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Abstract. The authors propose a line-segment-based marker-less
augmented reality (AR) framework that involves an on-site
model-generation method and on-line camera tracking. In
most conventional model-based marker-less AR frameworks,
correspondences between the 3D model and the 2D frame for
camera-pose estimation are obtained by feature-point matching.
However, 3D models of the target scene are not always available,
and feature points are not detected from texture-less objects. The
authors’ framework is based on a model-generation method with
an RGB-D camera and model-based tracking using line segments,
which can be detected even with only a few feature points. The
camera pose of the input images can be estimated from the
2D–3D line-segment correspondences given by a line-segment
feature descriptor. The experimental results show that the proposed
framework can achieve AR when other point-based frameworks
cannot. The authors also argue that their framework can generate
a model and estimate camera pose more accurately than their
previous study. c© 2016 Society for Imaging Science and
Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2016.60.2.020401]

INTRODUCTION
Augmented reality (AR) is a technology that places additional
information generated by a computer into the real world. It
enhances a user’s perception of the real world. Camera-pose
estimation is a fundamental part of AR. Camera-pose
estimation for AR is generally considered as estimating
the rotation matrix and the translation vector from the
matching between the 2D image and the 3D real world.
Conventional methods for camera-pose estimation can be
categorized into two groups. One is based on tracking
of markers, which is called visual marker AR, and the
other is called marker-less AR. With many marker-less
AR methods,1,2 correspondences between 2D and 3D are
obtained by feature-point matching, and then the camera
pose is computed. Parallel tracking and mapping for small
AR workspaces (PTAM),1 which is a typical marker-less AR
method, also uses features from accelerated segment test
(FAST)3 as a feature-point detector and estimates camera
pose. However, in a scene where only a few feature points
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are detected, the 2D–3D point correspondences cannot be
obtained, and estimation of the camera pose will fail. Inman-
made situations that contain texture-less objects, feature
points are rarely detected. Therefore, feature-point-basedAR
methods, such as PTAM, cannot estimate the camera pose in
this situation. To achieve marker-less AR in these kinds of
situations, another scene feature is needed instead.

One solution to this problem is to use line-segment
features instead of point features, because line segments
are detected even when only a few feature points are
detected. There are several methods4,5 for marker-less
camera tracking based on line segments. These methods
involve a model-based approach in which the camera pose is
estimated from the line-segment correspondences between
the 2D image and the 3D model of the target objects
given before camera tracking. Although these methods can
be applied to texture-less objects, 3D models of target
objects are not always available before camera tracking
for AR. The creation of accurate 3D models, such as
CAD models, or the creation of large-scale models of the
target scene is often not easy. Moreover, in these kinds of
texture-less scenes, scene reconstruction methods such as
structure-from-motion (SfM)6 cannot be applied because
they often use feature-point matching for recovering the 3D
geometrical model. Therefore, on-site model generation for
the target scene is needed, especially for target scenes that are
not known beforehand and do not provide sufficient feature
points.

Therefore, the objective of this research is to generate
an accurate 3D model for the target scene on site and esti-
mate the camera pose from line-segment correspondences
between the 2D image and the generated 3D model for
achieving marker-less AR, even though only a few feature
points are detected from the scene.

We propose a line-segment-based marker-less AR
framework that involves on-site 3D model generation and
on-line camera tracking. This proposed marker-less AR
framework is an extension of our previous work.7 In this
previous work,7 we introduced a marker-less AR framework
which estimates the camera pose from 2D–3D line-segment
correspondences between the 2D image and the 3D line-
segment-based model. This previous framework7 used the
3D line-segment-based model generated by our previous
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model-generation method.8 However, the generated model
was not accurate in some situations. Therefore, the camera
pose estimated with the model was also inaccurate. On the
other hand, our marker-less AR framework proposed in this
article first generates amore accurate 3D line-segment-based
model by a new method. This new model-generation
method is mainly based on the previous model-generation
method,8 and changes the 3D line-segment-creationmethod
to one using plane clustering and an outlier-elimination
algorithm for the 2D–3D line-segment matching. Moreover,
we add a bundle adjustment, so that the accuracy of the
generated model is improved. With this more accurate 3D
line-segment-based model, in our proposed framework, the
tracking accuracy is also improved from that of the previous
framework.7

Our main contributions are as follows.

• We propose a line-segment-based marker-less AR
framework, which involves on-site model generation
and on-line camera tracking, so that we can achieve AR
without knowing the 3D geometry of a target scene that
has no texture.
• With plane segmentation and a bundle adjustment,
we improve upon our previous work and generate an
accurate 3D line-segment-based model of the target
scene.
• The accuracy of camera-pose estimation is also im-
proved using themodel generatedwith the newmethod.

We experimentally demonstrated that our proposed
framework can achieve marker-less AR in a texture-less
scene. We also demonstrated that the accuracy of the
camera-pose estimation in both the model-generation phase
and the camera-tracking phase is improved from our
previous study.

PROPOSED FRAMEWORK
In this section, we explain our proposed marker-less AR
framework, which consists of on-site model-generation
and on-line camera-tracking phases. The model-generation
phase is for obtaining the 3D geometry of the real-world
scene to be augmented. We focus on target scenes mainly
containing texture-less objects. After this preliminarymodel-
generation phase, the camera pose of the input frame is
computed from the matches between the current 2D frame
and the 3D model.

On-site Model Generation
First, we explain how to recover the 3D geometry of a
target scene as a 3D model. This model-generation phase
takes as input a set of RGB and depth image sequences of
the target scene. These image sequences are acquired from
multiple viewpoints by using an RGB-D camera, such as
that on Kinect. The scene is assumed to be mostly rigid
and has no known structures. Moreover, this scene has only
a few textures, and only a few feature points are detected.
Therefore, we use line segments instead of feature points. The

generated model is represented by line segments. Our new
model-generation method is an extension of our previous
method.8 For the accurate 3D line-segment-creationmethod
using plane clustering, the target scene shouldmainly consist
of plane structures.

