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Abstract 
A single-camera one-shot multispectral imaging system with 

multispectral filter array (MSFA) has the potential to promote fast 
and low-cost multispectral imaging. Because the restoration 
accuracy of the image acquired with this imaging system depends 
on MSFA, optimization for MSFA has been demanded. 
Conventional optimizing methods have designed the versatile 

MSFA without dependence on the imaging object. In the field that 
requires multispectral images, an imaging object is often 
determined before designing MSFA. If MSFA can be designed 
based on the imaging object, the restoration accuracy becomes 
higher than the versatile MSFA of the conventional methods. In 
this paper, we propose an optimizing method for MSFA that uses 
the training data of the imaging object. The proposed method 
optimizes the observation wavelength and filter arrangement based 

on simulated annealing. The experiment results demonstrate that 
the proposed method outperforms conventional methods 
quantitatively. 

1. Introduction 
Multispectral images (MSIs) have been used in fields that 

require high-fidelity color reproductions, such as for medical 
applications and sugar content prediction. Various multispectral 
imaging systems have been proposed [1]-[7]. Among these 
systems, a single-camera one-shot multispectral imaging system 
with multispectral filter array (MSFA) has the potential to promote 
fast and low-cost multispectral imaging.  

Figure 1 shows the MSI imaging system flow using MSFA. In 
this imaging system, the mosaicked image observed through 

MSFA needs to be interpolated in order to acquire a full-resolution 
multispectral image. The restoration accuracy of the interpolated 
MSI depends not only on the interpolation method, but also on 
MSFA. Recently, various interpolation methods for MSI have been 
proposed [1], [5], [7]. On the other hand, the method for designing 
MSFAs has not been studied sufficiently. Therefore, we focus on 
the design of MSFA in order to improve restoration accuracy.  

Design methods for MSFA have been proposed [6]-[9]. The 

design of MSFA that improves restoration accuracy needs to 
consider spectral sensitivities and filter arrangement. Because 
restoration accuracy depends on the spectral sensitivities and filter 
arrangement of MSFA, optimization methods for spectral 
sensitivities or filter arrangement have been proposed [8]-[9]. 
Monno et al.’s method [8] improves restoration accuracy by 
optimizing the spectral sensitivity of five-band MSFA. This 
method seeks center wavelength and wavelength range of spectral 

sensitivity using training data to obtain the highest restoration 
accuracy. However, the filter arrangement of MSFA is fixed in this 
method. Hence, by changing the training data, spectral sensitivities 
are changed, but the number of the observation wavelength and 
filter arrangement are not changed. Shinoda et al.’s method [9] 

 

Figure 1. MSI imaging system flow using MSFA. 

improves restoration accuracy by optimizing the filter arrangement 
under a given observation wavelength. However, the spectral 
sensitivities cannot be optimized. Conventional methods cannot 
optimize both the observation wavelengths and filter arrangement 

simultaneously based on the imaging object.  
In this paper, we propose a method that optimizes the number 

of the observation wavelengths, each observation wavelength, and 
filter arrangement based on an imaging object. The proposed 
method designs MSFA using the full-resolution MSI of the 
assumed imaging object. The proposed method uses a full-
resolution MSI as the training data and simulates mosaicking and 
interpolation on a computer. The optimal MSFA is designed to 

minimize the mean squared error (MSE) between MSI and restored 
MSI. The optimal MSFA is acquired by minimizing MSE based on 
simulated annealing (SA). 

The rest of this paper is organized as follows: in Section 2, we 
describe our design method for MSFA. In Section 3, we discuss 
the experiment results. Section 4 presents our conclusions. 

2. Optimizing method for MSFA using 
training data 
In the proposed method, MSFA is optimized in order to 

minimize the mean squared error (MSE) between the training data 
and restored MSI. The training data is full-resolution X-band MSI 
that captures a specific object with a single-camera multi-shot 
system [2]. Figure 2 shows the process of creating the restored 

MSI for MSFA evaluation. In Figure 2, W={ Xf,,f,f 21 } is a 

set of observation wavelengths of the training data, where fi 

denotes the i-th observation wavelength of the training data. 

