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Abstract
After skin cancer, prostate cancer is the most common can-

cer in American men. This paper introduces a new database
which consists of a large sample size of patients gathered us-
ing multispectral photoacoustic imaging. As an alternate to the
standard two class labeling (malignant, normal), our voxel based
ground truth diagnosis consists of three classes (malignant, be-
nign, normal). We explore deep neural nets, experiment with three
popular activation functions, and perform different sub–feature
group analysis. Our initial results serve as a benchmark on this
database. Greedy based feature selection recognizes and elimi-
nates noisy features. Ablation feature ranking at the feature and
group level can simplify clinician effort and results are contrasted
with medical literature. Our database is made freely available to
the scientific community.

Keywords: heuristic, greedy, forward, backward, feature selec-
tion, deep learning, DNN, supervised, activation functions

1. Introduction
For the year 2013, the American Cancer Society estimates

that about 238,590 new cases of prostate cancer will be diagnosed
and about 29,720 deaths will result from prostate cancer in the
United States [1]. Prostate cancer is usually detected based on an
elevated prostate specific antigen test or abnormal digital rectal
exam prompting transrectal ultrasound (TRUS) guided biopsy of
the prostate for definitive diagnosis. The sensitivity, specificity
and accuracy of TRUS in detecting prostate cancers is reported to
be 41%, 81% and 67% respectively [2].

Photoacoustic Imaging (PAI) is an emerging, noninvasive,
functional and molecular imaging modality that has not yet en-
tered the clinic. It employs short laser light pulses to excite
molecules in the tissue, producing localized thermal expansion to
generate ultrasonic waves. A valuable feature of PAI is the abil-
ity to discriminate among tissue constituents on the basis of op-
tical absorption properties, allowing for PAI spectroscopy, which
can detect biological function [4]. PAI can map the concentra-
tion of deoxy and oxy-hemoglobin, as well as water and lipid in
the tissue. Research based evidence pointing towards its useful-
ness in cancer diagnosis and disease management is growing day
by day. Many believe that PAI is poised to become the next ma-
jor clinical imaging modality after x-ray computed tomography
(CT), Ultrasound (US), Magnetic resonance imaging (MRI) and
Nuclear medicine. PAI is expected to significantly impact disease
management for prostate, breast, thyroid and skin cancer. With
a prototype fast PAI device we have collected image data on 42
human prostate tissue samples obtained after its surgical removal.

Histopathology was used as ground truth to determine which ar-
eas in the image are to be labeled as normal, cancer and benign
prostate hyperplacia (BPH). From the raw image data, 29 differ-
ent features were extracted on a pixel by pixel basis.

Feature ablation, is the process of choosing the best subset
of features with an objective of better generalization on the val-
idation set [7]. It is often a key preprocessing step for machine
learning applications and can play an important role in medical
diagnosis [9]. Smaller selection of features offer faster models
[10] and lower cost clinical tests.

As the number of features increase, the computational cost
required to find an optimal subset of features increases exponen-
tially [12], often referred to as the curse of dimensionality. Dis-
advantages of the filter based, wrapper [8], or embedded models
[10], [7] have either high computational costs or are model spe-
cific. To minimize compute cost, heuristic based feature selection
approaches have recently become popular [11], mainly because
they overcome the previous mentioned disadvantages. Greedy
forward and greedy forward with backward removal [11] effi-
ciently determine the best subset of features while minimizing
classification error.

Ranking features [10] in medical diagnosis provides more
information of underlying contributors of the disease within the
cancer lesions themselves. These top ranked features can be con-
sidered as strongest indicators of the disease. Simultaneous fea-
ture selection & ranking, as we show in this paper, will prove to
be a useful component in prostate cancer diagnosis as it helps to
understand the contribution of these highly ranked features.

Loosely inspired by the human brain, deep networks are one
of the hottest topics in pattern recognition and computer vision.
Deep neural networks are hierarchical artificial neural networks
with more than two hidden layers arranged such that each higher
level is an abstract generalization of lower layers. These hierar-
chical architectures enable the representation of complex concepts
with fewer nodes than shallow architectures [13]. With regard to
object classification, these networks have recently been shown to
equal the performance of neurons in the primate inferior tempo-
ral cortex, even under difficult conditions such as pose, scale, and
occlusions [21].

Recent success of deep neural networks (DNNs) applied to
the task of prostate cancer classification [22], has shown that with
an optimal compressed feature set, it is possible to enhance the
performance of the model. In this paper, we show that a com-
bination of an adaptive greedy forward with backward removal
features selector along with a DNN classification engine offers
clinical benefits to the medical community. Experimental results
also suggest that different activation functions are optimal for dif-
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ferent feature groups.
The rest of the sections in the paper is organized as follows:

Section 2 gives a brief review of literature of previous work. Sec-
tions 3 & 4 provide a brief explanation of our dataset and method-
ologies respectively. Sections 5 shows the results. Sections 6 &
7, draw useful discussions and accomplishments respectively.