Suppose that we haveN RGB images {INrgb} andN depth
images {INd } captured with an RGB-D camera as the input
sequences. Our method uses these RGB and depth image
sequences to estimate the camera poses for each frame and
construct a 3D line-segment-based model of the scene. The
camera pose at the ith frame is represented as a 3× 4 matrix
RT i

cw = [Ri | ti] containing a 3× 3 rotation matrix (Ri) and
a 3D translation vector (ti). This RT i

cw is a transfer matrix
from the ith camera coordinate Oi

cX i
cY i

cZ i
c to the world

coordinate OwXwYwZw . With this method, each frame’s
camera pose RT i

cw is estimated with its previous frame’s
camera pose RT i−1

cw . Then, the 2D line segments on the RGB
images are back-projected into the 3D world coordinate as
a part of the model by the estimated camera pose RT i

cw . In
the following subsections, we discuss the relative geometry
of two consecutive frames, the (i − 1)th and ith frames.
Therefore, we explain how to computeRT i

cw using the known
(i− 1)th frame’s camera pose RT i−1

cw . We set the first frame’s
camera pose RT 0

cw as a 3× 4 identity matrix. This is because
we assume that the world coordinate OwXwYwZw is defined
by the camera coordinate of the first frame O0

cX0
c Y 0

c Z0
c . The

positional relationship between the target scene and each
frame is shown in Figure 1.

2D Line-Segment Detection
We first detect 2D line segments from I i−1

rgb and I irgb.
To do this, we simply use the fast line-segment detector
(LSD) algorithm.9 This algorithm simply returns the two
end points of each detected 2D line segment without
discriminating which point is the starting point. The two sets
of line segments detected from I i−1

rgb and I irgb with the LSD

algorithm are defined as L i−1
= {l ji−1 | 0 ≤ j ≤Mi−1} and

L i
= {l ji | 0 ≤ j ≤Mi}, respectively, in which li is a 2D line

segment detected from I irgb, and the number of detected 2D
line segments from I irgb isMi+ 1.

3D Line-Segment Creation with Plane Structure
Next, we generate 3D line segments with the detected 2D
line segments (L i−1 and L i) and the depth values from
I i−1
d and I id . With our previous model-generation method,8
we take points on the 2D line segment and obtain the
corresponding depth value from the depth image. Then,
the points are back-projected from the 2D image to the 3D
camera coordinate. These back-projected points construct a
3D line segment.However, this procedure of 3D line-segment
creation results in some false line segments being detected.
Figure 2 shows an example of an inputRGB image of one shelf
in front of a wall. Figure 3 shows an image with detected 2D
line segments used for 3D line-segment creation. In Fig. 3,
the green 2D line segments are detected and back-projected
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Figure 1. The geometrical relationship between the target scene and every frame.

Figure 2. Example of input RGB image.

into the 3D camera coordinate with our previous method;8
these line segments are indicated in Figure 4. The red circles
in Fig. 4 indicate incorrectly created 3D line segments. These
3D line segments were back-projected from the 2D line
segments indicated by the red circle in Fig. 3. The 2D line
segments were detected from the wall; however, the created
3D line segments spanned from the front side of the shelf
to the wall. This is because Kinect’s RGB image and depth
image had some misalignment. We simply used the Kinect
forWindows software development kit (SDK) to obtain RGB
images and depth images. The SDK provides an alignment
function for the RGB and depth images, but there are still

Figure 3. 2D line segments that are back-projected.

errors between them. This fact also can be seen in Figure 5,
which represents the colored point cloud of the frame. The
right image is an enlargement of the area within the red
rectangle. As shown in Fig. 5, some parts of the wall are
placed in front of the shelf. This is why the false 3D line
segments were created.

To avoid this false 3D line-segment creation, we use a
3D line-segment creationmethod that fits line segments onto
planar structures. First, we perform a plane segmentation of
the 3D point cloud generated from an input depth image
using the Point Cloud Library (PCL) from Willow Garage.
With this segmented result of the point cloud, the input depth

J. Imaging Sci. Technol. 020401-3 Mar.-Apr. 2016

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.14.IPMVA-382

IS&T International Symposium on Electronic Imaging 2016
Image Processing: Machine Vision Applications IX

IPMVA-382.3



Nakayama et al.: Marker-less augmented reality framework using on-site 3D line-segment-based model generation

Figure 4. 3D line segments of the example frame with our previous model-generation method.8

Figure 5. Colored point cloud of frame.

image is also segmented intomultiple planar areas. Each pixel
in the RGB image is corresponded to the pixel of the depth
image, so that the RGB can also be segmented by detected
planes, as shown in Figure 6. The same colored area is given
the same plane ID in this figure. Next, we put lattice points
on a 2D line segment l ji . According to the plane-segmentation
result of the RGB image, each lattice point has the ID of the
plane to which it belongs. Then, the plane ID area is counted
for all of the lattice points on l ji , and the most common plane
ID is regarded as the plane ID of l ji . Once the plane ID of
l ji is obtained, we can choose lattice points that have the
same plane ID as l ji to use back-projection. These selected
2D lattice points are translated from the image coordinate
to the 3D camera coordinate with the corresponding depth
value from I id . The two points located at either end of
the translated 3D points are assumed as tentative start 3D
points and end 3D points. Next, we compute a 3D line that
minimizes the lengths of perpendiculars from each 3D point
to the 3D line. Finally, we choose the extremities of the
perpendiculars from the tentative start and end points as a
fixed start 3D point and a fixed end 3D point. Therefore,

by connecting these fixed start and end 3D points, we can
create a 3D line segment. Figure 7 shows the 3D line segments
created with this line-segment creation method from the
example frame. Compared with the 3D line segments shown
in Fig. 4, incorrectly created line segments are modified.
This 3D line-segment creation method is applied to all line
segments in L i−1 and L i. We can then obtain sets of 3D
line segments represented as L i−1

c = {Ljc,i−1 | 0≤ j≤Mi−1}

and L i
c = {L

j
c,i | 0 ≤ j ≤Mi}, respectively, where Lc,i is the

back-projected 3D line segment from li into the ith frame’s
camera coordinate. Moreover, these 3D line segments in
L i−1

c are translated from the camera coordinate to the world
coordinate by the known RT i−1

cw . Then, the translated 3D
line segments in the world coordinate are represented as
L i−1

w = {Ljw,i−1 | 0 ≤ j ≤Mi−1}, where Lw,i is a translated
3D line segment from the ith frame’s camera coordinate to
the world coordinate.

2D Line-Segment Matching by using Directed LEHF
Next, we achieve 2D line-segment matching between two
frames by descriptor matching. In this method, we use
the directed line-based eight-directional histogram feature
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Figure 6. Results of labeling with detected planes.

(LEHF)10 as a line-segment feature descriptor. The directed
LEHF is an improved version of the fast line-segment
descriptor LEHF proposed by Hirose et al.11 In this method,
we set the directed-LEHF descriptor as a 112-dimensional
vector.

