
Spatio-temporal video background inpainting
Petr Pohl, Alexander Molchanov, Artem Shamsuarov, Victor Bucha
Samsung R&D Institute; Moscow, Russia

Abstract
In this article we present a method for inpainting background

parts of scene in videos. Such inpainted background view can be
used for rendering stereoscopic views of high quality. Comple-
tion of background occluded by foreground object is necessary to
solve the parallax occlusion. Known inpainting algorithms, e.g.
Criminisi, 2004 [1] or Telea, 2004 [2] were primarily designed
for inpainting of still images. However, frame-by-frame spatial
inpainting of video inevitably leads to flickering. Our hybrid in-
paint algorithm utilizes the fact that some parts of background
can be seen in temporally close frames, and some can only be
filled-in with spatial inpainting approaches. The algorithm con-
siders foreground masks and video frames as input, performs mo-
tion analysis to determine areas where spatial and temporal in-
painting should be used and then uses both approaches to find a
plausible reconstruction of background. The resulting output is a
video sequence with marked foreground object(s) removed.

Introduction
Video inpainting problem

There are several possibilities to formulate video inpainting
task. The most common way is as follows. We are given an input
video sequence and a corresponding sequence of masks which de-
note areas to be inpainted. Such sequence of masks is sometimes
called a space-time hole. The goal is to recover areas denoted by
masks so that the result visually plausible and temporally coher-
ent.

A lot of attention was given to the area of still image in-
painting. Notable methods include diffusion-based approaches,
such as [2, 3] and texture synthesis or exemplar-based algorithms,
for example [1]. Video inpainting imposes additional restrictions
which make it more computationally expensive and challenging.

Related work
Generally most of video inpainting approaches fall into two

big groups: global and local with further filtering. Exemplar-
based methods for still images have a natural extension for videos
as a global optimization problem of filling the space-time hole.
In [4] Wexler et al. define global method using patch similarity
for video completion. The article reports satisfactory results, but
the price for global optimization is extremely high complexity of
algorithm. They report several hours for a video of very low res-
olution and short duration (100 frames of 340×120 pixels).

A similar approach was taken by the Shiratori et al. [5]. They
suggest a procedure called motion field transfer to estimate mo-
tion inside space-time hole. Motion is filled-in with a patch-based
approach using a special similarity measure. Found motion allows
the authors to inpaint view sequence while maintaining temporal
coherence. However, the performance is also quite low (40 min-
utes for 60-frame video of 352×240 pixels).

Another way of video inpainting was suggested by
Burgeau et al. in [6]. They propose to inpaint frames inde-
pendently and filter the results by Kalman filtering along point
trajectories found by dense optical flow algorithm. The slowest
operation of this approach is computation of optical flow. Their
method produces visually consistent result, but the inpainted re-
gion is usually smoothed with occasional temporal artifacts.

Proposed algorithm
Our goal was to deliver solution that can effectively work on

an ordinary PC with a single relatively powerful GPGPU. Because
of that we decided not to use global optimization approach. The
main problem for successful video background restoration is to
achieve temporal consistency without sacrificing level of details.
We tackle this problem by reconstructing background motion oc-
cluded by marked foreground objects. Our algorithm consists of
three well defined steps.

Algorithm Outline
1. Motion estimation including restoration of background mo-

tion in foreground regions.
2. Temporal propagation of background image data using re-

stored background motion from step 1.
3. Iterative spatial inpainting step with temporal propagation

of inpainted image data.

For the first step we used optical flow algorithm [7] and a back-
ground motion inpainting procedure which will be described fur-
ther.

The second step — temporal propagation — is the crucial
part of our algorithm. Here we do a forward and backward pass
through video sequence using integrated motion in occluded re-
gions. In forward pass we integrate motion in backward direction
and decide, which pixels can be filled by data in the past. The
same is done for backward pass.

After forward and backward temporal pass, we still can have
some areas that were not inpainted (unfilled areas). These areas
were not seen during the video. It is necessary to use still image
spatial inpainting to fill the missing data and propagate it using
restored background motion to achieve temporal consistency.

Implementation
Motion estimation

Traditional optical flow algorithms recover motion of visi-
ble pixels. Some of them (e.g. [7]) try to recover correct mo-
tion in occlusion area. In our case it is necessary to get an esti-
mate of motion inside frame area that can be occluded for several
frames. Such task is only feasible for relatively rigidly behaving
background. In this section we will describe background motion
restoration based on dense optical flow.