2. Literature review
Feature selection is a hot area for research in the field of

cancer classification. Cancer growth has been attributed to ge-
netic abnormalities [24]. There have been several approaches that
consider the combination of genetic features [10], [23], [25] to
choose the most non-redundant, informative subset of features
and then use support vector machines to induce a strong classi-
fication model.

Previous works [26], [27] have used either greedy forward
selection or backward elimination variants. The forward only, i.e.
adding one feature at a time, cannot rectify the mistakes it might
have made in choosing the earlier features. On the contrary, back-
ward elimination i.e. removing the one feature at a time whose
contribution minimizes the decrease the loss, risks the possibility
of overfitting to noisy features. Hence it is ideal to make use of
the strengths of both approaches in one algorithm [11].

Simultaneous selection and ranking of features using [11]
has not been applied to different feature groups. We utilize feature
selection at the individual and group level, and explain from a
physics & medical standpoint as to why different arrangements
make sense. There have been only a handful [22] of attempts,
which have used a deep learning framework for prostate cancer
classification. The results in [22], motivate us to use DNNs.

Previous work [5] introduced a subset of this dataset. Specif-
ically, a group of chromophore features were investigated to see
if they were strong indicators of cancer. This previous work used
two classes (malignant and non–malignant) as opposed to our
much larger dataset which uses three classes (malignant, benign,
and normal), where the identification of benign from normal in an
ex−vivo setting is quite high, and helps provide clarity for final
diagnosis.

3. Dataset
Approximately 40 mm by 40 mm in size and 2-5 mm thick

slices of human prostate tissue specimens (see Fig.1A) were im-
aged with our prototype device that uses an acoustic lens to focus
the photoacoustically generated ultrasound signal [5]. Pixel size
was 0.7 mm by 0.1 mm. The time signal was 2-3 microseconds
long, also known as A-line signal was digitized at each pixel lo-
cation. Every specimen was imaged (see Figure 1C , 1D) at 5
different wavelengths of laser light (760, 800, 850, 930 and 970
nanometers). Histopathology slide was prepared from the top 4
micron cut slice from sample (see Figure.1B) and then regions
corresponding to three classes were marked by a genitourinary
pathologist. By registering the marked histopathology slide to the
photoacoustic (PA) image (Figure.1C and 1D), pixels belonging
to the three classes were identified for further analysis. Combin-
ing all 42 specimens, the dataset for DNN classification consisted
of total of 807 pixels out of which 398 were malignant cancer,
276 were normal and 133 were BPH. In all 29 different features
at each pixel were made available for the analysis. These fea-

tures were further organized into 4 subgroups. Group-1 consists
of feature 1 to 5, representing the peak amplitude of the signal at 5
laser wavelengths. Group-2 consists of feature 6 to 9, representing
4 major chromophore concentrations (oxy-hemoglobin, deoxy-
hemoglobin, water and lipid) (REF). Group-3 features were de-
rived from the Fourier transform (FFT) of the time domain A-line
signal at each pixel location (REF). For each of the 5 laser wave-
lengths there were three parameters, slope, mid-band fit and inter-
cept from a straight line fit to the FFT data. Thus this group has
3x5=15 features labeled as number 10 to 24. Group-4 consists of
5 centroid frequency values in the FFT of the A-line signal at each
of 5 wavelengths. These 29 feature values at 807 pixel locations
along with their class identification constitutes the basic dataset
on which the classification in this paper was performed.

Figure 1. Multispectral PAI of prostate. PA images are acquired at mul-

tiple laser wavelengths. Each wavelength image is a composite image of

all the tissue constituents such as deoxyhemoglobin (dHb), oxyhemoglobin

(HbO2), lipid and water. Chromophore analysis was performed to extract

PA images showing absorption of individual constituents from the multiwave-

length images. All the PA images are coregistered with histopathology and

photograph of the gross specimen. (A) Photograph of gross prostate spec-

imen; (B) Histopathology of prostate with malignant region encircled; (C)
Composite PA image acquired at 760 nm wavelength; (D) Composite PA im-

age acquired at 850 nm wavelength; (E) PA image showing absorption of

dHb; and (F) PA image showing absorption of HbO2. Higher absorption of

dHb was seen in the region of interest corresponding to malignant prostate

tissue compared to HbO2.