S={ dNdd f,,f,f 21 } is a subset of W, and N is the number of 

elements of S ( XN  ). To clearly specify the number of elements, 

S that consists of N elements is represented as SN in this paper. P is 
the set of 2D positions {(x1, y1), (x2, y2), …, (xi, yi), …, (xN, yN)} 
under a given SN. Here, (xi, yi) represents the position of the i-th 
element of SN in MSFA. P is regarded as the MSFA pattern. As 
shown in Figure 2, N-band MSI is created by downsampling in the 

wavelength domain based on S. Then, the mosaicked MSI is 
created based on P. Subsequently, N-band MSI is restored by 
interpolating the mosaicked MSI in the space domain, and X-band 
MSI is restored by interpolating the N-band MSI in the wavelength 
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domain. In this paper, we apply Brauers’ demosaicking [10] to 
restore N-band MSI, and Wiener estimation [13] to restore X-band 

MSI from N-band MSI. Here, the Wiener estimation matrix 

consists of the first-order Markov process with the correlation 

coefficient 99950. [14].  
In Figure 2, we assume that an optimal MSFA is not always 

an X-band MSFA, and explore an N-band MSFA (N  X). If X is 

large, interpolation accuracy in the spatial domain becomes very 

low because the observation points of each band become very 
sparse. The restored accuracy depends on the sampling density in 

both the spatial and wavelength directions. Therefore, the optimal 

MSFA is not always an X-band MSFA for restoring an X-band 

MSI, and the flow of Figure 2 does not limit the number of bands 
of MSFA to X. 

In the proposed method, the restored X-band MSI depends on 

three-elements, that is N, SN, and P. If we examine all the patterns 

of N, SN, and P, the optimal MSFA that minimizes MSE between 
the restored image and training data can be obtained. However, an 

optimizing process by brute force is not practical because the 

combination number of N, SN, and P is vast. Hence, in the 

proposed method, although we use brute force to optimize the 
number of the observation wavelength N, the optimal set of 

observation wavelengths S and filter arrangement patterns P are 

obtained based on SA. 

The proposed optimizing algorithm consists of three 
algorithms. Algorithm 1 acquires Popt1, which is the MSFA 

constructed by optimizing N, SN, and P. Algorithm 2 acquires Popt2, 

which is the MSFA constructed by optimizing SN and P under a 

given N. Algorithm 3 acquires Popt3, which is the MSFA 
constructed by optimizing P under a given SN. 

 The process for acquiring Popt1 is presented in Algorithm 1, 

where T is the X-band MSI used for training data. Popt1 is MSFA 

constructed by optimizing the three elements N, SN, and P. First, 
the number of the observation wavelength N is initialized as N←i2. 

Because MSFA is constructed by a block arrangement whose size 

is NN  , as shown in Figure 2, N is the square of the integer 

and XN  . Pi is N-band MSFA optimized under a given N. Pi is 
acquired by using Algorithm 2. After obtaining all Pi from i=1 to 

N , Popt1 is calculated by 

Popt1 = arg min g(Pi, T), (1) 

where g(P, T) is the function that calculates MSE between T and 
the demosaicked image with P. 

The process for acquiring Popt2 is presented in Algorithm 2, 
where Popt2 is acquired based on input T and N. First, set SN is 

Algorithm 1: Optimizing MSFA 

Input: X-band MSI used for training data: T 

Output: Optimized MSFA: Popt1 

Initialization:  

Iteration counter: i ← 1 

Number of bands: N 

Repeat 

i ← i + 1 

N ← i2 

Pi ← Algorithm 2(T, N) 

Until N > X  

Return Popt1 = arg min g( Pi , T ) 

 

Algorithm 2: Optimizing N-band MSFA 

Input: T, N 
Output: Optimized MSFA under a given N: Popt2 

Initialization: 

Iteration counter: j ← 1 

Random subset of W: SN 

Complement of SN: NS  

Optimized MSFA under a given j-th SN: N
jP  

Repeat 

S’N←SN, whose one element is swapped with one of NS  at 

random. 
N
jP ← Algorithm 3( SN ) 
N
j'P ← Algorithm 3( S’N ) 

SN is updated to S’N according to the probability of eq. (2). 

j←  j + 1 

Until j = 10000 

Return Popt2 = arg min g( N
jP , T) 

 

 

created randomly by the chosen N elements from set W. NS  is the 

set of non-selected observation bands; namely, NS  is a 

complementary set of  SN. N
jP  is an optimized MSFA under a 

given SN. N
jP  is acquired by Algorithm 3. After obtaining N

jP , SN 

is updated for the next iteration. S’N is SN, whose one element is 

swapped with one of NS  at random. Then, SN is updated to S’N 

according to probability q1 determined by comparing MSE as 
follows: 

 

 Figure 2. Flow to create restored MSI from training data for MSFA evaluation. 

