
STABLE: Stochastic Binary Local Descriptor for High-
performance Dense Stereo Matching
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Abstract
We propose a novel stochastic binary local descriptor

(STABLE) specifically designed for dense stereo matching in high-
performance vision applications. STABLE is a local binary de-
scriptor which builds upon the principles of the compressed sens-
ing theory. The most important properties of STABLE are the
independence of the descriptor length from the matching win-
dow size and the possibility that more than one pair of pixels
contributes to a single descriptor bit. Individual descriptor bits
are computed by comparing image intensities over pairs of bal-
anced random sub-sets of pixels chosen from the whole described
area. On a synthetic as well as real-world examples we demon-
strate that STABLE provides competitive or superior performance
than other state-of-the-art local binary descriptors in the task of
dense stereo matching. We show that STABLE performs signifi-
cantly better than the census transform (CT) and local binary pat-
terns (LBP) in all considered geometric and radiometric distor-
tion categories to be expected in practical applications of stereo
vision. Moreover, we show as well that STABLE provides compa-
rable or better matching quality than the binary robust indepen-
dent elementary features (BRIEF) descriptor. The low computa-
tional complexity and flexible memory footprint makes STABLE
well suited for most hardware architectures.

Introduction
Feature point detection and description is used in various ap-

plications of computer vision. Feature point detectors typically
localize points of high saliency sparsely distributed over images.
Feature point description encodes the local vicinity of a feature
point, or any pixel in general, into a numerical representation
which aims to fulfill several goals such as being highly discrimi-
native, precisely localized and invariant w.r.t. radiometric and ge-
ometric distortions. Dense matching assigns such a descriptor to
each image pixel. This makes the goal of being efficient with re-
spect to memory (i.e. low descriptor length), and speed (i.e. time
for computing and matching the descriptors), more important. On
the other hand, for sparsely sampled key points and more general
applications, more resource demanding descriptors are affordable,
such as SIFT [1] which is by default a floating point vector with
128 elements.

Since the introduction of SIFT a number of feature detectors
and descriptors were suggested over the last decades [1]. Among
others, the goal of speeding up SIFT was met in SURF [2]. Some
representations of local derivatives, e.g. gradient orientation his-
tograms, are commonly used in those descriptors. Higher speed
is sometimes also traded against reduced invariance properties,
e.g. in BRIEF [3]. Efficient representations and fast matching is

obtained by the family of binary descriptors. The ORB is an alter-
native to SIFT and SURF being based on a binary description [4].

In this paper, we introduce the stochastic binary local de-
scriptor (STABLE). It belongs to a broad class of local binary
descriptors, along with the census transform (CT) [5], local bi-
nary patterns (LBP) [6], binary robust independent elementary
features (BRIEF) [3], binary robust invariant scalable keypoints
(BRISK) [7] or fast retina keypoints (FREAK) [8]. The most sim-
ilar descriptor to STABLE is BRIEF [3], where the main differ-
ence lies in the ability of STABLE to have more than one pair of
pixels contributing to a single descriptor bit.

STABLE can be related to the principle of compressed sam-
pling [9]. The compressed sampling theory claims that each sig-
nal with a sparse representation in some (potentially unknown)
linear basis can be preserved and reconstructed from a small num-
ber of random projections. For natural images this means that,
due to the sparsity of image edges and inherent smoothness, it is
sufficient to sample the image in a compressive manner without
loosing any significant information. While the reconstruction is
not the main focus in our application, we exploit the principles of
compressed sampling just for deriving an efficient binary repre-
sentation of any given pattern, i.e. for encoding the pattern into a
constant number of bits that is greatly independent from the pat-
tern’s size.

The paper is organized as follows. We start with reviewing
stereo matching descriptors and their evaluation, especially local
binary descriptors. Then we describe STABLE in detail and pro-
vide results of the ROC analysis of STABLE in comparison with
CT, LBP and BRIEF. A real-world stereo vision example provides
a visual comparison of the matchin quality obtained by STABLE
and CT. Finally, we end with conclusions.

