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Abstract
This paper presents an unsupervised tracking algorithm with

a low computational cost using the Temporal Doubly Stochas-
tic Dirichlet Process (TDSDP) mixture model, and we demon-
strate it in tracking fish in low quality videos for water quality
assurance. The object is captured in the temporal domain with a
global dependency prior instead of the Markov assumption, mak-
ing it particularly suitable for long-term tracking. Furthermore,
the TDSDP mixture model can calculate the number of object tra-
jectories automatically. We describe how to construct this mixture
model from thinning multiple Dirichlet Process Mixtures (DPMs)
with conjugate priors, followed by details of the algorithm for
object tracking. Experiments on a fish dataset illustrate that the
TDSDP can track multiple fish, and performs well even when they
are overlapping in the view. Further experiments also suggest that
TDSDP can be applied to other tracking problems.

Introduction
Object detection and tracking play critical roles in intelligent

surveillance systems. Specifically, in environmental protection
and marine biology, the tracking, detection, and counting of fish
are effective methods for monitoring the water-quality and study-
ing fish ecology [1]. Erratic fish behavior, for instance, would
indicate possible heavy metal poisoning.

The surveillance video for fish tracking is often of low qual-
ity, and this creates two major problems. First, the lack of suf-
ficient features makes it challenging to distinguish multiple fish
when they are overlapping. Second, manual preprocessing of fish
tracking is expensive, including tasks such as labeling the fish
position and setting the constraint of the tracking trajectory. For
example, the number of fish in each frame cannot be assumed as
known or fixed. Similar problems also exist in human and vehicle
tracking applications. To overcome these issues, we turn to the
powerful nonparametric Bayesian methods.

Nonparametric Bayesian models based on Dirichlet Process
(DP) prior have been widely used to model topics over space and
time [2, 3, 4, 5, 6, 7]. The term “topic” is employed in the machine
learning area, which represents the characteristics of each cluster.
For instance, the topic of fish in a single frame can be considered
as the position center of that fish or other feature parameters (e.g.
average color). These nonparametric Bayesian models relax the
assumption that the topic number is fixed or known. Numerous
approaches have been proposed to analyze topic trajectories via
modeling dependency in topic space. While DDP models based
on GP [7, 8] are too complex to be implemented to track fish,
some other models [2, 6] have been proposed to bypass the GP

priors. However, these models achieve dependency modeling un-
der Markov assumption with a stricter assumption [2, 9], or dis-
card modeling the location variation and model dependency via
overlapping regions [6]. Several approaches, which model top-
ics dependency under the non-Markov framework [3, 4, 5], are
unable to obtain the position variation of the fish.

In our research, we seek to present an unsupervised algo-
rithm, which can model temporal variations of the fish as well
as location variations. Moreover, it makes sense to estimate the
varying number of fish along all frames automatically. Further-
more, this algorithm needs to be compact and general, with a low
computational cost and can be extended to various machine vision
applications.

To achieve this, first, we extract interest points from the
video clips based on the Harris detector [10], and the positions of
these points constitute the observation data. Second, a TDSDP
mixture model is proposed with a Sigmoid Gaussian Process
(SGP) prior intensity. The SGP is employed to model the varying
intensity of the trajectories along frame stamps. Subsequently,
the mixture model of the TDSDP is constructed elegantly with
a thinning procedure applied to multiple DPMMs. It allows us
to handle massive transportation video data with a lower com-
putational cost. Finally, the TDSDP mixture model enables us
to track varying fish positions along different video frames with
one global SGP intensity prior. Moreover, it allows us to capture
location variations, birth and disappearance of objects based on
dependency modeling in all topic domains. It uses the continu-
ous probability measure sampled from the Global GP prior to fit
the distribution of the variation of objects and the global GP prior
enables us to achieve a robust result.

Overall, the robustness and low computational cost enable
the proposed TDSDP mixture model to be used for the low-quality
fish dataset. The global intensity modeled by the TDSDP mix-
ture model robustly tracks fishes with only location feature. Low
computational inference enables TDSDP to process many frames
of video sequence efficiently.