Algorithm 3: Optimizing N-band MSFA under  SN 

Input: SN 

Output: Optimized MSFA under a given SN: Popt3 

Initialization: 

Iteration counter: k ← 1 

MSFA under a given SN and k-th pattern: 
NS

kP  
NSP1  is random arrangement pattern under a given SN. 

Repeat 

k ← k + 1 
NS

kP ←
NS

kP 1  
NS

kP' is created by swapping two elements of 
NS

kP at random. 
NS

kP is updated to 
NS

kP' according to the probability of eq. (4). 

Until k=10000 

Return Popt3 = arg max h(
NS

kP ) 
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where t1 is the temperature. The annealing schedule is repeated for 

t1: = 0.9993 × t1, where t1 is set to 10000 in the initialization, and 

the annealing schedule is terminated at 10,000 iterations. Finally, 
Popt2 that derives the minimum MSE from NP1  to 

NP10000  is 

returned. 

The process for acquiring Popt3 is presented in Algorithm 3, 

which optimizes MSFA under a given SN based on the 
interpolation quality metric (IQM) [9]. h(P) is the IQM value 

calculated based on P. A higher h(P) corresponds to higher 

demosaicking quality. In this algorithm, the optimal filter 

arrangement under a given SN is derived by maximizing h(P) using 
SA. 

NSP1  is the random arrangement pattern under a given SN. 
NS

k'P  is created by swapping two elements of 
NS

kP at random, 

which means that two arbitrary MSFA filters are swapped. Then, 
NS

kP  is updated to 
NS

k'P with probability q2 determined by 
comparing IQM as follows: 
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where t2 is the temperature. The annealing schedule is repeated for 

t2: = 0.999  t2, where t2 is set to one in the initialization, and the 

annealing schedule is terminated at 10,000 iterations. Finally, Popt3 

that derives maximum IQM from 
NSP1  to 

NSP10000  is returned. 
Algorithm 3 obtains the best MSFA under a given SN. 

Algorithm 2 obtains the best MSFA under a given N by applying 

Algorithm 3 with changing SN. In Algorithm 1, MSFAs are 

obtained by applying Algorithm 2 with changing N; finally, Popt1 is 
obtained as the best MSFA with optimized N, SN, and P. 

3. Experiment results 
We show the validation of the proposed method through an 

experiment. In this experiment, we use three pathological MSIs. 
Figure 3 shows an sRGB image converted from these pathological 
MSIs captured at 20× magnification, 512×512 pixels, and 51 bands 
from 420 to 720 nm at 6 nm. The pathological tissue is of an H&E-
stained liver (US Biomax, Hepatocellular Carcinoma Tissue Array 
C054). The imaging system uses an optical microscope (Olympus, 
BX53), liquid crystal tunable filters (CRi, Varispec VIS), and 

monochrome CCD (Point Grey,Grasshopper 3).  
Normally, we should create optimized MSFA by using many 

pathological images. However, because we have no more than 
three sample images, that verification is difficult. Hence, in this 
paper, we regard each image as individual training data, and we 
create three optimized MSFAs. We examine the performance of 
the optimized MSFAs using training data as a test image. We 
evaluate the peak signal-to-noise ratio (PSNR) of each MSFA, and 

(a)PI1 (b)PI2 (c)PI3 

Figure 3. sRGB images converted from  three pathological MSI. 

 (a) 16-band MSFA 

 

(b) 9-band MSFA 

 

(c) 4-band MSFA 

Figure 4. N-band MSFAs created by proposed method. 

 

(a) 16-band 

 

(b) 9-band 

 

(c) 4-band 

Figure 5. Observation wavelength for each MSFA. 

Table 1. PSNR of the restored images at each MSFA. 

 PI1 PI2 PI3 

16-band MSFA 31.196 31.372 31.324 

9-band MSFA 31.584 31.650 31.739 

4-band MSFA 30.094 29.336 30.386 

 

consider the difference of each MSFA. Figure 4 shows MSFAs 
whose numbers for the observation wavelengths are 16, 9, and 4. 
These MSFAs are created by Algorithm 2 when N is 16, 9, and 4, 
and T is PI1. From Figure 4, the closer bands in the wavelength 
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 (a) Proposed 

for PI2 

(b) Proposed for 

PI3 

(c) Shinoda et 

al. 

 

(d) Brauers et 

al. 

Figure 6. MSFA by each method. 

Table 2. PSNR calculated by each method [dB]. 

  Proposed Shinoda et al. Brauers et al. 