Descriptors for stereo matching
In stereo imaging the range for each pixel is obtained from

the estimated disparity, i.e. the displacement between correspond-
ing points observed in two (or more) images. The epipolar con-
straint in stereo vision states that a point in one image is found
along the corresponding epipolar line in the other image. Epipolar
rectification of stereo image pairs aligns epipolar lines to images
lines, thus reducing the correspondence estimation to a search ori-
ented along an expected disparity range in image lines. Corre-
sponding points are typically identified via block matching, i.e.
comparison of image patches. Measures of block similarity in-
clude direct comparison of pixel intensities using similarity met-
rics such as the sum of absolute differences (SAD), the sum of
squared errors (SSE), the normalized cross-correlation (NCC),
and comparison based on the descriptors mentioned above. While
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Figure 1: Examples of index filter masks of different binary feature descriptors defined on the 7x7 pixel matching window.

for descriptors such as SURF or SIFT some vector metrics in
high-dimensional spaces are commonly used to quantify descrip-
tor similarity, for binary descriptors the Hamming distance is typ-
ically applied.

Evaluation of detectors and descriptors
Scale and angle invariance has been a major topic in the

study of local interest detectors so far, e.g. repeatability character-
izes the rate at which a set of corresponding tie points is detected
in sets of images [10]. Alternatively, repeatability and matching
score are used to evaluate correct matches [11]. On the other hand,
in order to characterize local descriptors measure to quantize reli-
able, stable and precise localization are of major interest. Evalua-
tion of descriptors was performed using recall and precision under
several geometric and radiometric distortions [12]. Beyond this,
we are also interested in stability of the descriptor depending on
the compactness of its representation, i.e. the number of descrip-
tor bits used.

Local binary descriptors
In general, binary descriptors have been used for tasks like

texture analysis, recognition and matching, e.g. local binary pat-
terns (LBP) [6], [13] and the census transform (CT) [5]. In the
context of local descriptors several fast binary descriptors were
also developed recently, e.g. BRIEF [3], BRISK [7], FREAK [8],
and some more. In our experiments we considered the center-
based descriptors CENSUS and LBP, where center-based refers
to the fact that pairwise comparison always involve the central
pixel, and the uncentered descriptors BRIEF and STABLE. The
main difference in binary descriptors is in the sampling pattern
for local intensity comparisons which results in a binary descrip-
tor vector. The CENSUS-dense descriptor is the only descriptor
utilizing exactly all pixels in the considered matching window.
We alternatively investigate the CENSUS-sparse descriptor which
uses a sub-sample of off-center pixels on a regular grid and com-
pare those against the central pixel. The BRIEF descriptor uses a
sub-sample of pixel pairs (typically sparse) located at arbitrary po-
sitions in the matching window. The resulting descriptor lengths
equals the number of pixel pair comparisons performed. Finally,
with STABLE we also get pixel pairs at random positions, but we
are able to map a larger number of pixel pairs to a smaller num-
ber of descriptor bits. Fig. 1 summarizes the compared descriptor
masks.

The STABLE descriptor
We consider an image patch p of size X ×Y pixels. The

operation β derives the i-th descriptor bit di ∈ d from patch p as

follows:

β (p, i) =

{
1 if (p∗ fi)> 0,
0 otherwise.,

(1)

where fi is a filter mask of equal size as the image patch p. We
refer to the operation β as the binarized convolution. The filter
dictionary f contains K sparse filter masks fi. Each entry in fi is
either 0, 1 or −1. The descriptor d is a K-dimensional bitmask
which is obtained for a given image patch p using

d(p) =
K

∑
i=1

2i−1
β (p, i). (2)

Fig. 2 shows this operation schematically, a set of sparse filter
masks from a dictionary are applied to the same image patch and,
depending on the number and individual signs of the filter mask
entries, a number of pixels is contributing to each descriptor bit.

