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Abstract
The paper presents a new low complexity edge-directed

image interpolation algorithm. The algorithm uses struc-
ture tensor analysis to distinguish edges from textured areas
and to find local structure direction vectors. The vectors
are quantized into 6 directions. Individual adaptive inter-
polation kernels are used for each direction. Experimental
results show high performance of the proposed method with-
out introducing artifacts.

Introduction
Development of a high-quality and detail-preserving

image interpolation algorithm is a challenging problem.
Linear methods [1] like bilinear and bicubic interpolation
show great performance but they suffer from blur, ring-
ing and staircase artifacts in the edge areas. Additional
knowledge about image contents is used by more advanced
image interpolation algorithms. For example, NEDI al-
gorithm [2] uses the assumption of self-similarity between
high- and low-resolution images.

Regularization-based image interpolation algorithms
pose the image interpolation as a functional minimiza-
tion problem [3, 4]. The functional contains the data-
fitting term and the stabilizer term. The data-fitting
term restricts the high-resolution image to match the low-
resolution image. The stabilizer term makes the high-
resolution image fit an a priori information. The sim-
ilar approaches are MAP, POCS and PDE-based algo-
rithms [5, 6, 7, 8, 9]. Learning-based algorithms construct
the high-resolution image using a pre-built dictionary con-
taining pairs of corresponding high- and low-resolution
patches [10, 11].

Regularization-based algorithms are time consum-
ing as they perform the minimization of the regulariza-
tion functional by iterative methods. Non-iterative edge-
directional image interpolation algorithms are developed
for the performance critical applications.

Great effectiveness has been shown by single-frame
super-resolution algorithms which map low-resolution im-
age patches into high-resolution ones. Deep convolutional
neural networks [12, 13] and regression [14, 15] are used for
high quality image interpolation.

High effectiveness has been also shown by low com-
plexity edge-directed image interpolation algorithms that
consider the image resampling procedure as two consecuent
problems [16, 17, 18, 19]. The first problem is finding the

direction for each pixel corresponding to local image struc-
ture. The second problem is directional interpolation ac-
cording to previously found directions. Existing algorithms
use directional filtering [16], directional variation [17], sec-
ond order derivatives [18] to find local structure direction.
Existing algorithms also limit the number of possible di-
rections to 2 or 4 to improve computational efficiency and
to reduce the influence of discretization. For example, the
algorithm [19] combines the results of applying directional
cubic interpolation in two directions.

Textured areas are a problem for edge-directed inter-
polation methods. Artifacts usually appear when edge-
directed algorithm is applied to corners. Corners contain
multiple directions and usually appear in textures areas.
Using the structure tensor is an effective way to distinguish
between edges, corners and flat areas.

In this work, we propose fast and effective edge-
directional algorithm based on structure tensor and indi-
vidual interpolation kernels for each direction. The main
difference of the proposed algorithm with state-of-the-art
algorithms is quantization of the direction vector into 6 di-
rections and using optimal 4x4 kernels for each direction.
The kernels are optimized by PSNR minimization over 29
reference images from LIVE database [20].

Algorithm detail
The algorithm consists of the following steps:

1. Initial approximation of the high-resolution image.

2. Finding direction for every pixel of a high-resolution
image.

3. First interpolation step: the interpolation of a cen-
tral pixel inside every 4x4 block of low-resolution pixels.

4. Second interpolation step: the interpolation for the
rest of pixels using the approach from the first interpolation
step.

Initial approximation
Initial approximation of the high-resolution image is

used to find directions for every interpolated pixel.

Experiments have shown that directions obtained at
the next step practically do not depend on the used in-
terpolation method. For simplicity, we use standard bicu-
bic interpolation method to construct the initial approxi-
mation of the high-resolution image. Let u be the input
low-resolution image, v be the interpolated image. The
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approximation looks as:

v2i,2j = ui,j ;

v2i+1,2j =
9

16
(ui,j + ui+1,j)−

1

16
(ui−1,j + ui+2,j) ;

vi,2j+1 =
9

16
(vi,2j + vi,2j+2)− 1

16
(vi,2j−2 + vi,2j+4) .

Finding directions
Construction of the structure tensor

The structure tensor has the following matrix:

Ti,j =

[
〈vx〉2i,j 〈vxvy〉i,j
〈vxvy〉i,j 〈vy〉2i,j ,

]
(1)

where vx and vy are partial derivatives of v, 〈. . .〉i,j is av-
eraging over small neighborhood of the pixel (i, j).

We calculate the partial derivatives as follows:

vx = v ∗ h1(x) ∗ h2(y),

vx = v ∗ h2(x) ∗ h1(y),

where h1 and h2 are Gaussian filter and shifted derivatives
of Gaussian filter respectively:

h1(t) = exp

(
− (t+ 0.5)2

2σ2
1

)
,

h2(t) = −(t+ 0.5) exp

(
− (t+ 0.5)2

2σ2
2

)
,

where σ1 = σ2 = 0.5.
The averaging 〈. . .〉i,j is the convolution with shifted

Gaussian filter with kernel

exp

(
− (t− 0.5)2

2σ2
3

)
with σ3 = 1.5.

Normalization of kernels h1, h2, h3 is not necessary
here. Half-pixel shift is used to improve the accuracy of
the method when applied to discrete images.