4. Methodologies
4.1 Deep neural nets

Input data is normalized by mean subtraction and division
by the standard deviation. Mathematically we can represent as,
Inorm(i) =

Xi−µi
σi

where Xi is the i’th input sample, Inorm(i), is the
normalized vector at a given input sample i, µi is the mean, σi
is the standard deviation at sample i. We used two hidden layer
feed forward networks [28]. The initial weights were randomly
initialized using Xavier initialization [30] to overcome the herd
effect [29]. The number of neurons per layer were chosen on ex-
perimental basis to reduce the overall cost (4). The input (I) ⇒
output (O) relationship was learned with a backpropagation algo-
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rithm, where the weights Wi j were found to approximate a global
minima. In addition to modifying the number of nodes per layer,
we use three activation functions to non−linearly map the linear
sum of inputs to each output at each node as listed below:
Sigmoid: Compresses wide range of inputs to the range of 0 to
1. Traditionally one of the most popular activation functions due
to its mathematical properties. A negative of this function is that
it only outputs positive values, whereby network weights are al-
lowed to be both positive and negative. A result is slower conver-
gence to a solution.

φ(x) =
1

1+ e−x (1)

where x = ∑
layers
i=0 (Wi ∗ Inorm +bi) ; Wi ∈ Rn are weights and bi is

the bias, for all future sections.
Hyperbolic tangent (Tanh): Compresses wide range of inputs to
the range of -1 to +1. Like the sigmoid, the derivative is easily
defined. Because weights are not constrained to be positive, it
offers faster convergence. .

φ(x) =
e2x−1
e2x +1

(2)

Rectified Linear units (ReLUs): Both the sigmoid and tanh ac-
tivation functions compress the tails of the distribution, making
them invariant to small differences in very positive or negative
values. The ReLU function clips negative values to zero, but al-
lows the positive values to go unchanged. The resulting function
is very fast to implement, and the non-saturating property on the
positive side gives it good discriminating properties.

φ(x) = max(0,x) (3)

Figure 2. Activation functions: Hyperbolic tangent (Tanh), Sigmoidal, Rec-

tifier linear unit (ReLU).

The loss function we use is as given in (4). The first term
being the cross entropy and the latter term being a regulariza-
tion weight penalty. During learning, wrong guesses Pi are pe-
nalized by the cross entropy, the error of which is back propa-
gated through the network based on the partial derivatives of the
weights and activation functions. The weight values are adjusted
during the learning process. To avoid overfitting to the test set as

well as multiple optimal solutions, the norm-1 or norm-2 regular-
ization, referred to as L1 or L2 regularization are often used. In
this work, the L2 regularization is used.

Costnet =−∑
i

log(
ex

∑i ex )∗ ti +Cλ ∑ |w|2 (4)

C is a constant, λ is weight penalty and a value equal to 1e-5
throughout the experiments, and ti is the target output. We back
propagate the output of (4) throughout the network to fine−tune
the weights.

BFGS (Broyden Fletcher Goldfarb Shanno), an uncon-
strained numerical optimization algorithm [16], [19] is employed
in our experiments. There are two parts in an optimization algo-
rithm: 1) Finding the direction of greatest descent; and 2) the step
size [18] in the direction of 1) required to reach the global minima
for convex functions or local minima for non-convex functions.
Our implementation consists of initial gradients gi computed us-
ing the objective function O f of the network, which is then fed
as the steepest descent direction to the optimization algorithm.
After obtaining the first search direction, we then compute the
BFGS search direction, i.e. the multiplication of the inverse hes-
sian h−1 multiplied by the negative of gradient (−gi). We use
the default setting of 100 latest search direction results [17]. The
function scalar value fi and updated gradient vector gi are then
passed through an iterative Wolfe line search algorithm, required
to calculate the number of steps to reach the global minima.

4.2 Greedy feature selection
Greedy feature selection is a family of search based algo-

rithms which provide an optimal feature subset. The greedy for-
ward feature selection (GF) and greedy forward feature selection
with backward removal (GFBR) are explored on the dataset.
The feature list to be investigated with GF & GFBR is
Forig = { f1, f2, ... fn} ∈ R29.

4.2.1 Greedy forward feature selection (GF)
With an empty chosen feature list Fc, start by greedily adding

one feature at a time, for features which induce the least error
calculated using O f on DNN/baseline classifier. The model stops
growing when Fc ∈ Rn−1.
Consider the scenario as shown from Figure 5,

• The top 2 features selected after the GF, were { f6, f8}.
• The top 3 features selected after the GF, were { f6, f8, f9}.
• It may also happen, that given { f6, f9}, { f8} carries little

value, and the triplet { f6, f9, f11} may yield better perfor-
mance than { f6, f8, f9}.

The drawback of sub-optimal initial set of features is overcome
using GFBR.

4.2.2 Greedy forward feature selection with backward re-
moval (GFBR)

Let us consider the same list of features Forig. The GFBR
[11] is a combination of the forward selection and backward elim-
ination approaches. The features are chosen by greedily adding d
best features, one at a time (measured by the least error on into
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Fc), then removing the r least useful features. Hence from the
features chosen thus far, we greedily eliminate the least contribut-
ing feature by going through various combinations of features in
Fc.

