
Robust extensions to guided image filtering
Oleg V. Michailovich; University of Waterloo; Waterloo, Ontario/Canada

Abstract
Image denoising is commonly regarded as a problem of fun-

damental importance in imaging sciences. The last few decades
have witnessed the advent of a wide spectrum of denoising algo-
rithms, capable of dealing with noises and images of various types
and statistical natures. It is usually the case, however, that the
effectiveness of a given denoising procedure and the complexity
of its numerical implementation increase pro rata, which is often
the reason why more advanced solutions are avoided in situations
when data images have relatively large sizes and/or acquired at
high frame rates. As a result, substantial efforts have been re-
cently extended to develop efficient means of image denoising, the
computational complexity of which would be comparable to that
of standard linear filtering. One of such solutions is Guided Image
Filtering (GIF) - a recently proposed denoising technique, which
combines outstanding performance characteristics with real-time
implementability. Unfortunately, the standard implementation of
GIF is known to perform poorly in situations when noise statistics
deviate from that of additive Gaussian noise. To overcome this de-
ficiently, in this note, we propose a number of modifications to the
filter, which allow it to achieve stable and accurate results in the
case of impulse and Poisson noises.

Introduction
Despite recent advances in the design and manufacturing of

imaging devices and related methodologies, the problem of image
denoising still remains a problem of fundamental importance in
imaging sciences and associated disciplines. The most archetypi-
cal question asked in this respect has always been: “Is there an op-
timal filter capable of rejecting the noise, while retaining the con-
tent of the original image as intact as possible?” Unfortunately,
an ultimate answer to this question does not seem to exist, just as
there may hardly ever be a unified agreed upon what the “optimal”
means [1]. This being said, however, specific applications can still
put forward certain technical requirements, with respect to which
some filtering algorithms may be deemed to be more appropriate
than others. In particular, when one is facing the necessity to pro-
cesses images of extremely large sizes (as it would be the case,
for instance, in digital pathology [2]), it makes practical sense to
favour computationally efficient solutions. From this perspective,
a less naı̈ve question to ask would be: “What is the best performer
among filters that have, say, linear complexity?”

Assuming the “best” to refer to the edge-preservation prop-
erties of a filter, the above question has been addressed by many
authors [3, 4]. Recently, the arsenal of computationally efficient
methods of image denoising was supplemented by an additional
tool, known as Guided Image Filtering (GIF) [5]. Since the intro-
duction of the original concept, GIF has undergone several modi-
fications, which have enabled its application to a broad spectrum
of important practical problems [6, 7]. Despite its apparent suc-
cess, however, one particular aspect of GIF still seems to be un-

addressed. Specifically, from the viewpoint of Bayesian estima-
tion theory, GIF can be considered to be a maximum-a-posteriori
(MAP) estimator derived under the assumption on noise to be ad-
ditive, white, and Gaussian (AWG). Supporting this theoretical
argument are numerous empirical observations, which reveal sub-
optimal performance of the filter in the cases when the noise hap-
pens to deviate from its expected (i.e., AWG) behaviour.

To address the above problem, we propose to modify the
original formulation of GIF to improve its performance in two
practically important cases, viz. when the images of interest are
contaminated by: a) impulsive and b) Poisson (aka shot) noises.
To this end, we take advantage of the Bayesian formalism, which
leads to two optimization problems, neither of which admits a
closed form solution (as opposed to the case of the original GIF).
However, for each of the two problems, we propose a particu-
larly fast recursive solution, which requires only a few applica-
tions of the standard GIF, thereby resulting in only a mild increase
in the overall computational complexity of image filtering. To en-
sure the reproducibility of our results, we detail the structures of
both filters and test their performances in terms of both percep-
tual signal-to-noise ratio (PSNR) and structural similarity (SSIM)
index [8].