We extract the directed-LEHF descriptor value from
each 2D line segment in L i−1 and L i, then obtain a set
of matching 2D line segments between them. This set is
represented as L M i

= {(lg (k)i−1 , l
f (k)
i ), k = 0, 1, . . . ,K i

}, in
which (lg (k)i−1 , l

f (k)
i ) represents a pair of matching 2D line

segments, g (k) ∈ [0,Mi−1] and f (k) ∈ [0,Mi].

2D–3D Line-Segment Correspondences
For estimating the camera pose, we should obtain 2D–3D
line-segment correspondences. According to the method
described above, we can obtain the matching information
of 2D line segments L M i between the two frames. The
matched 2D line segments in the (i − 1)th frame, in
other words, lg (k)i−1 from L M i, are back-projected to 3D
line segments Lg (k)c,i−1 in the (i − 1)th camera coordinate
Oi−1
c X i−1

c Y i−1
c Z i−1

c . These back-projected 3D line segments
Lg (k)c,i−1 should be in L i−1

c . We know the RT i−1
cw ; therefore,

the back-projected 3D line segments are translated from the

(i− 1)th camera coordinate to the world coordinate. These
translated 3D line segments are represented as Lg (k)w,i−1, which
should be in L i−1

w . With the 2D line-segment matching
information (lg (k)i−1 , l

f (k)
i ), we can correspond the 2D line

segments in the ith frame l f (k)i and the 3D line segments in
the world coordinate Lg (k)w,i−1, which are back-projected from
lg (k)i−1 . This set of 2D–3D line-segment correspondences is rep-
resented as L C i

= {(Lg (k)w,i−1, l
f (k)
i ), k= 0, 1, . . . ,K i

}, where
(Lg (k)w,i−1, l

f (k)
i ) represents a pair of 2D–3D line-segment

correspondences g (k) ∈ [0,Mi−1] and f (k) ∈ [0,Mi]. This
procedure for obtaining these correspondences is illustrated
in Figure 8.

Camera-Pose Estimation
Given a set of 2D–3D line-segment correspondences, we
solve the Perspective-n-Lines (PnL) problem, then estimate
the camera pose. The PnL problem is a counterpart of
the perspective-n-point (PnP) problem for point corre-
spondences. However, the correspondences L C i may have
some mismatching. Therefore, the camera pose estimated
by all 2D–3D line-segment correspondences in L C i has
the potential to be inaccurate. With our previous model-
generation method,8 the camera-pose estimation method
used RANSAC12 for outlier elimination. Its algorithm re-
quires parameter tuning about the threshold for determining
inlier correspondences or outlier correspondences. Although
we obtain the 2D–3D line-segment correspondences from
every two consecutive frames, the threshold is determined
to be constant in every frame. Because of the invariable
threshold, outlier elimination with the algorithm may
fail and the camera pose cannot be obtained according
to the circumstances of the two frames. Therefore, to
estimate the accurate camera pose in every two consecutive
frames, our new model-generation method involves a
camera-pose estimationmethod for the 2D–3D line-segment
correspondences using the least-median-of-squares (LMedS)
method. This method determines the threshold for the
outlier elimination adaptively in every two frames.

We first randomly select four 2D–3D line-segment
correspondences from L C i, which is the set of K i 2D–3D

Figure 7. 3D line segments of the example frame with the new model-generation method.
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Figure 8. The geometrical relationship between the back-projected 3D line segments and each frame.

line-segment correspondences. Let the set of four 2D–3D
line-segment correspondences be represented as L C i

four =

{(La(m)w,i−1, l
b(m)
i ),m= 0, 1, 2, 3}, where (La(m)w,i−1, l

b(m)
i ) repre-

sents four pairs of 2D–3D line-segment correspondences,
a(m) ∈ [0,Mi−1] and b(m) ∈ [0,Mi]. Then, the rest of
the (K i

− 4) correspondences are represented as L C i
rest =

{(Lg (k)w,i−1, l
f (k)
i ) | 0≤ k≤ K i, g (k) 6= a(m), f (k) 6= b(m),m=

0, 1, 2, 3}. With L C i
four, we solve the PnL problem using

a robust perspective-n-line (RPnL) solution,13 which is
a method for camera-pose estimation from 2D–3D line-
segment correspondences. It takes L C i

four as input then
provides the estimated camera pose fourRTcw as output. The
3D line segments in L i

c , which are back-projected from l f (k)i
inL C i

rest, are translated from the ith camera coordinate into
the world coordinate by fourRTcw . Let the 3D line segments
in the world coordinate translated by fourRTcw be L

′f (k)
w,i .

We calculate the error e(Lg (k)w,i−1, L
′f (k)
w,i ) between Lg (k)w,i−1 from

L C i
rest and L

′f (k)
w,i . The error e(Lp, Lq) between two 3D line

segments Lp, Lq is defined as

e(Lp, Lq)= S(Lp, Lq)/(length(Lp)+ length(Lq)), (1)

where S(Lp, Lq) is the total area of two triangles obtained
by connecting Lp’s start and end points and Lq’s start point
and connecting Lq’s start and end points and Lp’s end point,
respectively. The error E(fourRTcw) given by fourRTcw is

defined as

E(fourRTcw)= median
k=0,...,K i

{e2(Lg (k)w,i−1, L
′f (k)
w,i )}, (2)

where g (k) 6= a(m), f (k) 6= b(m),m= 0, 1, 2, 3.
We also randomly select another set of L C i

four and
repeat the steps explained above Niteration times to estimate
fourRTcw . We choose the fourRTcw that gives the minimum
E(fourRTcw) as a tentative camera pose tentativeRTcw , and
this minimum error E(fourRTcw) is defined as ε. Next, using
tentativeRTcw , all of the K i 3D line segments in L i

c , which
are back-projected from l f (k)i , are translated to the 3D line
segments in the world coordinate Lf (k)w,i . For each translated
3D line segment, we then compute e(Lg (k)w,i−1, L

f (k)
w,i ). If

e(Lg (k)w,i−1, L
f (k)
w,i ) is less than a threshold 2.5σ̂ , we save the

2D–3D line-segment correspondence (Lg (k)w,i−1, l
f (k)
i ) as an

inlier. The term σ̂ is the standard deviation of the error and
is defined as follows:14

σ̂ = 1.4826
(

1+
5

K i− 4

)√
ε. (3)

Finally, we compute the ith camera pose using another
algorithm for the PnL problem proposed by Kumar and
Hanson.15 This algorithm estimates the camera pose it-
eratively. It requires a set of 2D–3D line-segment corre-
spondences and the initial camera pose as inputs for pose
estimation. This algorithm takes the inliers and tentativeRTcw
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Figure 9. 3D line-segment-based model.

as inputs. We then obtain the estimated camera pose of the
ith frame, RT i

cw , as the output of the algorithm.