A more efficient implementation of STABLE, avoiding bi-
narized convolution with K sparse feature filters, uses a single
index filter mask g. This mask g is of the same size as the im-
age patch p and encodes at non-zero pixel positions the position
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Figure 2: Operation of the STABLE descriptor: Sparse filters
form a dictionary where each filter mask mostly consists of en-
tries of 0, other entries {−1,1} are randomly distributed. An
image patch is convolved with each filter mask and the result is
thresholded (binarized convolution) and inserted into descriptor
bits.
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Figure 3: Efficient implementation of the STABLE descriptor:
An index filter mask contains pixel indices and signs. An image
patch is accessed using this mask and a signed sum is inserted
into an accumulator array. The descriptor is finally obtained by
binarization of the accumulator entries.

in the descriptor array d and a sign. An accumulator array a of
size K is used to perform a sign-dependent accumulation in cell
i of the pixel values in p with corresponding filter mask index
|i|, i = 1, . . . ,K. After all accumulators cells are processed the de-
scriptor d is derived by thresholding each cell entry of a. The
improved operation involving the filter index mask g instead of
the filter dictionary d is shown in Fig. 3.

Computational complexity analysis
For computational complexity analysis, we compare STA-

BLE and BRIEF with K features bits applied to X×Y image patch
implemented using the index filter mask implementation which
was shown in Fig. 3. In general, there are two main operations re-
quired for using any of the local binary descriptors – building and
matching. The matching operation is typically identical for all bi-
nary descriptors, making use of the Hamming distance applied to
binary strings of length K. The difference can thus be only in the
computational complexity of the building operation.

Building of the descriptors is comprised of three basic steps:

(i) generating the index filter mask,
(ii) computing the accumulator values,

(iii) binarization of the accumulator values.

The index filter mask is generated only once and can be consid-
ered as an input parameter for the building operation. Therefore
this step can be omitted from our analysis. The binarization step
uses the same thresholding algorithm for both analyzed descrip-
tors and can be neglected as well. Hence the only difference
comes from the complexity of computing the accumulator values,
as shown in Algorithm 1. While STABLE requires processing of
X×Y elements from the index filter mask as well as from the im-

age patch (or X×Y−1 for odd number of pixels), BRIEF requires
to process only 2K such elements. Consequently, for a fixed K,
STABLE scales linearly with the number of patch pixels while
BRIEF, in principle, requires only a constant time.

Algorithm 1 Computation of the accumulator values in BRIEF
and STABLE using a single index filter mask.
Require: image patch p, index filter mask g

initialize array a to size K with values of 0
for non-zero i in g do

a[|i|]← a[|i|]+ sgn(i)×p[position of i in g]
end for

In practice, however, the difference between the actual ex-
ecution time on CPU or GPU platforms and the theoretical one
might be more in favor of STABLE due to caching in the on-
chip memory. When a memory read for a cell is requested, often
nearby cells are fetched and stored in the cache as well (details
are hardware-dependent). To enable optimal caching, the data has
to be well-organized in the memory (i.e. aligned with the hard-
ware layout) and should be accessed using predictable memory
access patterns (e.g. in the same order as they are stored). This is
especially important for GPUs where the global memory latency
is higher compared to the CPU memory and thus optimal utiliza-
tion of the cache memory has higher impact of the final perfor-
mance. We believe that such memory caching mechanisms can
be better utilized with STABLE as all elements in both index as
well as image patch arrays are always accessed and thus the mem-
ory access pattern can be fully optimized. On the other hand, as
BRIEF uses a random-access sparse memory pattern, prediction
algorithms implemented in various memory caching mechanisms
are more prone to fail.

Experimental design
In order to evaluate performance of the STABLE descriptor

compared with other state-of-the-art local binary descriptors, we
employed a similar evaluation scheme as suggested in [12] based
on the analysis of receiver operator characteristic (ROC) curves.
We extracted 1200 grayscale patterns from 48 natural images con-
tained in the data set introduced in [12], always 25 patterns per
image at random locations. Given the perturbation type, for each
pattern we introduced 25 synthetic perturbations which gave a to-
tal number of 30 000 patches. In this study we considered five
different types of perturbations:

(i) Gaussian additive noise (σ ≤−20 dB),
(ii) Gaussian blur (σ ≤ 4 px),

(iii) shift in random direction (≤ 3 px),
(iv) scaling (≤±10 %),
(v) rotation (≤±10 deg).

