoted by gn.

3. The mean images um and vm contain information about
the spatial variability of locally averaged image brightness,
which makes them susceptible to brightness inhomogeneity
artifacts. As a result, stitching the images by means of feath-
ering would likely be prone to errors, and hence needs to be
avoided. Instead, we proposed to use Poisson stitching, as
detailed in Algorithm 1. The resulting image is denoted by

Figure 2. Stitching by feathering in the original (left) and normalized (right)

domains.

gm.
4. In a similar manner, the variance images us and vs are

stitched by means of the Poisson stitching algorithm as well.
The resulting image is denoted by gs.

5. Finally, the output image g is computed by combining the
normalized image gn with its associated mean and variance
images according to

g = gn ·
√

gs +α +(gm +β ). (13)

Note that in the expression above, the constants α > 0 and
β > 0 are used to offset the images gs and gm, respectively,
which otherwise would have had zero mean values. In prac-
tice, these constants are set so as to allow image g to saturate
a predefined dynamic range.

The approach described above is summarized in the form of a
pseudocode shown in Algorithm 3 below. For the convenience of
referencing, in what follows, the proposed method will be referred
to as Wallis-Poisson stitching (WPS).

Algorithm 3 Wallis-Poisson stitching
procedure WPS(u,v,h,W,C)
[un,um,us]←WALLIS(u,h)
[vn,vm,vs]←WALLIS(v,h)
ũn← extend un using (1)
ṽn← extend vn using (2)
gn =W · ũn +(1−W ) · ṽn
gm← POISSON(um,vm,W,C)
gs← POISSON(us,vs,W,C)
g← gn ·

√
gs +α +(gm +β )

return g
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Before moving to demonstration of some experimental re-
sults, a few important comments need to be made to justify the
application of Poisson stitching to the mean and variance images.
The main question here, of course, is why this method is promised
to work better in comparison to directly stitching the original u
and v. To address this question we first note that each value of um
(resp. vm) is obtained as a linear combination of the values of u
(resp. v). Consequently, the central limit theorem (CLT) suggests
that, although the values of u (resp. v) are affected by Poisson
noise, the noise contaminating the values of um (resp. vm) will
tend to be more Gaussian. Although not as straightforward as in
the case of the mean images, a similar argument can be applied
to the variance images us and vs as well. It is, therefore, reason-
able to conclude that um and vm as well as us and vs represent
“gaussianized” versions of u and v, which places them in a much
better agreement with the statistical interpretation of (5). Addi-
tionally, a quick look at Algorithm 2 reveals that to compute um
and vm as well as us and vs, the input images u and v are sub-
jected to low-pass filtering through convolution with a Gaussian
kernel h. As a result, the mean and variance images turn out to
be substantially oversampled with respect to their corresponding
bandwidths. This fact suggests the possibility to apply Poisson
stitching to the down-sampled versions of the mean and variance
images, followed by proper up-sampling. Consequently, in our
experiments with confocal microscopy images, we have been able
to reduce the sampling rate of original images by a factor of 100
(through appropriately choosing the value of σh), with associated
aliasing errors being below 0.5%. To demonstrate the significance
of this result, let us consider a practical scenario, in which one is
to scan a 20mm-by-20mm specimen at a spatial resolution of 1
µm. The resulting image will have a size of 20,000-by-20,000
pixels, which would make it rather unamenable for efficient pro-
cessing, even using advanced means of scientific computing. On
the other hand, a 100-fold subsampled version of the image would
have a size of 200-by-200 pixels, which makes its processing vir-
tually effortless. What is even more important is the fact that, as
long as the original image is considered, the maximum magnitude
response of its associated inverse filter in (8) is around 152 dB,
while the subsampling allows it to be reduced by 80 dB to a vicin-
ity of 72 dB. Consequently, the smooth nature of the mean and
variance images brings about the invaluable benefit of substan-
tially improved numerical stability and computational efficiency.

Figure 3. Images u and v used in the experimental study.

Results
In this section, we validate the viability and usefulness of

the proposed WPS method via numerical experiments using real-
life data. All the test images were acquired using TissueScopeTM

CF confocal fluorescence and bright-field slide scanner (Huron
Digital Pathology, Waterloo, ON, Canada). The spatial resolution
in both x- and y-direction was set to be equal to 1 µm. For the
sake of comparative analysis, stitching by feathering and Poisson
stitching have been used as reference methods. It should also be
noted that, as an additional reference method, the authors tried to
use the GIST1-`1 method of [10] (which amounts to solving (4)
for p= 1). Unfortunately, for the problem at hand, the results thus
obtained have been of similar quality to that of Poisson stitching,
and, for this reason, their demonstration is omitted here for the
reason of space.

Figure 4. Results obtained by (from top to bottom) stitching by feathering,

Poisson stitching, and the proposed WPS method.

Fig. 3 shows two fragments of image tiles (aka “strips”) to be
stitched along the horizontal direction. One can see that complex
and inhomogeneous distribution of the stain across the specimen
as well as differences in the orientations of the focal planes create
significant differences in the brightness of the images. The highly
non-linear nature of these brightness variability artifacts makes it
extremely difficult to attain useful stitching results using standard
approaches such as feathering and Poisson stitching. This point
is demonstrated in Fig. 4 that shows the results of various stitch-
ing methods depicted as grayscale images (left column of sub-
plots) along with their corresponding surface plots (right column
of subplots). As expected, the result produced by feathering suf-
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fers from the presence of an unwanted (vertical) seam. The result
produced by Poisson stitching, on the other hand, reveals severe
distortions that manifest themselves through unnatural negative
overshoots (as seen in the corresponding surface plot) and, as a
result, reduced contrast. At the same time, the proposed method
is capable of attaining a close to perfect performance, as shown in
the bottom of Fig. 4.

Figure 5. Stitched image computed by the proposed algorithm.

While the examples in Fig. 4 show various stitching results
performed on a single colour channel, Fig. 5 provides an exam-
ple of a full coloured reconstruction. The shown image has been
formed from 10 vertical “stripes” of size 57,000-by-4,850 pixels
each (with a 5 mm horizontal overlap). The full reconstruction
took less than 3 mins on a standard 2.6 GHz Intel Core i7 CPU
running Matlab R© (version R2015a). One can see that the image
exhibits neither noticeable seams nor other undesirable artifacts.

Summary
In this paper, a new method of image stitching has been pro-

posed. The main impetus for the development of this method has
come from its application to TM – an image acquisition technique
in which the entire image of a relatively large specimen is formed
via stitching its localized fragments. The principal advantages of
the proposed method consist in its ability to perform reliably in
the presence of (average) brightness variability artifacts as well as
its relatively high computational efficiency. This is what makes
this method optimally suited for application in tiling microscopy,
where a typical image height/width is on the order of tens of thou-
sands of pixels. It is also interesting to note that, in its philoso-
phy, the proposed method reminds the multi-resolution approach
of [7], in which the same stitching procedure (i.e., feathering) is
applied to different levels of an image decomposition pyramid.
In this work, albeit using a different decomposition mechanism

(i.e., Wallis filtering), we show that additional advantages can be
gained through applying different stitching methods to different
constituents of an image decomposition.
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