3D Line-Segment-Based Model Generation with Bundle Ad-
justment
Once RT i

cw is obtained, all of the 3D line segments in
the ith camera coordinate L i

c are translated into the 3D
line segments in the world coordinate L i

w . The procedures
explained above are repeated in every two consecutive
frames, so that each frame’s camera pose and 3D line
segments in the world coordinate can be obtained. All of
the 3D line segments from all N frames finally become a 3D
line-segment-basedmodel. Figure 9 shows the concept of this
3D line-segment-based model generation.

The procedures explained above are based on an incre-
mental tracking approach of model construction. Therefore,
errors are accumulated in the estimated camera pose and 3D
line segments as the number of frames is increased. To reduce
the accumulated errors, we use a bundle adjustment. Here,
we discuss a method to refine the RT i

cw of every N frames.
First, we obtain sets of the correspondences of line segments
across all frames with reference to the inliers used in the
step of solving the PnL problem. From these sets, we create
groups of 3D line segments in each frame’s L i

c . Suppose that
T groups of 3D line segments are obtained, and the t th group
is represented as

L G t
= {LMi(t)

c,i , i= 0, 1, . . . ,N }, (4)

in which LMi(t)
c,i represents the Mi(t)th 3D line segment in

the ith camera coordinate, and Mi(t) ∈ [0,Mi]. Each LMi(t)
c,i

in the t th group is translated to the world coordinate by
RT i

cw , and the translated 3D line segments are represented
as LMi(t)

w,i . This translation is defined as tl(RT i
cw , L

Mi(t)
c,i ).

If each RT i
cw has no error, every LMi(t)

w,i should overlap
in one 3D line in the world coordinate. This 3D line is
denoted as Ltg . RT i

cw is parametrized by using a quaternion
as RT i

cw = (qi0, q
i
1, q

i
2, q

i
3, tx

i, ty i, tz i). Ltg is parametrized
as Ltg = (vtg , ptg )= (vx tg , vytg , vz tg , px tg , pytg , pz tg ), where vtg is
the direction of Ltg and ptg is one point on Ltg . This bundle
adjustment minimizes the error between each LMi(t)

w,i and Ltg
for all line groups; specifically,

min
Ltg ,RT i

cw

T∑
t

N∑
i
d2
s (L

Mi(t)
w,i , Ltg )+ d2

e (L
Mi(t)
w,i , Ltg ), (5)

in which LMi(t)
w,i = tl(RT i

cw , L
Mi(t)
c,i ), and ds( ) and de( ) are

the distances of the line segment’s endpoints to the 3D
line. With respect to the line segments that are not seen
from RGB images, they are not taken into account in
the computation of the objective function. We use the
Levenberg–Marquardt algorithm of the MATLAB lsqnonlin
function for minimizing the objective function. After
this minimization, each RT i

cw of a frame is optimized.
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Figure 10. Overview of obtaining the 2D–3D line-segment correspondences.

Therefore, the 3D line-segment-based model generated with
the optimized RT i

cw is refined.

3D Line-Segment Database Construction
For use in the subsequent on-line camera-tracking phase,
we also construct a 3D line-segment database that contains
the 3D line segments’ positions in the world coordinate and
their directed-LEHF descriptor values. The 3D line-segment
database has a k-dimensional (k-d) tree of 2D line-segment
directed LEHFs and each one has a reference to its 3D
back-projected line segment’s position. For more details on
the construction of this database, please see our previous
study.7

On-line Camera-Pose Estimation
After generating the 3D line-segment-based model, we use a
monocular camera to capture the target scene and achieve
marker-less AR. To do this, the input frame’s camera pose
is estimated for live augmentation with the 3D line-segment
database. In this subsection, we explain how to estimate
the camera pose RT cm, which is the transform matrix
from the model coordinate to the input frame’s camera
coordinate. This camera-pose estimationmethod is based on
our previous study.7 We assume that the camera’s intrinsic
parameter is already known.

First, 2D line segments are detected from the input
image by using the LSD algorithm. Let these detected 2D line
segments from the image beL f

= {l f ,0, l f ,1, . . . , l f ,N }. For
each line segment in L f , the directed LEHF is extracted.

The directed LEHFs from the input image are matched
to the features in the 3D line-segment database by a nearest
neighbor search. Each feature stored in the database has
its link to the 3D line segment, then the 2D line segments
from the input image and the 3D line segments from the
database are matched. Let the 3D line segments in the
database be Lm = {L0

m, L1
m, . . . , LMm }. The set of 2D–3D

line-segment correspondences is represented as L C f
=

{(Lr(i)m , l f ,s(i)), i = 0, 1, . . . ,K }, where (Lr(i)m , l f ,s(i)) rep-
resents a pair of 2D–3D line-segment correspondences,
r(i) ∈ [0,M] and s(i) ∈ [0,N ]. The process for obtaining
these correspondences is shown in Figure 10.

With a set of 2D–3D line-segment correspondences,
we solve the PnL problem to estimate the camera pose. To
eliminate the mismatching contained in L C f , we use a
method for solving the PnL problem with an algorithm such
as RANSAC.12We then estimateRT cm. Suppose that we have
L C f , which is a set of K 2D–3D line-segment correspon-
dences, we randomly select four 2D–3D line-segment cor-
respondences from L C f . Let these four correspondences
be represented as L C

f
four = {(L

a(j)
m , l f ,b(j)), j = 0, 1, 2, 3},
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(a)

(b)

Figure 11. Input images for model generation of the target scene. (a) Corner of room; (b) window in empty room.

in which (La(j)m , l f ,b(j)) represents the four pairs of 2D–3D
line-segment correspondences a(j) ∈ [0,M] and b(j) ∈
[0,N ]. Then, the rest of the (K − 4) correspondences are
represented as L C

f
rest = {(L

r(i)
m , l f ,s(i)) | 0 ≤ i ≤ K , r(i) 6=

a(j), s(i) 6= b(j), j = 0, 1, 2, 3}. With L C
f
four, we solve the

PnL problem using RPnL and estimate the camera pose
fourRTcm. All of the 3D line segments Lr(i)m in L C

f
rest are

projected to the image frame by using the camera’s intrinsic
parameter and fourRTcm. The projected 2D line segments are
defined as l

′r(i)
m . We then have pairs of the projected 2D line

segments l
′r(i)
m and the 2D line segments detected from the

input image l f ,s(i). We calculate the error e2D(l
′r(i)
m , l f ,s(i))

between l
′r(i)
m and l f ,s(i). We define the error between two 2D

line segments e2D(lp, lq) as

e2D(lp, lq)= S(lp, lq)/(length(lp)+ length(lq)), (6)

where S(lp, lq) is the area of a quadrilateral obtained by
connecting the four end points of lp and lq.