Structure tensor analysis
Local structure directions are obtained using the anal-

ysis of eigenvectors and eigenvalues of the matrix (1).
Let λ1, λ2 be the eigenvalues of T such that |λ1| ≥ |λ2|

and ~p be the eigenvector corresponding to λ1. The ratio
between λ1 and λ2 defines the type of structural element in
the analyzed pixel. If |λ1| is significantly greater than |λ2|,
then the pixel is a part of linear structure like edge or ridge
with the direction ~p and edge-directional interpolation will
be effective. Otherwise, if |λ1| ∼ |λ2| or λ1 ∼ 0, then there
is no dominant direction in the analyzed pixel.

The direction of ~p is quantized into one of the 6 direc-
tions (0, 30, 60, 90, 120 and 150 degrees).

The output of the finding directions step is the follow-
ing (see Fig. 1): 1. If |λ1| ≤ 2|λ2| or |~p| ∼ 0, there is no
distinct direction in the analyzed pixel, the output is zero.
2. Otherwise, the output is the direction index of ~p (1 to
6 range).

 

Standard bicubic 
 interpolation is used

 Directional optimized coefficient matrices are used
 6 directions are considered

If the image has single and strong direction 
 near the interpolated pixel

If the image has several 
 or weak directions

 1  2  3  4  5  6  0

Figure 1. Finding edge directions using the structure tensor

First interpolation step
At the first interpolation step, pixels with coordinates

(2i, 2j) are copied directly from the low-resolution image:

v2i,2j = ui,j ,

while pixels with coordinates (2i+1, 2j+1) are updated us-
ing 4x4 block of surrounding pixels from the low-resolution
image (see Fig. 2).
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Figure 2. The first interpolation step. The interpolated pixel is in the center

of 4x4 grid of low-resolution Pixels of low-resolution image are orange; the

interpolated pixel is green.

Let a be the vector constructed from 16 pixels from the
4x4 block, q(d) be the interpolation kernel corresponding
to the direction d. The value of the interpolated pixel is
computed as

v2i+1,2j+1 =

15∑
k=0

an,kq
(d)
k . (2)

The interpolation kernels q(d) have been calculated
experimentally using the reference images from LIVE
database [20]. The reference images were downsampled
by 2 times then a set of correspondences between vectors
a and values v was constructed for each direction d for
all pixels. The interpolation kernels q(d) were obtained by
minimizing the squared error sum

∑
n

(
vn −

15∑
k=0

an,kq
(d)
k

)2

.
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Restrictions based on kernel symmetry and rotation
are added to minimize the number of coefficients and to
reduce the condition number of the least squares minimiza-
tion problem. The restrictions include:

1. Central symmetry of all the kernels: q
(d)
k = q

(d)
15−k,

horizontal and vertical symmetry for q(1) and q(4), 4-
directional symmetry for q(0).

2. The kernel q(4) is equal to the kernel q(1) with 90
degree rotation.

3. The kernels q(3), q(5), q(6) are equal to the kernel
q(2) with 90 degree rotation and transposition.

The coefficient values of the kernels calculated for the
images from LIVE database are presented at the website:
http://imaging.cs.msu.ru/en/publication?id=319

Second interpolation step
The second interpolation step is similar to the first

step but instead of 4x4 block of pixels of the low-resolution
image, the rotated by 45 degrees 4x4 pixel block is used. It
contains both pixels from low-resolution image and pixels
interpolated at the previous step.

 

Figure 3. The second interpolation step. Pixels of low-resolution image are

orange; pixels interpolated at the previous step are green.

Results
The performance of the proposed algorithm is shown

in Fig. 4. Objective quality comparison using PSNR
and SSIM metrics is presented in Fig. 5. The algorithm
DCCI [19] is used in the comparison as it has been shown
great performance among low complexity state-of-the-art
algorithms [21]. It can been seen that the proposed algo-
rithm shows quality improvement even for highly textured
images like Goldhill and Baboon. For low-textured im-
ages like Cameraman, the proposed algorithm shows worse
PSNR but better SSIM than DCCI.

Although modern image interpolation algorithms
based on LR-to-HR mapping [12, 13, 14, 15] show bet-
ter quality than the proposed algorithm, they have signif-
icantly higher computational complexity. Also they may
produce flicking and vibration of fine details when applied
for video containing noise. The proposed algorithm does
not produce such effects. It is suitable for video resampling

and can be used as part of multi-frame super-resolution al-
gorithms.

Reference image Bicubic interpolation

PSNR = 33.256, SSIM = 0.9628

DCCI [19] Proposed method

PSNR = 33.460, SSIM = 0.9631 PSNR = 33.487, SSIM = 0.9638
Figure 4. The results of the proposed image interpolation algorithm

Image Bicubic DCCI [19] Proposed

PSNR SSIM PSNR SSIM PSNR SSIM

Lena 33.256 0.9629 33.460 0.9632 33.487 0.9638

Peppers 32.101 0.9520 32.226 0.9518 32.232 0.9523

Goldhill 30.949 0.9243 30.870 0.9224 30.950 0.9244

Baboon 23.581 0.7972 23.585 0.7965 23.612 0.7994

Cameraman 25.499 0.9152 25.678 0.9163 25.619 0.9169

Figure 5. Objective quality comparison

Conclusion
A new low complexity edge-directed image interpo-

lation algorithm has been developed. The algorithm has
shown great performance and quality in comparison to
state-of-the-art image interpolation algorithms. The pro-
posed algorithm does not introduce artifacts in textured
areas. The algorithm has a great potential to be used for
video interpolation and multi-frame super-resolution due
to robustness of the directions obtained from the structure
tensor to noise.
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