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.15.IPAS-186

IS&T International Symposium on Electronic Imaging 2016
Image Processing: Algorithms and Systems XIV IPAS-186.1

Background motion restoration
We start by computing dense optical flow for all consecutive

pairs of input video frames. For that purpose we use dense optical
flow algorithm with occlusion fixing described in [7]. After that
we need to estimate background motion inside marked foreground
regions. Let us refer to figure 1 for further details.

Figure 1: Background motion estimation

Our main idea is to compute and combine several motion
estimates based on optical flow results. Let black contour A be the
edge of a marked foreground region. Outside A we will be using
motion produced by optical flow algorithm, M0(x,y). In area B we
obtain a local background motion estimate M1(x,y). Said local
estimate can be produced for example by running diffusion-like
inpainting algorithm (such as [2]) on M0(x,y) inside region B.

Next, we use M0(x,y) from area C to fit parameters a0, . . . ,a5
of an affine global motion model

M2(x,y) =
(

a0 +a1x+a2y
a3 +a4x+a5y

)
. (1)

Motion M2(x,y) is used inside area D. We choose area C to be
separated from foreground object contour A. This is to avoid in-
troducing artifacts which might come from optical flow estimation
around object edges into global motion estimates.

To improve motion smoothness we blend motions
M1 and M2 inside A. Let 0 ≤ W (x,y) ≤ 1 be a weighting
function, then the resulting motion vector field is computed as

M(x,y) = (1−W (x,y)) ·M1(x,y)+W (x,y) ·M2(x,y).

W (x,y) is defined as exponential decay (with reasonable decay
rate parameter in pixels) of distance from foreground area edge A.
It equals to 1 outside contour A and the distance parameter is
computed by effective distance transform algorithm.

As a result, we obtain full-frame per-pixel estimate of back-
ground motion that generally has properties of global motion in-
side previously missing regions, but does not suffer from discon-
tinuity problems around foreground region edges. Figure 2 shows
example of background motion restoration.

Figure 2: Background motion estimation

Temporal passes
The forward and backward temporal passes are symmetrical

and they fill in the areas which were visible on other frames of
video. After motion estimation we have background motion vec-
tors for all consecutive pairs of frames in both directions. Let us
introduce the following notation:

• I(n,x) is the n-th input frame
• M(m,n,x) is restored background motion from frame m to

frame n
• F(n,x) is input foreground mask for frame n (area to be in-

painted)
• QF (n,x) is inpainted area mask for frame n
• IF (n,x) is inpainted frame n
• T is temporal window size (algorithm parameter)

We will also use the following symbols for binary masks opera-
tions:

• & — intersection of binary masks (pixelwise AND)
• ∨— union of binary masks (pixelwise OR)
• ∼— negation (inverse) of binary mask (pixelwise NOT)

Algorithm 1 forward temporal pass

for Ncurr = 1 . . .N f rames do
Intitialize forward pass image and mask:
IF (Ncurr,x) = I(Ncurr,x)
QF (Ncurr,x) = 0
Iterate backwards for temporal data:
for Nsrc = (Ncurr−1) . . .max{1,Ncurr−T} do

Integrate motion:
M(Ncurr,Nsrc,x) = M(Ncurr,Nsrc +1,x)+ . . .
. . .+M(Nsrc +1,Nsrc,x+M(Ncurr,Nsrc +1,x))
New inpainted mask:
Qnew

F (Ncurr,x) = F(Ncurr,x)&∼ QF (Ncurr,x)& . . .
. . .&F(Nsrc,x+M(Ncurr,Nsrc,x)
Update inpainted image and mask:
for all points x marked on Qnew

F (Ncurr,x) do
IF (Ncurr,x) = IF (Nsrc,x+M(Ncurr,Nsrc,x))
QF (Ncurr,x) = QF (Ncurr,x)∨Qnew

F (Ncurr,x)

This is a kind of greedy algorithm, which inpaints back-
ground with data from temporally least distant frame. Backward
temporal pass algorithm is doing the same operations only with
reversed order of iterations and motion directions.