The total error E2D(fourRTcm) given by fourRTcm is
defined as

E2D(fourRTcm)=
K∑
i=0

e2D(l
′r(i)
m , l f ,s(i)), (7)

where r(i) 6= a(j), s(i) 6= b(j), j= 0, 1, 2, 3.
We also randomly select another set of L C

f
four. Then,

the steps explained above are repeated NRANSAC_INPUT
times to estimate fourRTcm. We choose the fourRTcm that
gives the minimum E2D(fourRTcm) as a tentative camera
pose tentativeRTcm. Using the camera’s intrinsic parameter
and tentativeRTcm, all of the 3D line segments Lr(i)m in
L C f are then projected to the image frame and their
projected 2D line segments lr(i)m are obtained. We then
calculate e2D(lr(i)m , l f ,s(i)). If e2D(lr(i)m , l f ,s(i)) is less than a

threshold (TH_INPUTe), we save the 2D–3D line-segment
correspondences (Lr(i)m , l f ,s(i)) as inliers.

Finally, we calculate the camera pose of the input frame
using the algorithm proposed by Kumar and Hanson. We
take the inliers and tentativeRTcm as inputs. We then obtain
RT cm of the input frame as an output of the algorithm.
Therefore, we can overlay AR content onto the input image
from the estimated camera pose.

EXPERIMENTS
We conducted experiments to demonstrate that our pro-
posed framework can achievemarker-less AR in a scene con-
taining texture-less objects. We also evaluated the accuracy
of the estimated camera pose in both the model-generation
and the camera-tracking phases. For comparison, we also
tested our previous model-generation method8 for the
model-generation phase, and the previous marker-less
AR framework7 for the camera-tracking phase. In the
experiments on the previous framework,7 we used the
3D line-segment-based model generated by the previous
method.8 In each experiment, we setNiteration to 1000 for our
newmodel-generationmethod, and setNRANSAC to 1000 and
THe to 0.01 for our previous model-generationmethod.8 For
the camera-tracking phase, we set TH_INPUTe to 5.

Marker-less AR Result for Texture-Less Object
In this experiment, we argue that our proposed framework,
which uses line segments, can achieve AR evenwhen texture-
less objects are contained in the scene. We conducted this
experiment for the two scenes shown in Figure 11(a) and (b)
using Kinect v1, which provided 640× 480 resolution RGB
images and 320× 240 resolution depth images. Fig. 11(a)
shows one corner of the texture-less room and Fig. 11(b)
shows the window in the empty room. First, we generated the
3D line-segment-based model in the scenes from 80 input
images by using our previous and new model-generation
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(a)

(b)

Figure 12. The generated 3D line-segment-based model of the corner scene. (a) Model generated with the previous method;8 (b) model generated with
the new method.

methods. Fig. 11 also shows some of these input images
used for model generation. The results of generating the
3D line-segment-based model are shown in Figure 12 for
the corner scene and in Figure 13 for the window scene. In
each figure, (a) shows themodel generated with our previous
method8 and (b) shows the one generated with our new
method. As shown in Figs. 12 and 13, our method obtained
the 3D geometry of the scene with line segments. Compared
with the models generated with our previous method shown
in Figs. 12(a) and 13(a), our new method generated more
accurate 3D line-segment-based models, which are shown
in Figs. 12(b) and 13(b). The bundle adjustment used in
our new method refines the estimated camera poses of each
frame, so that the 3D line segments can be back-projected
from each frame into more accurate positions. Moreover,
the plane segmentation removes some incorrectly created
3D line segments. These scenes had few textures; therefore,
reconstruction of the 3D geometry of the scene with general
feature-point-based SfM methods is difficult.

KinectFusion16 can be used to reconstruct a texture-less
scene because it uses a point-cloud alignment method.
However, the reconstructedmodel with a texture-less surface
cannot be applied to a feature-point-based marker-less
AR method. Moreover, we have already demonstrated
that 3D line-segment-based model generation from object
shapes reconstructed using KinectFusion requires further
improvement in terms of accuracy.10 With respect to
the scenes shown in Fig. 11, as these scenes consist of

plane structures, a point-cloud alignment method may
fail. Figure 14 shows object shapes reconstructed with
KinectFusion. Misalignments occurred in the object shapes.

With the generated 3D line-segment-based model, we
then estimated the camera pose of some input frames and
augmented a CG object onto the images. The snapshots from
Figures 15 and 16 show the results of marker-less AR in
each scene. In each figure, (a) shows the results from our
previous marker-less AR framework7 and (b) shows those
from the proposed framework. We put the CG model of a
green sofa in both scenes. The green line segments in the
images of Figs. 15 and 16 are those used for estimating the
camera pose. On comparing (a) and (b) in each figure, the
sofa is augmented to a more accurate position in (b), and in
some images of (a), the sofa is not augmented to the right
place (such as the third, fourth and fifth images of Figs. 15(a)
and 16(a)). This fact shows that in (a), the model generated
with our previous method8 contained inaccurate 3D line
segments, so that the 2D–3D line-segment correspondences
between themodel and the input image contained some false
correspondences. In the computation of the camera pose
with these correspondences, the outliers were eliminated.
Therefore, the number of inliers was decreased and the
camera pose was estimated incorrectly. As a result, with the
inaccurate camera pose, the augmentation of the CG model
failed. On the other hand, in (b), the model generated by
the new method provided accurate 3D line segments, so that
the 2D–3D line-segment correspondences contained many
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(a)

(b)

Figure 13. The generated 3D line-segment-based model of the window scene. (a) Model generated with the previous method;8 (b) model generated
with the new method.

inliers. Therefore, from the sufficient 2D–3D line-segment
correspondences, the accurate camera pose was estimated
and the CG object was augmented to the right position. The
difference in the line segments used for the camera-pose
estimation can be seen in each resulting image.

We also conducted marker-less AR with the typical
feature-point-based AR method, parallel tracking and map-
ping for small AR workspaces (PTAM),1 in the same scenes
for comparison. The results from PTAM are shown in
Figure 17. Only a few feature points were detected from the
scene, and PTAM could not estimate an accurate camera
pose. In Figs. 15 and 16, however, our newmethod estimated
the camera pose andmademarker-less AR possible using the
detected line segments.