Guided image filtering
In its original version, GIF operates on a (noisy) data image

g under the guidance of a reference image I. Without loss of gen-
erality, we can consider both g and I to be real-valued 2-D arrays
of size N×M. Let k be a 2-tuple index pointing to some arbitrary
(yet fixed) elements of g. Also, let Nk be a local neighbourhood
of k. Then, GIF is based on representing the values of the original
(noise-free) image f in terms of the values of I as given by [5]

fi = ak Ii +bk, ∀i ∈Nk, (1)

where ak and bk are filter parameters which are yet to be defined.
In words, (1) suggests that each Nk neighbourhood of the original
image f is an affine function of the corresponding neighbourhood
of the guiding image I.

The model parameters ak and bk in (1) can be estimated using
the data image g. Specifically, to facilitate the exposition, let K :=
|Nk| denote the number of pixels in Nk, and let ḡk and Īk be K-
dimensional (columns) vectors obtained by column-stacking the
values of {gi}i∈Nk and {Ii}i∈Nk , respectively. Then, the optimal
ak and bk can be found by solving the quadratic minimization
problem of the form

min
c̄k

{
‖Ak c̄k− ḡk‖2

2 + ε c̄kT Bc̄k
}
, (2)

where c̄k := [ak, bk]
T , Ak :=

[
Īk, 1K

]
∈ RK×2 (with 1K being a K

dimensional vector of ones), B := diag{[1, 0]} ∈R2×2, and ε > 0
is a user-defined parameter that controls the level of smoothing
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applied by the filter. The solution to (2) is straightforward to com-
pute in a closed form. In particular, the optimal values of the GIF
parameters are given by

a∗k =
cov(ḡk, Īk)

var(Īk)+ ε ′
, b∗k = mean(ḡk)−mean(Īk)a∗k , (3)

with ε ′ = K−1ε and “mean” standing for the mean value of a vec-
tor (e.g., mean(Īk) := (1/K)∑i∈Nk

Īk
i ), while “cov” and “var” are

used to denote the sample covariance and variance of correspond-
ing vectors, respectively. Specifically,

cov(ḡk, Īk) =
1
K ∑

i∈Nk

ḡk
i Īk

i −mean(Īk)mean(ḡk), (4)

whereas var(Īk) = cov(Īk, Īk).
In this work, we are particularly interested in running GIF in

the self-guided regime, i.e., when I is replaced by the data image
g. In this case, the cost of computing a∗k and b∗k is dominated by
the cost of computing mean(ḡk) and var(ḡk), which amounts to
two convolutions. To see that, we assume Nk to be a rectangular
neighbourhood of size LN ×LM and choose h to be a convolution
kernel defined by h = (LNLM)−11LN 1T

LM
. Then, the optimal val-

ues of ak and bk corresponding to all k in the domain of g can be
arranged into two N×M matrices a∗ and b∗, which in turn can be
computed using Algorithms 1 specified below.

Algorithm 1 Self-Guided Image filtering (SGIF)
procedure SGIF(g,ε ′)
gm← g∗h
gv← (g ·g)∗h−gm ·gm
a∗← gv/(gv + ε ′)
b∗← gm · (a∗−1)
return a∗, b∗

Above, the symbols · and / denote point-wise multiplication and
division, while ∗ stands for the operation of 2-D convolution.
Note that, due to the separability of h, the 2-D convolution can be
reduced to a series of 1-D convolutions along the row and column
directions using kernels hN = (LN)

−11LN and hM = (LM)−11LM ,
respectively. Moreover, substantially better filtering results are
usually obtained when the “box” kernels are replaced with “bell-
shaped” ones. Thus, for instance, the results reported in this paper
have been obtained using hN = hM = (1/16)[1, 4, 6, 4, 1]T [9].

It was argued in [5], that each pixel i is included in a total
of K different neighbourhoods Nk, and thus the value of fi in (1)
may not be the same when computed for different ak and bk. A
possible solution to the above difficulty (as proposed in [5]) is to
compute the filter output f̃ according to

f̃ = (a∗ ∗h) ·g+(b∗ ∗h). (5)

Unfortunately, while useful in general, the above approach tends
to over smooth the images filtered in the self-guided regime. For
this reason, in our experiments, the estimation has been performed
according to

f̃ = a∗ ·g+b∗, (6)

which corresponds to the case when a∗k and b∗k computed for var-
ious neighbourhoods Nk are used only for correcting the value of
gi at their respective centres.