5. Results
The results are obtained by averaging the performance metrics
over 10 folds of cross validation. For GFBR models, d = 2, and
r = 1.

5.1 Feature group analysis
The performance of these groups on a standalone basis holds

a medical importance. PA signal at each pixel contained in group-
1 carries local tissue information about the chromophore concen-
tration and their spatial microstructure in a convoluted fashion.
Features of group 2, 3 and 4 attempt to separate this tissue depen-
dent information via additional pre-processing. Group analysis
provides an insight into physiological factors responsible for tis-
sue differentiation. For example group 2 features that include oxy
and deoxy hemoglobin concentration are the leading performers.
This is borne out by independent evidence on prostate cancer that
supports the hypothesis that malignant cancer regions are gen-
erally hypoxic (hemoglobin in blood has lower oxygen content
than normal regions [6]. A grid search for finding the best archi-
tectures and activation function was performed on these feature
groups. The Table 1, shows the performance of different groups
on the best architecture found by the grid search.

Figure 3. True positive rate, true negative rate of feature groups ; group 1=

1-5, group 2= 6-9, group 3= 10-24, group 4= 25-29, group all= 1-29.

Metrics used to gain insight into model performance are true pos-
itive rate (TPR), i.e. the number of times a sample is categorized
by the model as cancer and is actually cancer, and true negative
rate (TNR), i.e. the number of times a sample is categorized non-
cancer and is actually non-cancer. These are also referred to as
sensitivity and specificity respectively. As can be seen from Fig-
ure 3, that group 2 which consists of chromphores have the high-

Architecture Activation function Features Average accuracy(%)
[50, 50] Tanh 1-5 74.2
[50,50] Simgoid 6-9 81.67
[70,70] ReLU 10-24 79.55
[50,50] Tanh 25-29 72.46

[160,160] ReLU All 95.04
Table 1: Performance of different feature groups with optimal
activation functions.

est TPR and TNR on a standalone basis, followed by group 3 &
4. The least comes from group 1, which is a subset of group 2.

5.2 Greedy feature selection analysis
From Figure 4 we see the contribution (in terms of accu-

racy) of the top 11 features from the feature set Fc. The cumula-
tive accuracy of 93.18% of top 11 features chosen initially from
GFBR, in comparison to the cumulative accuracy of 85.76% of
top 11 features chosen by GF, shows that the top 11 features cho-
sen by GFBR, strongly influences the ability for the model to dis-
tinguish from one class to another. The rest of the features as
shown in Figure 5, show saturation regions in both GF & GFBR
after the first 11 features, clearly indicating that GFBR has the
chosen non-noisy, relevant feature set Fc. Table 1 shows an ac-
curacy of 95.04 %, the highest achieved when combining all fea-
tures, meaning that the rest of the 18 features, only contribute to
an approximate 1.5 to 2% difference.

Figure 4. Greedy feature selections for first 11 features: GF Greedy forward

selection, GFBR Greedy forward with backward removal. GFBR surpasses

GF in terms of choosing features such that performance is enhanced within

a very small subset.

Figure 5. Greedy feature selections, for all features. It is feature ranking.

Left most (ranked first), Right most (ranked last).

6. Discussions and Conclusions
Photoacoustic imaging is a potentially useful modality for

cancer diagnosis and disease management. To the best of our
knowledge this is the first ever multispectral PA image dataset on
ex-vivo cancer bearing human prostate tissue samples that is large
enough to be used for a DNN study described in this paper. This
is also first ever 3 class classification effort on prostate samples to
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differentiate between malignant cancer, normal tissue and benign
prostate hyperplasia(BPH) which is non-malignant inflammation
different from normal prostate tissue. Compared to TRUS, a state
of the art clinical modality, improvement in accuracy from below
60% to nearly 95% is significant. We hypothesize that group 2 and
group 3, contribute significantly because chromophore features
inform us about the oxy de-oxy content in the blood vessels [6]
and microstructural information gained by FFT play vital roles in
enhancing separation between all the three classes. As evidenced
from the ranked features by GFBR, we note that among the top
11 best features (Figure 5) the first five features which come from
group 2 and 3 contribute to around 80% of the final accuracy. It
is also worth noting that we are able to find the best features from
a set of 19 features (group 2 & group 3). In future, this greedy
feature analysis can be performed initially as a onetime effort on
any given dataset to reduce the computational effort, cost and time
during routine clinical implementation. Methodologies described
in this paper can be used on any PA dataset, including in-vivo
data if and when it becomes available. In an in-vivo setting it is
quite likely that the accuracy will be lower due to calibration is-
sues related to laser penetration in overlying tissue. Given that
performance of TRUS as benchmark is so low, PAI along with
DNNs seems to be a more promising alternative for ex-vivo tissue
differentiation.
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