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.15.IPAS-186

IS&T International Symposium on Electronic Imaging 2016
Image Processing: Algorithms and Systems XIV IPAS-186.2

Some areas can be filled from both sides. In this case we
need to find single inpainting solution. We used temporally less
distant source. In case of the same temporal distance a blending
procedure was done based on distance from non-inpainted area.

Spatial pass
The goal of spatial pass is to inpaint regions, which were not

filled by temporal passes. To achieve temporal stability, we in-
paint on a selected frame and propagate inpainted data temporally.
We found, that reasonable strategy is to find the largest continuous
unfilled area, use spatial inpainting to fill it in and then propagate
through whole sequence using background motion estimate. It
is necessary to perform spatial inpainting with propagation itera-
tively until all unfilled areas are inpainted.

Any spatial inpainting algorithm can be used, in our work we
experimented with exemplar based and diffusion based methods.
Our experience shows, that its better to use diffusion algorithm
for filling small or thin areas and exemplar based one for larger
unfilled parts.

Let us denote QFB(n,x) and IFB(n,x) as temporally in-
painted mask and background image respectively after forward
and backward passes are blended together. QS(n,x) and IS(n,x)
are mask and image after temporal and spatial inpainting. |D|
stands for number of pixels in image domain D.

Algorithm 2 spatial pass

Intitialize spatially inpainted image and mask:
QS(n,x) = QFB(n,x), IS(n,x) = IFB(n,x)
while |F(n,x)&∼ QS(n,x)|> 0 ∀(n,x) do

Find Ncurr s.t. |F(Ncurr,x)&∼ QS(Ncurr,x)| is maximal
Let R(Ncurr,x) = F(Ncurr,x)&∼ QS(Ncurr,x)
Inpaint area R(Ncurr,x) and store pixel data into IS(Ncurr,x)
QS(Ncurr,x)=QS(Ncurr,x)∨(F(Ncurr,x)&∼QS(Ncurr,x))
Propagate inpainted area forward and backward:
for all frames Ndst : |F(Ndst ,x)&∼ QS(Ndst ,x)|> 0 do

Integrate motion to obtain M(Ndst ,Ncurr,x)
Get new inpainting mask:
Qnew

S (Ndst ,x) = F(Ndst ,x)&∼ QS(Ndst ,x)& . . .
. . .&QS(Ncurr,x+M(Ndst ,Ncurr,x)
Update inpainted image:
for all points x marked on Qnew

S (Ndst ,x) do
IS(Ndst ,x) = IS(Ncurr,x+M(Ndst ,Ncurr,x))
QS(Ndst ,x) = QS(Ndst ,x)∨Qnew

S (Ndst ,x)

Experimental Results
Synthetic Dataset

For quantitative evaluation we generated a set of synthetic
examples with known ground truth background and motion.
There are two kinds of object motion in test sequences:

• Simple motion. Background and foreground are moved by
two different randomly generated motions which include
only rotation and shift.

• Affine motion. Background and foreground are moved by
two different randomly generated affine motions.

Evaluation was done by running the proposed algorithm with
default parameters on test sequences. We decided to use publicly

Figure 3: Synthetic data example

available implementation of exemplar-based inpainting algorithm
by Criminisi et al. from [1] to provide a baseline for our approach.
Our goal was to test both the quality of background inpainting
for each frame and temporal stability of the resulting sequence.
For evaluation of background inpainting quality we use PSNR be-
tween algorithm output and ground truth background. Results are
shown in figure 4.

(a) Simple motion

(b) Affine motion
Figure 4: Background restoration quality

To measure temporal stability we use the following proce-
dure. Let I(n,x) and I(n+ 1,x) be a pair of consecutive frames
with inpainted background and MGT (n,n+ 1,x) be ground truth
motion from frame n to n+1. We compute PSNR between I(n,x)
and I(n+1,x+MGT (n,n+1,x)) (sampling is done using bicubic
interpolation). Results are shown in figure 5.

As we can see, our inpainting algorithm provide usually
slightly better quality of background restoration than exemplar-
based inpainting when analyzed statically. However, it produces
far more temporally stable output which is very important for
video inpainting.

Real Data
We also tested our algorithm on a proprietary database of

videos with two types of resolution: 1920× 1080 (FHD) and
960× 540 (quarter HD, qHD). The method shows reasonable
quality for scenes without changes of scene properties (bright-
ness change, different focus, changing fog or lights) and with rigid
scene structure. Few examples of our algorithm outputs are shown
in Figure 6.