Derivation of DSDP

Construction of DSDP mixture model

Dirichlet process mixture model (DPMM) [11] is a power-
ful Bayesian model based on Dirichlet Process prior. Here, we
provide an elegant way to derive the mixture model of DSDP. A
DSDP mixture model thinned from a single DPMM can be con-
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structed in [12]

Y ∼ GP(m,κ)

D|Y ∼ DP(σ(Y )α∗H0)

θ i|D,Y
iid∼D|Y

xi|θ i
iid∼ f (θ i),

(1)

where Y is an intensity function sampled from sigmoid GP prior
with parameter m and κ , thinned function σ(Y ) is the sigmoid
function σ(Y ) = (1+ e−Y )−1, α∗ and H0 denote the upper bound
concentration parameter and the conjugate prior. Topic parame-
ter θ i is independently sampled from the conditional DSDP D|Y .
Observation data xi is sampled from distribution f (θ i) parameter-
ized by θ i.

DSDP mixture model applied on multiple DPs
A DSDP mixture model thinned from multiple DPMMs has

multiple conditional DSDP priors Dt |Yt , their corresponding GP
functions Yt are sampled from global GP prior GP(·) at regions
t = 1, . . . ,T [13].

Yt ∼ GP(mt ,κt)

Dt |Yt ∼ DP(σ(Yt)α
∗H0t)

θ ti|Dt ,Yt
iid∼Dt |Yt

xti|θ ti
iid∼ f (θ ti),

(2)

where topic parameter θti at region t is independently sampled
from its corresponding conditional DSDP Dt |Yt . The conjugate
prior H0t is updated based on data {xti}i at this region, therefore
it can vary along the regions. Globally sampled GP functions Yt
make the varying local parameters (αt and Ht ) retain the global
dependency. They follow

Ht(θ) =
HY

t (θ)

HY
t (Θ)

, and αt = α
∗HY

t (Θ), (3)

where HY
t (θ), H0t(θ)σ(Yt(θ)).

Fish detection algorithm
Based on the Temporal DSDP provided above, a novel fish

detection approach is presented in this section. The fish topic
inference algorithm follows.

• We first cluster the extracted potential fish interest points
(feature) into fish topics frame by frame, this process is
shown in top panels in the Fig. 2.

• Then the clustered fish topics are updated based on the clus-
tering assignment and their Metropolis-Hastings acceptance
ratio.

• Last, based on the newly updated topics, the hyper-
parameters are inferred

Therefore, the fish detection algorithm mainly iterates three steps:
the fish topic assignments sampling, the fish topic updating and
the hyper-parameter sampling. The detailed information of this
algorithm is shown in the Algorithm 1.

Fish topic assignment sampling
Sampling inference procedures for the Sigmoidal GP DSDP

mixture model are illustrated as follows: First, make sure that all
K clusters are non-empty. Then draw a new z(t)i at tth iteration
according to the criteria in Eq.4. This sampling is developed from
algorithm 2 in [14] for non-conjugate prior DPMM sampling.

P
(

z(t)i = k
)
=


σ(Yk)n

(t−1)
−i,k

n−1+α(t−1) fk(xi),k 6 K
σ(Yk)α

(t−1)

n−1+α(t−1) fk(xi),k > K
, (4)

where n(t−1)
−i,k is the number of data clustered into kth topic except

xi. The likelihood fk(xi) is hard to be calculated directly with
integral computation. Instead, fk(xi) can be approximated in the
large data limit as:

fk(xi) =

{ ∫
p
(
xi,θ k|~x−i,k

)
H0 (dθ k) ,k 6 K∫

p
(
xi,θ k|~x−i,1:K

)
H0 (dθ k) ,k > K

, (5)

where x−i,k ,
{

x j : z j = k, j 6= i
}

and ~x−i,1:K ,
{

x−i,k
}K

k=1. In
Eq. 4, α(t) = α∗(t)

∫
Ω

σ (Y (dθ)) is concentrate parameter at tth

iteration, where upper bound α∗(t) ∼ p
(

α∗|K(t)+M(t),n,a,b
)

[15] and initial parameter follows α∗ ∼ Gamma(a,b). K(t) and
M(t) are the number of topic variables and latent variables at tth

iteration, respectively. n is number of observation data, and nor-
mally a is set as n

/
20 and b = 1. Detailed algorithm is shown in

Algorithm 1.