Proposed method
The minimization problem (2) admits an alternative interpre-

tation from the viewpoint of statistical estimation theory. Thus,
the first term of the objective function could be interpreted as a
(negative) log-likelihood, while the second term reflects some a
priori knowledge on the statistical nature of an optimal c. More-
over, the quadratic form of the log-likelihood term suggests that
the noise is assumed to obey an AWG model. Unfortunately, us-
ing such model does not guarantee satisfactory performance of
the filter in the case of other types of noise which require a dif-
ferent formulation. In what follows, we consider two practically
important scenarios, in which one deals with impulsive and shot
noises.

Impulse noises
In the case of impulse noise, a more appropriate formulation

of GIF could be obtained through replacing the `2-norm in (2)
with an `1-norm, which leads to computation of the filter coeffi-
cients by solving

min
c̄k

{
‖Ak c̄k− ḡk‖1 + ε c̄kT Bc̄k

}
. (7)

Although (7) is still a convex optimization problem, its solu-
tion is not available in a closed form. Moreover, even though this
problem could be solved by a great variety of efficient optimiza-
tion tools, doing so in a “k-by-k” manner would greatly impair the
computational efficiency of the filter, which is, after all, the key
attribute that we are interested to retain. Accordingly, in what fol-
lows, we detail an optimization routine that allows computing an
optimal f̃ in a few iterations, with the cost of one iteration being
virtually identical to that of a single application of SGIF.

The main idea of the proposed approach is rooted in using
a particular method of convex optimization known as alternating
directions method of multipliers (ADMM) [10]. In particular, we
start with replacing the original problem (7) with an equivalent
constrained minimization problem of the form

min
c̄k ,z̄k

{
‖z̄k‖1 + ε c̄kT Bc̄k

}
, s.t. z̄k = Ak c̄k− ḡk, (8)

where z̄k ∈ RK is an auxiliary optimization variable. The new
problem can, in turn, be cast in its augmented Lagrangian form
and solved iteratively using the following set of update equations

c̄k
t+1 = argmin

c̄k

{
ε c̄kT Bc̄k +

δ

2
‖Ak c̄k− ḡk− z̄k

t + ȳk
t ‖2

2

}
,

(9)

z̄k
t+1 = argmin

z̄k

{
‖z̄k‖1 +

δ

2
‖Ak c̄k

t+1− ḡk− z̄k + ȳk
t ‖2

2

}
,

(10)

ȳk
t+1 = ȳk

t +Ak c̄k
t+1− ḡk− z̄k

t+1, (11)

where subscript t is an iteration counter, ȳk
t ∈ RK is a vector of

(scaled) Lagrange multipliers, and δ > 0 is a user-defined penalty
parameter.

The minimization problems in (9) and (10) admit closed-
form solutions. Thus, the computation of c̄k

t+1 amounts to solving
a 2-by-2 system of equations of the form(

δAkT Ak +2εB
)

c̄k
t+1 = δAkT

(
z̄k
t + ḡk− ȳk

t

)
, (12)
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while computing z̄k
t+1 boils down to standard soft thresholding,

namely

z̄k
t+1 = soft{r̄k,1/δ} := max(r̄k−1/δ ,0)+min(r̄k +1/δ ,0),

(13)

where we denote r̄k := Ak c̄k
t+1 − ḡk + ȳk

t for brevity. Although
very efficient from computational perspective, the above update
equations need to be computed for each image neighbourhood
(as indexed by k) and each iteration t. Moreover, the algorithm
also requires us to store and manipulate two N×M arrays of K-
dimensional vectors {z̄k

t } (auxiliary optimization variables) and
{ȳk

t } (scaled Lagrange multipliers). Needless to say, these addi-
tional storage requirements further diminish the overall efficiency
of the procedure.