These results show that our proposed framework can
generate the 3D model of the target scene and estimate the
camera pose even in a situation with few feature points.

Accuracy Evaluation for Estimated Camera Poses
As mentioned above, our proposed framework consists
of model-generation and camera-tracking phases. In the
model-generation phase, each input frame’s camera pose is

estimated, and in the camera-tracking phase, the camera
pose of the input frame is also estimated. In this experiment,
we evaluated the accuracy of the estimated camera poses
for model generation and on-line camera tracking. We used
two real image sequences of a texture-less scene used in
the previous experiment, another two real image sequences
using Kinect v2, which provides 1920 × 1080 resolution
RGB images and 512 × 424 resolution depth images, and
two sequences of the TUM RGB-D benchmark.17 The
real image sequences do not provide the ground truth
of each frame’s camera pose; therefore, we measured the
re-projection errors of the points shown in Figure 18
using the estimated camera poses. The TUM RGB-D
benchmark provides RGB images, depth images and ground
truths of their camera poses. The sequences of the TUM
RGB-D benchmark we used are ‘‘freiburg3_cabinet,’’ and
‘‘freiburg3_structure_notexture_far.’’

Evaluation for the Generated Models
We first evaluated the accuracy of the generated 3D line-
segment-based models. For the real image sequences used
in the previous experiment, we used the same 80 frames
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(a)

(b)

Figure 14. Reconstructed object shapes with KinectFusion. (a) Corner scene; (b) window scene.

(a)

(b)

Figure 15. Marker-less AR results from the corner scene. (a) Marker-less AR with our previous framework;7 (b) marker-less AR with the proposed framework.

of the two scenes shown in Fig. 11, and 3D line-segment-
based models were generated with our previous and new
methods. These models are shown in Figs. 12 and 13.

We then evaluated the estimated camera poses in the
model generation bymeasuring the re-projection errors. The
measured re-projection errors are shown in Figure 19. The
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(a)

(b)

Figure 16. Marker-less AR results from the window scene. (a) Marker-less AR with our previous framework;7 (b) marker-less AR with the proposed framework.

(a)

(b)

Figure 17. Marker-less AR results with PTAM. (a) Results from the corner scene; (b) results from the window scene.

(a) (c) (d)(b)

Figure 18. Four points used for measuring re-projection errors. (a) Points used in the corner scene; (b) points used in the window scene; (c) points used in
the sink scene; (d) points used in the white wall scene.

real image sequences captured by Kinect v2 are shown in
Figure 20. There is a sink in one scene, and the other scene has
a white wall. To generate 3D line-segment-based models, we
used 44 frames for the sink scene and 51 frames for the white
wall scene. Fig. 20 also shows some of the input images in
each scene used for model generation. The generatedmodels
are shown in Figures 21 and 22. In each figure, (a) shows

the model generated with the previous model-generation
method8 and (b) shows the model generated with the new
method. The re-projection errors from the estimated camera
poses in the model generation are also measured and are
shown in Figure 23. As shown in the figures, in almost all
frames, the errors from the new model-generation method
are smaller than those from the previous method.8
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(b)(a)

Figure 19. Re-projection errors of model generation. (a) Errors in the corner scene; (b) errors in the window scene.

(b)

(a)

Figure 20. Some input images for model generation of the target scene captured by Kinect v2. (a) Sink in room; (b) white wall.

For the sequences of the TUM RGB-D benchmark, we
used RGB images and depth images, then generated 3D
line-segment-based models. For generating the models of
these sequences, 24 frames were used for freiburg3_cabinet,
and for freiburg3_structure_notexture_far, 35 frames were
used. Some of the input images are shown in Figures 24(a)
and 24(b), respectively. The generated models are shown
in Figures 25 and 26. In Figs. 25 and 26, (a) shows the
models generated with our previous method8 and (b) shows
those generated with the new method. The new method
constructed the scenes more precisely. The estimated camera
poses used for model generation were compared with the
ground truth, and the errors between them were measured.
Figures 27 and 28 show the results of accuracy evaluation
for the estimated camera poses during model generation.
The upper graphs show the results obtained from our
previous method8 and the others show the results for the
camera pose with the new method. In Fig. 27(a) and (c),
which shows the translation errors, the errors from the
previous model-generation method8 fit within the range
from about −0.03 m to 0.10 m, and the errors from the
new method fit within from −0.03 m to 0.03 m. Similarly,

for the rotation errors shown in Fig. 27(b) and (d), the
errors from the previous model-generation method8 fit
within the range from −0.04 rad to 0.06 rad, and the
errors from the new method fit within the range from
−0.02 rad to 0.02 rad. Therefore, in many frames, our new
model-generation method provides fewer errors than the
previous method. As shown in Fig. 28(a) and (b), the model
generation of freiburg3_structure_notexture_far with our
previous model-generation method estimated the camera
poses for only 10 frames, and in subsequent frames, the
camera poses could not be estimated. This is mainly because
the threshold THe used in the outlier-elimination algorithm
with RANSAC for the 2D–3D line-segment correspondences
is a constant value (in this experiment 0.01) in the
previous model-generation method. As we discussed in the
Camera-Pose Estimation section, as the threshold depends
on the situation of two consecutive frames, a constant
threshold is not always appropriate. The experimental
result with freiburg3_structure_notexture_far shows this
particular situation. In the experiment, after frame 10, the
constant value was not sufficient, so that the RANSAC-like
algorithm used in the previous model-generation method8
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(b)

(a)

Figure 21. The generated 3D line-segment-based model of the sink scene. (a) Model generated with the previous method;8 (b) model generated with the
new method.

(b)

(a)

Figure 22. The generated 3D line-segment-based model of the white wall scene. (a) Model generated with the previous method;8 (b) model generated
with the new method.

could not eliminate outliers adequately, and the camera-pose
estimation failed. On the other hand, our new model-
generation method uses LMedS for outlier elimination to
solve this problem. The threshold is decided adaptively for
each two frames by LMedS. To demonstrate the efficiency of

the LMedS method, we generated a 3D line-segment-based
model by amethod that replaced the outlier-elimination part
using RANSAC in the previous model-generation method8
with the LMedS method introduced in the Camera-Pose
Estimation section. Other parts except for the outlier
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(b)(a)

Figure 23. Re-projection errors of model generation. (a) Errors in the sink scene; (b) errors in the white wall scene.