Fish topics updating
The Metropolis-Hastings acceptance ratio for updating topic

parameter θ k to newly sampled variable θ
∗ follows:

a(θ∗) =
Gk (θ

∗)
(

1+ exp
(
Y (θ k)

))
Gk (θ k)

(
1+ exp

(
Y (θ∗)

)) , (6)

where Gk (θ) is posterior distribution p
(
θ |xt,−i,k

)
given data par-

tition xt,−i,k.
The Metropolis-Hastings acceptance ratio for updating latent

variables θ
∗
m,i to newly sampled variable θ

∗ follows:

a(θ∗) =
H0 (θ

∗)
(

1+ exp
(
−Y (θ k)

))
H0 (θ k)

(
1+ exp

(
−Y (θ∗)

)) , (7)

where H0(·) is the conjugate prior .
If the Metropolis-Hastings acceptance ratio a(θ∗) is bigger

than 0.5, this newly sampled variable for both of topic and latent
variable is accepted.

Sampling upper bound concentration parameter
The upper bound concentration parameter α∗ is defined

based on [15]:

α
∗ ∼ p

(
α
∗|K(t)+M ,n,a,b

)
. (8)

Its initial parameter follows α∗ ∼Gamma(a,b). K and M are the
number of topic variables and latent variables, respectively. n is
the number of observation data, and normally a is set as n/20 and
b = 1. To make sure that the upper bound α∗ is large enough, we
safely set a = n/2.
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Algorithm 1 DSDP MCMC Sampling inference
1: Input: Observation data x1:n
2: Output: Inferred topics θ 1:K and GP intensity Y1:K+M
3: Sample conjugate prior H0 and concentrate parameter α∗ given data x1:n

4: Sample a DP posterior θ
(0)
1:K based on initial upper bound intensity (α∗H0) with initial assignments z(0)1:n

5: for t = 0 : Time do
6: Sample the latent variables θ

(t)
K+1:K+M and its amount M(t)

7: Sample the GP functions Y (t)
1:K+M and co-variance parameter η(t) via Hamiltonian Monte Carlo

8: for i ∈ τ (1) , ...,τ (n) do
9: for k=1:K+M do

10: Sample a new topic θ
∗
ki

11: Sample new GP function Y (θ∗k,i) at θ
∗
ki based on current GP functions Y (t)

1:K+M
12: Calculate acceptance rate ak via Eq. 6 and Eq. 7
13: if ak > 1 then
14: θ k,i = θ

∗
k,i and Y (θ k,i) = Y (θ∗k,i)

15: else
16: θ k,i = θ k and Y (θ k,i) = Y (θ k)
17: end if
18: Calculate likelihood `(xi|θ k,i) and data amount n−i,k
19: end for
20: Sample assignment~z(t+1)

1:n via Eq. 4
21: end for
22: Sample new topics θ

(t+1)
1:K via Eq. 6 given new clusters x(t+1)

1:K
23: Sample upper bound concentration parameter α∗ via Eq. 8
24: end for

Global fish trajectories modeling
In this section, we present an approach to track multiple

fish trajectories without initial localization or detection. This ap-
proach based on the detected fish topics enables us to categorize
fish flows, which follow the global SGP prior.