To restore the computational efficiency of GIF in the case of
impulsive noises, we first note that the computation in (9) effec-
tively amounts to guided filtering of ḡk + z̄k

t − ȳk
t , while using ḡk

as a guiding image patch and properly rescaling the regularization
constant (i.e., using 2ε/δ instead of ε). Although very efficient in
principle, the main drawback of the above procedure stems from
the necessity of storing different vectors z̄k

t and ȳk
t for each local

neighbourhood Nk. However, the shift-invariant nature of both
GIF and soft-thresholding in (10) suggests that z̄k

t and ȳk
t can be

defined in a manner similar to ḡk. In particular, by letting zt and
yt be two N ×M images of the auxiliary optimization variables
and the scaled Lagrange multipliers, respectively, the elements of
z̄k
t and ȳk

t can be shown to be given by {zt,i}i∈Nk and {yt,i}i∈Nk .
As a result, the update in (9) can be performed by means of the
standard GIF algorithm of [5] with g and g+ zt − yt regarded as
the guiding and data images, correspondingly.

Algorithm 2 Laplacian SGIF (LSGIF)
procedure LSGIF(g,ε ′,δ )
z← 0
y← 0
repeat until convergence

(a, b)← SGIF(g+ z− y, 2ε ′/δ )
f̃ ← a ·g+b
z← soft{ f̃ −g+ y, 1/δ}
y← y+ f̃ −g− z

end repeat
return f̃

To further improve the computational efficiency of the pro-
posed solution, the filtering of g+ zt − yt can be carried our in
the “self-guided” regime, i.e., by exploiting g+ zt −yt for its own
guidance. This substitution corresponds to, so-called, inexact up-
date [11] (a formal convergence analysis of which is omitted here
for the reason of space). It was observed through numerical exper-
iments, however, that the above “trick” does not impair the con-
vergence of the algorithm, while being capable of substantially
improving its computational efficiency.

The conceptual outline of the proposed algorithm, which will
be referred below to as Laplacian self-guided image filtering (LS-
GIF) (owing to the Laplacian nature of impulsive noises), is de-
tailed in Algorithm 2 above. One can see that the computational
complexity of each iteration of the algorithm is dominated by that

of a standard SGIF procedure. In practice, we have observed that
it rarely takes more than ten iterations for the algorithm to reach
convergence (which, in turn, allows processing large scale data
at a fraction of a second even using an average CPU). It also
deserves noting that the convergence properties of the proposed
method could be further improved using standard means for accel-
erating ADMM-based solvers, such as those based on Nesterov’s
scheme and/or adaptive restart [12].

Poisson noises
The image formation model of many key imaging modalities

rely on the notion of event counts. The latter, for example, quanti-
fies the number of gamma photons which pass though a single slit
of the collimator of a gamma camera in positron emission tomog-
raphy (PET) and single photon emission computer tomography
(SPECT) [13]. In addition, statistical models of the same type
are routinely used in optics to account for the process of “count-
ing” the number of optical photons registered by the sensor of a
(CCD) camera, which makes them ubiquitous throughout confo-
cal microscopy, astronomical imaging, and turbulent imaging. In
all the above case, data images are normally assumed to be con-
taminated by Poisson noise [14].

In the case of Poisson noises, the Gaussian log-likelihood
term ‖Ak c̄k − ḡk‖2

2 needs to be replaced by its Poissonian coun-
terpart, which transforms (2) into a minimization problem of the
form

min
c̄k

{
1T

KAk c̄k− ḡkT log(Ak c̄k)+ ε c̄kT Bc̄k
}
, (14)

where, as before, 1K denotes a K-length (column) vector of ones.
Note that the model assumes the true image to be strictly positive,
and thus the above minimization problem should be accompanied
by a constraint requiring Ak c̄k � 0 (with element-wise inequalities
implied). We will see, however, that the proposed solution will be
able to automatically enforce this constraint.