As for the representative matching window we considered patches
of size 15×15 pixels.

Given the set of 30 000 patches defined for each perturbation
type, there is always a group of 25 associated perturbed versions
for each patch in the data set. Making every patch a query, one can
assess its Hamming distance to all patches in the data set making
use of a particular feature descriptor. Knowing that for each query
there are only 25 relevant elements, one can calculate the preci-
sion and recall values for all result sets associated with different
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thresholds put on the Hamming distance. The ROC curve is then
defined by the obtained precision and recall values.

We compared in total five local binary descriptors:

(i) CENSUS-dense,
(ii) CENSUS-sparse,

(iii) LBP,
(iv) BRIEF,
(v) STABLE.

While for CENSUS and LBP the descriptor size depends on the
matching window, in the case of STABLE and BRIEF the number
of feature bits is defined independently from the matching win-
dow. Thus we also looked into the relationship between match-
ing performance, expressed in terms of the area under the ROC
curve (AUC), and the descriptor size in bits. Furthermore, as both
these descriptors are generated stochastically, their performance
was assessed as the average and standard deviation over 25 trials
with different randomly generated filter masks. We believe that
should provide a clear picture about the typical performance and
stability of those stochastic descriptors.

Results
Fig. 4 shows the recognition performance obtained by differ-

ent feature descriptors for a constant configuration of the descrip-
tor size. Going from the worst to the best performing descriptors,
it can be seen that the LBP provides the overall worst performance
for all perturbation types. It is then followed by CENSUS-sparse
and CENSUS-dense which both provide comparable performance
despite their very different numbers of feature bits. For most per-
turbation types it is then followed by BRIEF and finally by STA-
BLE (notice the curve with circles exceeds all the other curves in
most cases).

In Fig. 5, the matching performance is analyzed in relation-
ship with the descriptor size. All descriptors with a constant num-
ber of bits are marked as points, while all the others are repre-
sented as curves. In this analysis it is even more pronounced, that
the performance of the both CENSUS descriptors as well as LBP
is significantly worse than for STABLE and BRIEF at the respec-
tive bit counts. In the case of noise, blur, and shift perturbations,
the STABLE descriptor outperforms the BRIEF descriptor, espe-
cially for medium numbers of feature bits.

The performance of STABLE vs. BRIEF is documented in
detail in Fig. 6. The advantage of STABLE over BRIEF is ex-
pressed in terms of the recognition performance gain defined as
a ratio between AUC values obtained by both descriptors using
the same numbers of bits. It follows that AUC ratios above one
mark the cases where STABLE outperformed BRIEF and vice
versa. It is apparent that the advantage of STABLE is mostly pro-
nounced for medium bit counts, while with the increasing size of
the descriptor the difference is getting smaller as both descriptors
become more similar to each other. It should be noted that at the
maximum possible number of bits, both descriptors are in fact the
same where each bit is generated by just a pair of pixels. There are
two cases in which STABLE significantly outperformed BRIEF,
namely perturbations by (i) the additive noise and (ii) the blur. In
the case of additive noise, the performance gain as large as 30 %
was obtained with 8 bit descriptors. For blur and shift perturba-
tions, the highest AUC ratios exceeding 5 % were obtained for
32 bit and 8 bit descriptors, respectively. For scale and rotation

perturbations, STABLE performs generally slightly worse than
BRIEF, however the worst performance loss is still well below
5 %.

Real-world example
We present some results for an application of line-scan stereo

acquisition and matching for asphalt pavement inspection. The
purpose of this application is to assess 3D road surface as poor
road conditions lead to increased wear and tear on vehicles and
has as well an impact on surface water transport, noise emission,
etc. Fig. 7 (a-b) shows a stereo image pair depicting a top down
view onto a washed concrete surface. The estimated depth maps
shown in Fig. 7 (c-d) are results of 15× 15 CENSUS-dense and
15×15 STABLE with 64 bit descriptor length. The result of STA-
BLE is less noisy (i.e. less “black” pixels) using just 64 bits, while
achieving a qualitatively similar, or even slightly better, depth es-
timation as the 15×15−1 = 224 bit long CENSUS descriptor.