GP intensity clustering
This approach clusters the inferred SGP intensity with fish

topics ~θ 1:K into L fish trajectories. Furthermore, the number of
fish trajectories L can be learned by following expression.

p(ci = l) =

g−i,l ∑
c j=l

f
(
di j
)

γ +
L
∑

l=1
g−i,l ∑

c j=l
f
(
di j
) , (9)

where i denotes topic index, L denotes the current number of non-
empty topic trends, di j is the distance between topics θ i and θ j,
ci is the assignment for topic θ i. And there is a probability that
generates a new fish trajectory

p(ci = L+1) =
γ

γ +
L
∑

l=1
g−i,l ∑

c j=l
f
(
di j
) . (10)

According to the distance-based Chinese Restaurant Process
proposed in [16], f

(
di j
)

is window decay:

f
(
di j
)
=

exp
(
−di j +a

)
1+ exp

(
−di j +a

)δ
(
0 < di j < a

)
. (11)

Delay parameter a and delta function δ (·) are defined in [16].
Eq. 11 indicate that only these customers with the distance less

than a are taken into account. In Eq. 9, we use a kernel classi-
fier, which was proposed in [17], to make L GP gating network
independent with g−i,l , g

({
θ j
}

c j=l, j 6=i

)
defined as below:

g−i,l =
∑ j 6=i κ

(
θ i,θ j;η

)
δ
(
c j, l
)

∑ j 6=i κ
(
θ i,θ j;η

) , (12)

where κ
(
θ i,θ j;η

)
is kernel function parameterized by η , and is

defined based on [18]:

κd
(
θd ,θ

′
d
) ∆
= σ

2
d, f exp

(
− (θd −θ ′d)

2

2h2
d

)
+σ

2
d,nδii′ , (13)

where ηd
∆
=
{

σ2
d, f ,σ

2
d,n,h

2
d

}
is dth component of variance param-

eter η and δii′
∆
= δ (θ ,θ ′). The model expressed in Eq. 11 indi-

cates that the probability of topic θ i assigned to the lth cluster
is proportional to two factors: the lth cluster topic density in the
range of a from topic θ i, and kernel function calculated by top-
ics {θ i}ci=l in same cluster. Readers interested in object tracking
based on GP clustering can refer to [19, 20].

Finally, the fish trajectories is obtained as shown in the last
panel in Fig. 2. The global fish assignment vi for the ith fish is
obtained by local topic assignment zi and global assignment for
topic ck, the global fish assignment vi follows vi = czi .

An example: an overlapping case in low-quality
fish dataset

In this section, we use a video sequence from the low-quality
fish dataset as an example to illustrate how the proposed TDSDP
mixture model works. This video includes trajectory overlapping
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Figure 1. Fish tracking diagram

of fishes and fluctuate number of fishes, the example is shown in
Fig. 2. Modeling the overlapping topic trajectories shows that the
TDSDP is able to infer the SGP prior. Estimating the components
in each mini-path or frames shows that the TDSDP is able to auto-
matically determine the inhomogeneous concentration parameters
in the temporal domain.

To begin with, interest points are extracted from the video
based on the Harris detector proposed in [10] and positions of
these points forms the observation data. Initial DPs can be ap-
plied on the observation data in frames or in mini patches which
are obtained by clustering frames. In order to reduce the global
GP computational cost (O

(
c3k3)) in the following experiments

on video sequence, we cluster f frames into c mini-patches, in
which k is the topics number extracted in each mini-patch. This
clustering is achieved by DPMM, which is applied on time stamp
of observation data. For this low-quality fish, f

/
c ≈ 15. 500

frames are clustered into 50 patches in this example, and 1000
frames clustered into 100 patches for the whole video.

Experiment steps are illustrated with flow diagram in Fig. 1:
1) mini-patch decomposition at the observation level: observation
points are presented in the top panels as observed mixture trajec-

Fish tracking result comparison
GPUDDP TDSDP TDSDP TDSDP

α0 / 0.1n 0.5n n
SFDA 95.7% 97.3% 97.5% 97.1%
ATA 66.2% 94.4% 95.4% 95.2%

tories. 2) Then topic trajectories can be inferred by TDSDP is
shown in the second panel. There are mainly two important char-
acters sampled in this step: (a) Concentration parameter is thinned
in the frame or temporal patch t: α (t) = α0 (t)

∫
Ωt

σ(Y (θ))dθ ;
and (b) Distribution of topic variant is sampled from the global
SGP prior Ht (θ) =

(
α0 (t)

/
α (t)

)
σ(Y (θ))H0t at t can be mod-

eled. Furthermore DP sampling in each patch with underlying
SGP prior and GP prior sampling given whole global topics. 3)
Topics trajectories clustering: the SGP prior clustering algorithm
is used to cluster overlapping topic trajectories presented in the
third panel. 4) Then the clustered overlapped trajectories are
shown in the bottom panel in Fig. 1.