To derive an efficient method for solving (14), we start with
replacing the original problem by an equivalent problem of the
form

min
c̄k ,z̄k

{
1T

K z̄k− ḡkT log(z̄k)+ ε c̄kT Bc̄k
}
, s.t. z̄k = Ak c̄k, (15)

with z̄k ∈ RK being an auxiliary optimization variable, as before.
Using ADMM allows solving the problem in (15) through a se-
quence of iterations given by

c̄k
t+1 = argmin

c̄k

{
ε c̄kT Bc̄k +

δ

2
‖Ak c̄k− z̄k

t + ȳk
t ‖2

2

}
, (16)

z̄k
t+1 = argmin

z̄k

{
1T

K z̄k− ḡkT log(z̄k)+
δ

2
‖Ak c̄k

t+1− z̄k + ȳk
t ‖2

2

}
,

(17)

ȳk
t+1 = ȳk

t +Ak c̄k
t+1− z̄k

t+1, (18)

where, as before, ȳk
t ∈RK is a (column) vector of scaled Lagrange

multipliers at iteration t.
Similarly to the case of impulsive noises discussed in the pre-

vious section, the subproblems (16) and (17) admit simple closed-
form solutions. Specifically, the computation of c̄k

t+1 boils down
to solving a 2-by-2 system of equations, virtually identical to the
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one in (12). At the same time, the solution of (17) is considerably
simplified by the fact that this optimization problem is separable
in the coordinates of its argument, which suggests that updating z̄k

can be performed by independently updating its K entries. In par-
ticular, application of the first-order optimality condition to (17)
results in the following update equation.

z̄t+1
k =

r̄k +
√
(r̄k)2 +4δ ḡk

2δ
, with r̄k := δ (Ak c̄k

t + ȳk
t )−1. (19)

Here the operation of squaring as well as taking the square root
are assumed to be performed element-wise, which makes this up-
date somewhat similar to soft-thresholding in (13). To make the
notations more compact, we will refer to the above update equa-
tion as positive rectifier (denoted by rect+), owing to its associated
functional characteristics. Specifically,

z̄t+1
k = rect+(r̄k, ḡk,δ ). (20)

It is important to note that, as the name suggests, the output of
rect+ is always guaranteed to be nonnegative-valued, which ex-
plicitly enforces the resulting estimate to be nonnegative-valued
as well.

Algorithm 3 Poissonian SGIF (PSGIF)
procedure PSGIF(g,ε ′,δ )
z← 0
y← 0
repeat until convergence

(a, b)← SGIF(z− y, 2ε ′/δ )
f̃ ← a ·g+b
z← rect+{δ ( f̃ + y)−1,g,δ}
y← y+ f̃ − z

end repeat
return f̃

Finally, we can improve the computational efficiency of the
filter using the same approach as in the case of LSGIF. Specifi-
cally, instead of two sets {z̄k

t }NM
k=1 and {ȳk

t }NM
k=1 of K-dimensional

vectors of the auxiliary optimization variable and their related
(scaled) Lagrange multipliers, we define two N ×M images zt
and yt , such that the values of z̄k

t (resp. ȳk
t ) are given by the values

of {z̄t,i}i∈Zk (resp. {ȳt,i}i∈Zk ). Also, instead of filtering zt − yt
under the guidance of g (as suggested by (16)), we carry out the
filtering in the self-guided regime. As was already argued earlier,
this “trick” is equivalent to using an inexact update, which can
be shown to produce an absolutely summable sequence of errors,
which in turn guarantees the convergence of the filtering proce-
dure [11].

A conceptual outline of the proposed method – which will be
referred below to as Poissonian self-guided image filtering (PS-
GIF) – is given by Algorithm 3 above. Similarly to the case
of LSGIF, each iteration of PSGIF is dominated by a standard
SGIF procedure, with a total number of iterations rarely exceed-
ing a tensome. Moreover, although already very efficient com-
putationally, the convergence of PSGIF can be further improved
through employing available schemes for accelerating ADMM-
based optimization routines [12]. This being said, however, we
stress the fact that, due to the high computational efficiency of

SGIF, a typical execution of either LSGIF or PSGIF takes only
a fraction of a second, when applied to high-dimensional images
(e.g., min(N,M)≥ 1024) and processed on an average CPU.