(b)

(a)

Figure 24. Input images for model generation of the TUM RGB-D benchmark. (a) freiburg3_cabinet; (b) freiburg3_structure_notexture_far.

elimination using LMedS in this method are same as the
previous method.8 Figure 29 shows the generated model
and Figure 30 shows the errors of the camera poses
estimated during the model generation. As shown in Fig. 30,
the method using LMedS estimated the camera pose for
every frame. According to this experimental result, the
method using LMedS is suitable for this situation. Our new
model-generation method also uses LMedS in the outlier
elimination and, moreover, performs optimization for every
frame. Therefore, the camera poses estimated by the new
method were more precise than those of the LMedS method
and our previous model-generation method,8 as shown in
Fig. 28(c) and (d).

These experiments demonstrated that the new method
is more accurate.

Evaluation for Camera-Pose Estimation
Next, we evaluated the camera-pose estimation accuracy of
the camera-tracking phase using the models discussed in the

previous experiment. In each experiment, we estimated the
camera poses of input images that were different from the
images used for the model generation.

For the real image sequences used in the previous
experiment, we used the same models as shown in Figs. 12
and 13 and estimated the camera poses of 81 input frames
for both scenes. The re-projection errors from the estimated
camera poses were measured and are shown in Figure 31.

For the real image sequences captured by Kinect v2,
we used the same models as shown in Figs. 21 and 22.
The camera poses of 48 input frames for the sink scene
and 77 frames for the white wall scene were estimated.
The re-projection errors from the result of the camera-pose
estimation are shown in Figure 32.

For the TUM RGB-D benchmark sequences, we
used only RGB images and estimated the camera pose
of 67 frames for freiburg3_cabinet and 35 frames for
freiburg3_structure_notexture_far with the same models
as shown in Figs. 25 and 26, respectively. The errors between
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(b)

(a)

Figure 25. The generated 3D line-segment-based model of freiburg3_cabinet. (a) Model generated with the previous method;8 (b) model generated with
the new method.

the estimated camera poses and the ground truth were also
measured. The evaluation results of camera-pose estimation
accuracy are shown in Figures 33 and 34. The upper graphs
show the estimation errors of input frames with the previous
framework,7 which uses the previous model-generation
method8 in the model-generation phase. The others show
the result of camera-pose estimation of input frames with the
proposed framework, which uses the new model-generation
method proposed in this article for the model-generation
phase. In Fig. 33(a) and (c), which shows the translation
errors, the errors from the previous framework7 fit within
the range from about −0.15 m to 0.05 m, and the errors
from the proposed framework fit within from −0.08 m to
0.05 m. Similarly, for the rotation errors shown in Fig. 33(b)
and (d), the errors from the previous framework7 fit within
the range from −0.10 rad to 0.02 rad, and the errors from
the proposed framework fit within the range from−0.04 rad
to 0.04 rad.

With regard to the sequence of freiburg3_structure_
notexture_far, in most frames, the previous framework7
could not estimate the camera poses, and the errors between
the estimated camera poses and the ground truth were large,
as shown in Fig. 34(a) and (b). This is because the previous
framework used the incomplete 3D line-segment-based
model shown in Fig. 26(a), generated with the previous
model-generation method,8 so that the 3D line-segment

database constructed by the incomplete model has too
few directed LEHFs. Therefore, the number of 2D–3D
line-segment correspondences between an input frame and
themodel is not sufficient for the computation of an accurate
camera pose. On the other hand, our proposed framework
used the accurate 3D line-segment-based model shown
in Fig. 26(b), generated with the new model-generation
method, so that in almost all frames, the errors were small,
as shown in Fig. 34(c) and (d).

As shown in Figs. 31–34, in most frames, the camera-
pose estimation errors in the tracking phase of the proposed
framework using the model generated by the new method
were smaller than those of the previous framwork7 using the
model generated by the previousmodel-generationmethod.8

Processing Times
We measured the processing times of the on-site model-
generation phase and the camera-tracking phase in our
proposed framework with the four datasets used in the
Accuracy Evaluation for Estimated Camera Poses section.
An analysis of the processing time was carried out on an
Intel R© CoreTM i7-5960X CPU with 3.00 GHz. The average
computational costs for each individual step of the model
generation by the new method are shown in Table I. In
Table I, Model1 is the model shown in Fig. 21(b), Model2
is shown in Fig. 22(b), Model3 is shown in Fig. 25(b) and
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(b)

(a)

Figure 26. The generated 3D line-segment-based model of freiburg3_structure_notexture_far. (a) Model generated with the previous method;8 (b) model
generated with the new method.

Table I. Average processing times of the individual steps for model generation
(Model1, sink scene; Model2, white wall scene; Model3, freiburg3_cabinet; Model4,
freiburg3_structure_notexture_far).

Time in seconds
Individual step Model1 Model2 Model3 Model4

Loading RGB image 0.070 0.098 0.001 0.001
Loading depth image 0.014 0.028 0.006 0.006
2D Line-segment detection (LSD) 0.228 0.229 0.029 0.027
Plane segmentation 3.654 1.092 0.344 0.408
3D line-segment creation 1.164 0.819 0.155 0.127
Directed-LEHF extraction 0.456 0.293 0.009 0.008
2D line-segment matching 0.008 0.006 0.000 0.000
2D–3D line-segment correspondences 0.021 0.012 0.000 0.000
Camera-pose estimation from correspondences 0.178 0.200 0.135 0.151
Total of one frame 6.408 3.243 0.751 0.833
Total of all frames without bundle adjustment 275.6 162.1 17.2 28.3

Model4 is shown in Fig. 26(b). The total time shown at the
bottom of Table I does not include the computation time
of the bundle adjustment because it highly depends on the
way in which the optimization algorithms are implemented
(in our system, we just used MATLAB). We also measured
the average computation time for every individual step of

Table II. Average processing times of the individual steps for camera tracking
(Scene1, sink scene; Scene2, white wall scene; Scene3, freiburg3_cabinet; Scene4,
freiburg3_structure_notexture_far).

Time in seconds
Individual step Scene1 Scene2 Scene3 Scene4

Loading frame 0.078 0.079 0.001 0.001
2D line-segment detection (LSD) 0.222 0.227 0.030 0.027
Directed-LEHF extraction 0.176 0.117 0.007 0.003
2D–3D line-segment correspondences 0.443 0.182 0.004 0.003
Camera-pose estimation from correspondences 0.041 0.039 0.013 0.012
Total 0.980 0.690 0.060 0.052

the camera tracking in our proposed framework, which is
shown in Table II. This is the time measurement for the
four experimental results in the Evaluation for Camera-Pose
Estimation section.