Experiments
Low-quality fish dataset

Figure 3 shows some video clips of the fish dataset, different
color signs represent the detected clusters. This dataset is more
complex than the video example show in the previous context in
Fig. 1 and Fig. 2, there are more overlapping in this proposed
dataset, such as topic trajectories of fishes are provided in the top
panel of Fig. 4. Bottom panel shows the clustered fish trajectories.
The total clustering accuracy for the DPMM is about 37.12%, and
the proposed TDSDP mixture model is 97.93%. There are totally
seven fish occurred in this video, some of them came in and came
out, some of them wander over to the edge of the camera viewing
angle. The accuracy of the number of fish in each frame is 75% for
the DPMM and 94% for the TDSDP mixture model. Clustering
accuracies of the TDSDP and the DPMM in each frame are quite
similar (such as 98.47% and 96.5%). The table shows the dif-
ferent results of the proposed TDSDP and the Generalized Polya
Urn based DDP tracking [21] on the overlapping low-quality fish
dataset. Sequence Frame Detection Accuracy (SFDA) and Av-
erage Tracking Accuracy (ATA) [22] are utilized to quantify the
experiment results. SFDA measures the detection performance
in each frame, and ATA quantifies the performance of a tracking
algorithm for detecting objects across frames. The result of the
GPUDDP applied on this low-quality fish dataset is shown in the
Table 1, which is obtained by tuning parameter values for some
samples from this dataset. The consequences of the TDSDP with
various initial hyper-parameters α0, where n is the average data
amount in each patch. The table indicates that at the frame level,
TDSDP and DDP methods also have similar detection accuracy
(such as 97.5% and 95.7% with the best results for SFDA). How-
ever, TDSDP has a far superior tracking performance compared
to the GPUDDP in terms of ATA. This result further illustrates
that the robust TDSDP with the global SGP prior fits the varying
topics better than the Markov assumption based DDP models.

Text trends topic modeling
This sub-section presents another supporting experiment,

which focus on text topic modeling based on the temporal DSDP
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Figure 2. Fish tracking example corresponding to diagram

Figure 3. Fish tracking examples
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Figure 4. Topics clustering for fish dataset
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mixture model. The DSDP mixture model is applied on the text
data with insufficient features, which is a 4-dimension feature
vector obtained by Unsupervised Kernel Spectral Regression [23]
over a number of years. NIPS 0-12 dataset 1 over 13 years shown
in the left panel in Fig. 5 is applied. Four main paper topics vary
along the years: “Speech Recognition”, “Temporal State Learn-
ing”, “Function Learning” and “Neural Network”. Similar to the
result shown in [3], “Neural Network” topic plays an important
role in the first 9 years. Then it co-occurs with “Function Learn-
ing” topic in the middle 90’s. Furthermore, “Speech Recogni-
tion” topic persists and then it gradually transfers into a more gen-
eral topic: “Temporal State Learning”. The right panel in Fig. 5
illustrates the topic parameters (words weighting) for “Speech
Recognition” topic variations are varying over years, which en-
able better fitting of topic parameters over time compared with
the Markov assumption based methods. Not surprisingly, “Speech
Recognition” topic includes “Speech” & “Recognition”, “State”
& “Training” and background words.

Conclusions
A Temporal Doubly Stochastic Dirichlet Process mixture

model is proposed for the unsupervised tracking algorithm.
Global intensity prior of the proposed TDSDP model provides the
ability to handle the fish tracking in the low quality video, which
includes occlusion of the fish. Moreover, the TDSDP enables to
model the trajectories of fish, whose number and positions are
varying along temporal frames. The thinning procedure enables
the TDSDP to reduce the computational cost significantly. Lastly,
this algorithm can be extended to other surveillance applications,
for instance the human and vehicle tracking.
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