Results
In this section, we provide empirical evidence supporting the

viability and usefulness of the proposed filtering solutions. In par-
ticular, we demonstrate the performance of LSGIF and PSGIF in
the cases of image contamination by impulsive and shot noises,
respectively. For the sake of comparative analysis, the proposed
methods are contrasted with the standard GIF approach of [5] as
well as two additional filters derived using a Bayesian formulation
in conjunction with the powerful ideas of sparse representations
[15]. In this case, the original (unknown) image f is assumed
to be representable as f = Wc, with W being a synthesis opera-
tor corresponding to either a predefined basis or a frame in the
associated signal space, and c being a sparse set of representation
coefficients. The arsenal of currently available choices of W is im-
pressively broad [16]. In this work, we choose W to correspond
to the framelet analysis of [17], which we choose to its excellent
orientational selectivity and sparsifying properties.

Assuming the framelet coefficients to be i.i.d. Laplacian ran-
dom variables and the measured image g to be contaminated by
additive white Laplacian noise (in congruence with the impulsive
nature of the noise), the maximum-a-posteriori (MAP) estimation
framework prescribes finding an optimal c∗ as the global mini-
mizer of the following optimization problem

c∗ = argmin
c
{‖Wc−g‖1 +λ‖c‖1} , (21)

where λ > 0, conventionally regarded as a regularization param-
eter, depends on the parameters of the probability distribution of
the framelet coefficients as well as that of the noise. In practice,
however, a suitable value of λ is found by trials and errors, de-
pending on the balance between noise suppression and preserva-
tion of image details required by a specific application at hand. In
the case of this study, λ was set to be equal to 0.7, which resulted
in the best performance of the filter in terms of PSNR and SSIM.
For the convenience of referencing, the above method will be re-
ferred below as Sparse Bayesian with Laplacian noises (SB-L).

In the case of Poisson (aka shot) noise and the same sparse
(Laplacian) priors on c, the MAP estimation leads to an optimiza-
tion problem of the form

min
c
{〈1N×M ,Wc〉−〈g, log(Wc)〉+λ‖c‖1} , s.t. Wc� 0, (22)

where 〈·, ·〉 denotes the standard (Euclidean) inner product, while
1N×M is an N×M array of ones. As before, the optimal value of λ

was chosen to be 0.1, which yielded the best possible performance
of the method in terms of PSNR and SSIM. In what follows, the
method is referred to as Sparse Bayesian with Poisson noises (SB-
P).

The framelet analysis required by both SB-L and SB-P was
based on a 5-level multi-resolution (with an associated redun-
dancy factor of approximately 2.65), implemented by means of
fast decomposition/reconstruction routines based on FIR filter-
ing in conjunction with up/down sampling. The minimizations
in (21) and (22) were carried out using basic ADMM-based opti-
mization routines, without any attempts of additional acceleration
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(just like in the case of LSGIF and PSGIF) [18]. All the methods
under comparison (except for SGIF) used the same termination
criterion. Namely, the iterations were terminated when a relative
change in the value of associated cost function dropped below 1%.

The proposed and reference methods have been compared in
terms of PSNR, SSIM, as well as their respective execution times.
(All the codes have been written and implemented in Matlab R©
(version R2015a) on a standard 2.6 GHz Intel Core i7 CPU). The
test image used in our experimental study and shown in Fig. 1 rep-
resented a typical fragment of a digital pathology scan produced
by a confocal microscope.

Figure 1. Original test image.

Table 1 summarizes the performance metrics of various fil-
tering methods under comparison, obtained by averaging the re-
sults of 200 independent trials. In this case, the data image has
been contaminated by salt & pepper noise (with the noise density
equal to 0.1), giving rise to an (average) PSNR of 14.92 dB and
SSIM of 0.39. One can see that the proposed LSGIF method is
capable of achieving a higher estimation accuracy in less than 40
ms (as compared to roughly 3 secs required by SB-L). Note that it
took LSGIF only about 10 iterations to converge till termination,
which explains an approximately 10 fold increase in the execu-
tion time as compared to the case of SGIF. The parameters ε and
δ of the method were set to be 4 and 5, respectively. It should be
noted that, according to the theory, the convergence of ADMM is
guaranteed for any δ > 0, although the rate of convergence can
differ for different δ . Even though there exist a number of nu-
merical recipes allowing one to set the value of δ automatically,
in this study, it was set empirically to produce the fastest possible
convergence. Similarly, the value of ε = 4 was chosen so as to
maximize the resulting values of PSNR and SSIM (just as in the
case of SGIF, SB-L, and SB-P).