Fig. 8 shows the performance of STABLE with descriptor
length ranging from 16 bits to 112 bits, which is the maximum bit
count possible for the 15×15 matching window. While the 16 bit
long descriptor still provides quite noisy results, using 32 or 64 bit
descriptors improves the reconstruction quality significantly. On
the other hand, increasing size of the descriptor to full 112 bits
does not seem to improve the result any further.

Finally, Fig. 9 shows the influence of spatial averaging and
additive noise on CENSUS-dense and STABLE. In both cases
STABLE outperforms CENSUS-dense descriptor.

Conclusion
In this paper, we have introduced the STABLE descriptor

suitable for high-performance dense stereo matching. STABLE
is a novel stochastic binary local descriptor that relates to the
compressed sensing theory for efficient representation of image
patterns. We showed that STABLE provides significantly better
matching quality w.r.t. the efficiency of data representation being
preserved in a highly compressed binary form.

Compared with other state-of-the-art binary descriptors, our
descriptor achieves the same matching quality with considerably
fewer descriptor bits required, or alternatively, significantly bet-
ter matching quality making use of the same number of descrip-
tor bits. STABLE offers increased stability and robustness espe-
cially in the cases where data are subject to noise, blur, and/or
slight misplacement, which is often observed in practice. Unlike
some other descriptors the descriptor size and the matching win-
dow are defined independently in STABLE. Moreover, STABLE
always utilizes all pixels of the given matching window for pro-
ducing the required number of feature bits. That makes it suitable
for many practical applications where a trade-off between the de-
scriptor size, due to computational performance limitations, and
the overall matching performance is necessary. Yet another indi-
cation of the same is that STABLE surpasses other analyzed de-
scriptors predominantly in a small-medium range of feature bits.

Despite that STABLE requires more operations than BRIEF
for the same input, their performance should be comparable for
a reasonable matching window size, as STABLE can take better
advantage of memory caching mechanisms implemented on dif-
ferent platforms including GPUs.

We have demonstrated that the proposed descriptor works
very well for a broad class of natural patterns and that the in-
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Figure 4: ROC curves obtained for different perturbation types. In the case of STABLE and BRIEF, the provided ROC curves represent
the best performance case over 25 random trials, i.e. the one with the highest AUC value.
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herent sparsity of those patterns suffice the assumptions of the
compressed sensing theory. In the future we intend to look into
the efficiency of STABLE when applied to more specific groups
of non-natural patterns that arise from some special applications.
Another direction of our future research will go towards ways of
mitigating certain matching artifacts originating from a hard typ-
ically rectangular matching window, where each pixel is utilized
precisely one time.
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[13] M. Pietikäinen, A. Hadid, G. Zhao, and T. Ahonen. Computer Vision
Using Local Binary Patterns, volume 40 of Computational Imaging
and Vision. Springer, London, 2011.

Author Biography
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(a) Left stereo image (b) Right stereo image (c) CENSUS-dense (224 bits) (d) STABLE (64 bits)

Figure 7: Depth reconstruction of the road surface from a stereo image pair (a-b) using 15× 15 CENSUS-dense with 224 bits (c) and
15×15 STABLE with 64 bits (d).

(a) STABLE (16 bits) (b) STABLE (32 bits) (c) STABLE (64 bits) (d) STABLE (112 bits)

Figure 8: Depth reconstruction quality obtained by 15×15 STABLE with different bit counts (16, 32, 64, and 112, respectively).

(a) CENSUS-dense (224 bits);
Input corrupted by 5×5 averaging

(b) STABLE (64 bits);
Input corrupted by 5×5 averaging

(c) CENSUS-dense (224 bits);
Input corrupted by −20 dB noise

(d) STABLE (64 bits);
Input corrupted by −20 dB noise

Figure 9: Depth reconstruction results for 15× 15 CENSUS-dense with 224 bits and 15× 15 STABLE with 64 bits: (a-b) corrupted by
5×5 averaging, (c-d) corrupted by Gaussian noise with −20 dB variance.
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