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.15.IPAS-186

IS&T International Symposium on Electronic Imaging 2016
Image Processing: Algorithms and Systems XIV IPAS-186.3

(a) Simple motion

(b) Affine motion
Figure 5: Temporal stability

Figure 6: Algorithm output

Typical visible artifacts include misalignments on edges of
temporal inpainting direction (presumably in cases when motion
integration is not precise enough), and mixing same part of scene
which changed appearance properties with time. Examples of
such are shown in figure 7 and figure 8 respectively.

Figure 7: Misalignment artifacts

(a) (b)
Figure 8: Scene change artifacts

Running time of the algorithm (not including optical flow
estimation) is around 1 s/frame for qHD and 3 s/frame for FHD
sequences on a relatively modern PC with single GPU (Core i7,
8GB RAM, GTX 760 GPU in our case). Despite the mentioned
drawbacks we believe results to be acceptable for restoration of
areas, occluded due to stereoscopic parallax for a limited range of
scenes.

For wider applicability it would be necessary to extend the
algorithm to decrease the level of artifacts. We see two main im-
provements. One of them is more advanced analysis of propa-
gation reliability for better decision between spatial and temporal
inpainting and temporal inpainting direction using analysis of the
level of scene changes. The other is improve alignment of tempo-
rally inpainted parts from different time moments, or apply Pois-
son seamless stitching approach similar to [8] in case there are
overlapping parts.

References
[1] Antonio Criminisi, Patrick Pérez, and Kentaro Toyama, Region fill-

ing and object removal by exemplar-based image inpainting. IEEE
Transactions on Image Processing, 13, 9 (2004).

[2] Alexandru Telea, An image inpainting technique based on the fast
marching method. Journal of graphics tools 9, 1 (2004).

[3] Marcelo Bertalmio, Guillermo Sapiro, Vincent Caselles, Coloma
Ballester, Image inpainting. Proc. of the 27th annual conference on
Computer graphics and interactive techniques, pg. 417. (2000).

[4] Yonatan Wexler, Eli Shechtman, and Michal Irani, Space-time com-
pletion of video. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 29, 3 (2007).

[5] Takaaki Shiratori, Yasuyuki Matsushita, Xiaoou Tang, Sing Bing
Kang, Video completion by motion field transfer. Proc. 2006 IEEE

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.15.IPAS-186

IS&T International Symposium on Electronic Imaging 2016
Image Processing: Algorithms and Systems XIV IPAS-186.4

Computer Society Conference on Computer Vision and Pattern
Recognition, vol. 1, pg. 411. (2006).

[6] Aurlie Bugeau, Pau Gargallo I. Piracés, Olivier D’Hondt, Alexandre
Hervieu, Nicolas Papadakis, Vicent Caselles, Coherent background
video inpainting through Kalman smoothing along trajectories. Proc.
VMV 2010-15th International Workshop on Vision, Modeling, and
Visualization, pg. 123. (2010).

[7] Petr Pohl, Michael Sirotenko, Ekaterina Tolstaya, Victor Bucha, Edge
preserving motion estimation with occlusions correction for assisted
2D to 3D conversion. IS&T/SPIE Electronic Imaging (2014).

[8] Patrick Pérez, Michel Gangnet, Andrew Blake, Poisson image edit-
ing. ACM Transactions on Graphics (TOG), 22, 3, (2003).

Author Biography
Petr Pohl received MSc. in Technical Cybernetics from Czech Tech-

nical University (CTU) in Prague (2002). From 2002 until 2011 he
worked at Neovision sro., a CTU startup working on industrial applica-
tions of computer vision including precise measurement and laser weld-
ing navigation. From 2011 until now he works in Samsung R&D Institute
Russia on projects related with video augmentation and frame rate con-
version.

Alexander Molchanov received specialist in applied mathematics
from the Moscow State University (2012). From 2011 till 2012 he worked
as computer vision developer at Redmadrobot LLC, Moscow. Since 2012
until now he works in Samsung R&D Institute Russia. His work is focused
on motion estimation and image enhancement.

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.15.IPAS-186

IS&T International Symposium on Electronic Imaging 2016
Image Processing: Algorithms and Systems XIV IPAS-186.5