PI1 31.584 30.988 28.499 

PI2 31.650 30.980 27.381 

PI3 31.739 31.230 28.131 

    

(a) Original 

image 

(b) Proposed (c) Shinoda et 

al. 

(d) Brauers et 

al. 

Figure 7. Enlarged original and restored images for each method. 

 

Figure 8. Spectrum comparison. 

domain are comparatively distant from each other in the spatial 
domain. Figure 5 shows the chosen observation wavelength of 
each MSFA. Here, the numbers are the band indices named from 
short to long wavelengths in the 51-band MSI. As shown in Figure 
5, the chosen N bands are not always at regular intervals, because 
the proposed method chooses bands in order to minimize MSE of 
the restored MSI. Table 1 indicates PSNR of the restored images at 

each MSFA. From Table 1, we can see that when the number of 
the observation band is nine, PSNR is the highest. Hence, the nine-
band MSFA shown in Figure 4 (b) is the best MSFA for the 
recovering PI1. Figure 6 (a) shows MSFAs created by the proposed  

Table 3. Experiment environment. 

OS Windows 7 professional 

Memory 8.00GB 

Processor Intel(R) Core(Tm) i7-4790 CPU 3.60GHz 

Software MATLAB 8.2.0 

Table 4. Computational times [h]. 

  Computational time 

Proposed 18.6111 

Shinoda et al. 0.0003 

 
method based on PI2, in a similar way. Figure 6 (b) shows MSFA 

of PI3. Because the number of the observation bands for PI2 and 
PI3 of MSFAs created by the proposed method is also nine, as 
indicated in Table 1, the best MSFA for capturing 51-band 
pathological images is the nine-band MSFA. If the number of the 
observation bands of MSFA is increased, interpolation processing 
in the spatial domain becomes difficult because the measuring 
density becomes sparse in each observation band. On the other 
hand, interpolation processing in the wavelength domain becomes 

easy, because the number of the observation wavelengths increases. 
Hence, interpolation accuracy of the spatial and wavelength 
domains is in a trade-off relationship. Therefore, even if the 
number of the observation wavelength is increased, the restoration 
accuracy is not always improved. 

Figure 6 (c) shows MSFA created by Shinoda et al.’s method, 
and Figure 6 (d) shows MSFA created by Brauers et al.’s method. 
In Shinoda et al.’s method, because the algorithm for determining 
the number of the observation wavelength is not contained, we set 

the number of the observation wavelength to nine-bands in 
common with the proposed method. In Brauers et al.’s method, the 
number of the observation wavelength is six. Moreover the 
observation wavelengths of these methods are chosen at regular 
intervals. From Figure 6, we can see that the closer bands in the 
wavelength domain are comparatively distant from each other in 
the spatial domain, as is the case with PI1. Table 2 indicates the 
PSNR calculated based on MSFAs created by each method. As 

demonstrated in Table 2, PSNR of the proposed method is higher 
than that of the conventional methods for all images. This is 
because the proposed method considers the observation 
wavelength for MSFA in addition to the arranging filter. Figure 7 
shows enlarged views of the restored images. We cannot confirm 
the great differences between each method through visual 
observation. Therefore we compare the average spectral of the 
entire image as shown in Figure 8. From Figure 8, we can see that 

in Shinoda et al.’s method, a large error is confirmed from the 8th 
to 13th band and from 21st to 25th band. In Brauers et al.’s method, 
the error is large overall. However, the error of the proposed 
method is smaller than that of the conventional methods at these 
points. This is because MSFA of the proposed method observe the 
wavelengths that are difficult to interpolate through wiener 
estimation. From the above results, effectiveness of the proposed 
method is confirmed. 

We compare the computational time of optimizing 16-band 
MSFA by proposed method Algorithm2 and Shinoda et al.’s 
method. Table 3 shows the experiment environment, and Table 4 
shows the computational times of each method. The computational 
time of proposed method requires a lot of time than Shinoda et 
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al.’s method. This is because the proposed method optimizes not 
only the filter arrangement, but also the observation wavelengths. 
The long computational time is not a big problem, because this 
program is applied on the design stage of MSFA. However, the 
improvement of the algorithm and the reduction of computational 

time are considered as future works. 

4. Conclusion 
In this paper, we proposed an optimization method for MSFA 

using training data. Experiment results demonstrated that MSFA 

optimized by the proposed method improves restoration accuracy. 
In the future, we plan to design an MSFA whose observation 
wavelength number is not the square of an integer, and use more 
training data. 
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