Table 1: Salt & pepper noises
Data GIF SB-L LSGIF

PSNR (dB) 14.92 22.08 25.18 27.27
SSIM 0.39 0.66 0.88 0.92
Time (ms) - 3.7 3009 38.4

It deserves noting that the main goal of this study has been
to improve the performance of GIF in the case of non-Gaussian
noises (rather than formulating a novel filtering method, capa-
ble of “beating” some advanced image filters, such as SB-L). So,
the authors have been genuinely surprised to see that, in addi-

tion to retaining the computational efficiency of SGIF, the pro-
posed method has been able to actually outperform SB-L (which
is based on much deeper considerations of harmonic analysis and
statistical estimation theory). This conclusion is further supported
by Fig. 2, which shows the results of various filters under com-
parison. One can see that SGIF retains a considerable portion of
the noise, rending the resulting reconstruction inadequate. SB-
L, on the other hand, produces a close-to-perfect result, albeit of
a lower contrast (probably, due to the effect of residual noises).
At the same time, the estimate computed by the proposed LSGIF
method is virtually indistinguishable from the original image.

Figure 2. Recovered images in the case of salt & pepper noises

The performance of PSGIF in the case of Poisson (aka shot)
noise contamination is summarized in Table 2 and Fig. 3. Once
again, one can see that PSGIF not only retains the computational
efficiency of SGIF (incurring only a ten-fold increase in the exe-
cution time, i.e., proportionally to the number of iterations), but
also outperforms the other reference methods in terms of PSNR
and SSIM. As in the case of LSGIF, the parameters ε and δ of the
algorithm were adjusted empirically (so as to maximize its perfor-
mance both in terms of accuracy and the rate of convergence) and
set to 4 and 0.02, respectively. Note, however, that similar opti-
mization has been done for all the methods under comparison.

Table 2: Poissonian noises
Data GIF SB-P PSGIF

PSNR (dB) 13.83 14.93 24.84 25.49
SSIM 0.63 0.67 0.81 0.87
Time (ms) - 3.7 1522 39.5

Fig. 3 provides additional evidence in support of the viability
of the proposed solution. In particular, while SGIF is incapable
of rejecting the shot noise to any significant degree, a much better
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reconstruction is achieved by SB-P. However, the latter is clearly
outperformed by PSGIF in terms of improved contrast and preser-
vation of image details.

Figure 3. Recovered images in the case of Poissonian noises

Summary
In this paper, we proposed a number of modifications to

guided image filtering which allow it produce useful results in the
case of some common non-Gaussian noises. In particular, the pro-
posed extensions, dubbed LSGIF and PSGIF, have been endowed
with the ability to reject impulsive and shot noises, respectively.
Note that both the derivation and experimental validation of the
filters have been carried out in the self-guided regime (i.e., when
the noisy image itself is used as guidance). However, the pro-
posed framework is rather general, and is straightforward to ex-
tend to the cases when a guiding image is provided along with the
noisy data image. Also, the main idea of this work has been to re-
tain the relatively high computational efficiency of GIF, while en-
abling the latter to tackle broader classes of measurement noises.
Although the proposed solutions are iterative in nature, their iter-
ations are dominated by a single application of SGIF, which sug-
gests that the overall complexity of the proposed algorithm scales
linearly with the number of iterations, which rarely exceeds a few
tens. Although unexpected, it was also observed that, while re-
taining the computational efficiency of GIF, the proposed solu-
tions is capable of outperforming some advanced Bayesian filters
(e.g., the one based on sparse approximation analysis) in terms of
both PSNR and SSIM.
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