DISCUSSION
In this section, we give an overview of related work on the
construction of a model represented by line segments and on
marker-less AR methods that use line segments.
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(b)(a)

(d)(c)

Figure 27. Errors in the estimated camera pose for model generation in freiburg3_cabinet. (a) Translation errors with the previous method;8 (b) rotation
errors with the previous method;8 (c) translation errors with the new method; (d) rotation errors with the new method.

3D Line-Segment-Based Model Generation
We present the relevant investigation concerning line-
segment-based model generation.

Chen et al. proposed a method for detecting 3D line
segments on unorganized point clouds from multi-view
stereo.18 The method can be used for generating a 3D
line-segment-based model from point clouds. However, it
requires the reconstructed shape of an object, which is
represented by sparse point clouds obtained from SfM, but
in a texture-less scene, feature-point-based SfM methods
cannot be used. Therefore, their method cannot be used to
reconstruct a 3D line-segment-based model.

Jain et al. proposed a method for reconstructing 3D line
segments that represents the 3D objects in a scene from a set
of 2D images.19 Although this method is useful especially
in man-made situations in which texture-less objects are
contained, there is a limitation in that the camera poses of
the input 2D images must be obtained beforehand.

There are other 3D reconstruction methods that use
RGB-D cameras, such as Microsoft Kinect. KinectFusion16
is a method for recovering the object shape of a scene

by using Kinect. KinectFusion uses a point-cloud-based
alignment method for estimating camera pose, so that it can
reconstruct the 3D geometry even when there are few feature
points. Although KinectFusion can generate a 3D model
of a texture-less object, if the reconstructed shape has no
texture, it cannot be used for model-based camera-tracking
methods,20,21 which use feature-point matching between
the model and the input frame. We previously proposed
a method for improving the accuracy of the object shape
reconstructed by KinectFusion using line segments.10 In this
work, we mentioned that the 3D line-segment-based model
generated from KinectFusion lacked accuracy.

According to these studies, it has not been easy to
generate an accurate 3D line-segment-based model.

Camera Tracking Using Line Segments
We now describe related works concerning line-feature-
based camera-tracking methods for marker-less AR, which
should work even without a rich texture on object surfaces.

Alvarez et al. proposed a maintenance operation tool
based on marker-less AR.4 This tool provides users with
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(b)

(d)

(a)

(c)

Figure 28. Errors in the estimated camera pose for model generation in freiburg3_structure_notexture_far. (a) Translation errors with the previous method;8

(b) rotation errors with the previous method;8 (c) translation errors with the new method; (d) rotation errors with the new method.

Figure 29. The generated 3D line-segment-based model of freiburg3_structure_notexture_far with the method replacing the RANSAC part in the previous
model-generation method8 with LMedS.

augmented instruction on an assembled object. It can track
an object with edge-based marker-less tracking. However, it
requires texture-less 3D triangle meshes of the object.

Wuest et al. proposed a model-based line-tracking
method with image edge features.5 This edge-based tracking

method also requires a CAD model of the target object.
The camera-pose estimation with this method is obtained
from the 2D–3D line-segment correspondences. These
correspondences are from 3D lines projected from the 3D
model and 2D image lines near the 3D lines.
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(b)(a)

Figure 30. Errors in the estimated camera pose for model generation in freiburg3_structure_notexture_far with the method replacing the RANSAC part in
the previous model-generation method8 with LMedS. (a) Translation errors; (b) rotation errors.

(b)(a)

Figure 31. Re-projection errors of tracking. (a) Errors in the corner scene; (b) errors in the window scene.

(b)(a)

Figure 32. Re-projection errors of tracking. (a) Errors in the sink scene; (b) errors in the white wall scene.
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(b)(a)

(d)(c)

Figure 33. Errors in the estimated camera pose for on-line camera tracking in freiburg3_cabinet. (a) Translation errors of the camera poses estimated
with the previous framework;7 (b) rotation errors of the camera poses estimated with the previous framework;7 (c) translation errors of the camera poses
estimated with the proposed framework; (d) rotation errors of the camera poses estimated with the proposed framework.

On the other hand, our proposed framework involves
on-site model generation and on-line camera tracking
using line segments. With our framework, 2D–3D line-
segment correspondences are obtained by line-segment
feature descriptor matching.

CONCLUSION
We proposed a marker-less AR framework, which consists
of on-site model-generation and on-line camera-tracking
phases. This framework uses line-segment matching and
estimates the camera pose from the 2D–3D line-segment
correspondences. Therefore, marker-less AR can be achieved
even when only a few feature points are detected.

In the model-generation phase, the target scene, which
consists of texture-less objects, is captured using an RGB-D
camera. The 2D line segments are first detected from
these captured frames. Then, 2D line-segment matching
between the current frame and the previous frame is
obtained from the line-segment feature descriptor. Next, we
create accurate 3D line segments using plane-segmentation
results detected from the depth image and get 2D–3D

line-segment correspondences. These 2D–3D line-segment
correspondences provide the camera pose of the current
frame by solving the PnLproblem.This procedure is repeated
for every frame. The estimated camera poses are optimized
with a bundle adjustment. Finally, the back-projected 3D line
segments from every frame with the refined camera poses
construct the 3D line-segment-based model of the scene.

In the on-line camera-tracking phase, we obtain 2D–3D
line-segment correspondences between the 2D input image
and the 3D line-segment-based model by the line-segment
feature descriptor. The camera pose of the input image is
estimated from these correspondences.We can then augment
computer graphics onto the input image using the estimated
camera pose.

The experimental results suggest that our proposed
framework can estimate the camera pose even for a target
scene without rich texture by matching line segments with
a 3D line-segment-based model generated with the new
model-generation method of our framework; therefore, we
can achieve AR in a scene without rich texture, which
feature-point-based methods cannot do for the same scene.
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(b)(a)

(d)(c)

Figure 34. Errors in the estimated camera pose for on-line camera tracking in freiburg3_structure_notexture_far. (a) Translation errors of the camera poses
estimated with the previous framework;7 (b) rotation errors of the camera poses estimated with the previous framework;7 (c) translation errors of the camera
poses estimated with the proposed framework; (d) rotation errors of the camera poses estimated with the proposed framework.

In our new model-generation method in the proposed
framework, both RGB and depth images are needed, so that
this method cannot construct the model with only RGB
images. However, if an accurate model of the target scene
is available and 3D line segments with their line-segment
features are extracted from the multiple view of the model,
the tracking method in our proposed framework can be
applied as model-based marker-less AR with only an RGB
camera. Therefore, improvement of this aspect is futurework.
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