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Abstract 
With the advent of the driverless cars, the importance and 
accuracy of lane detection has achieved paramount importance in 
the field of perception and imaging. In this paper, we propose an 
algorithm to achieve lane detection on roads using the real-time 
data gathered by the camera and applying K-means clustering 
method to report data in a manner suitable to create a solvable 
map. The proposed method uses the physical nature of the data to 
cluster the data. Silhouette coefficient is used to determine the 
number of clusters in which the data should be divided. Lanes are 
interpolated to get the correct markings. We demonstrate the 
efficacy of, the proposed method using real-time traffic data to 
noise, shadows, and illumination variations in the captured road 
images, and its applicability to both marked and unmarked roads. 

1. Introduction 
With the start of the new millennia, driverless cars have 

achieved great impetus due to DARPA Grand Challenge and now-
a-days, many automobile companies like Mercedes, Audi and 
Nissan have entered in the field of driverless technology. Any 
driverless technology for an automobile needs to sense the 
environment and access data that are vital for taking real time 
decisions to control the car. This is achieved by the help of various 
types of sensors such as Camera, Light Detection and Ranging 
(LiDAR) sensors, Radio Detection and Ranging (RADAR) sensors 
[2], Ultrasonic sensors, Stereo vision camera sensors, even thermal 
imaging in certain cases. Among all of these sensors, the camera 
sensors are one of the cheapest and most readily available sensors. 
It is also the kind of sensor whose data is very easy to visualize. 
Thus Computer Vision is one of the core aspects for any 
autonomous technology that controls any automobile for the 
foreseeable future.  

An important part of autonomous driving is lane detection. 
Lanes provide an order in urban driving scenarios. They provide a 
direction for the car to follow. It is of utmost importance for a 
vehicle to drive in a lane and judge when to cross the lane for the 
purpose of overtaking or taking turns. The paper deals with 
improving the result of Lane Detection with a Machine Learning 
Approach. This improves the accuracy of lane detection to a higher 
degree than traditional lane detection algorithms. The algorithm’s 
accuracy is limited by the quality of the image taken and is of 
polynomial time complexity. 

The problem statement is to improve current lane detection 
algorithms. Our method involves state-of-the-art and proven 
machine learning algorithms. Traditionally, B-snake curve fitting 
is used for this purpose. There are a number of shortcomings with 
B-snake algorithm. It uses vanishing point method to extrapolate 
the line segment which represents lane data. This does not work 
well at the truncation points of the images. It also fails when the 
boundaries in the image are not clear. The proposed algorithm 
takes care of these shortcomings as it does not depend on the 
perspective transform and does the lane detection on original 
image itself. 

We propose K-Means Clustering to obtain a reasonable 
estimate of the number of clusters in the data. That is, we can 
cluster the data accurately into reasonable number of clusters. 
Compared to other lane detection algorithms like B-spline, this is a 
very simplified model which does not require any calibration for 
perspective transformations as in B-spline. The present algorithm 
takes the raw image and outputs the lane data without change in 
the kernel of view space.  

2. Background 
 
2.1. Shortcomings of existing methods in Lane 
Detection 

In B-snake algorithm for lane detection [1], the following is a 
short description of the algorithm: 
1. Construct an edge map of image using Canny Edge Detector 

(according to CHEVP model) 
2. Divide the image into a number of segments for compensating 

the bend of the lane 
3. Apply Hough Transform on each of the image segments and 

individually detect the vanishing points of each segment and 
further detect the horizon of the image 

4. From these vanishing points, compute the control points for 
the construction of the B-snake 

5. From these control points, a spline would then have to be 
constructed. From this, the lane boundary would be 
extrapolated using the width of the road 
 
Following are the issues with the B-snake algorithm: 

1. In our understanding of the entire algorithm, it is clearly 
capable of detecting the lane if there was only a single lane in 
the image. It is not clear how multiple lanes would be 
detected and/or distinguished from each other. 

2. The CHEVP model (Canny/Hough Estimation of Vanishing 
Points) does not remove the illumination noises to the 
required levels. There are too many cases where this method 
of calculating the vanishing point fails mainly because of 
illumination noise. This is because, in certain cases, the noise 
is sharper, distinguishable than the lane part of the image. 

3. Vanishing points may not be calculated for certain images if 
the entire lane is not visible in the image. Thus we feel that it 
is not right to focus attention on finding the mid-lane. Rather, 
we must detect each lane boundary individually. This is 
important for autonomous systems because it focuses on a 
wider range of possibilities for which lane detection is 
attempted. In case of corrupted output as seen in case of non-
uniform illumination in the image, we may assume that the 
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previous lane boundary is parallel to the present lane 
boundary 

2.2. Advantages of using present algorithm 
The major advantage of this algorithm is that it does not 

assume that the lanes that are to be detected are of any prescribed 
shape or number. It is capable of detecting lanes of any number, 
width and shape even if the shape changes dynamically. This has 
been made possible because of the use of an unguided machine 
learning algorithm to detect all the lanes and its number. Thus we 
don’t see a necessity of assuming that the lane boundaries are 
parallel to each other. The algorithm also detects multiple lanes as 
viewed in the image. 

A large fraction of lane detection algorithms including this 
one may not produce reliable results if there is a drastic change in 
illumination [7] in the image which may be caused in certain 
regions of the image due to reflected rays from the sun that are 
incident directly on the lenses of the camera used. This algorithm 
does capture lanes in all cases, but has a tendency to classify these 
bright spots of sunlight also as lanes. This case is not handled by 
this algorithm and may be specially treated after applying an 
illumination correction on the image. The algorithm produces the 
best results when the lane is clearly marked on a cloudy day with 
negligible amount of sunlight. 

3. Algorithm Steps: 
We overcome the above shortcomings of the B-Snake 

algorithm in the following way: 
1. We assume that the camera is always pointed towards the 

road i.e. the road is a major part of the image. By applying a 
3-channel filter, we can easily get the lane boundaries from 
the image as a binary threshold image 

2. From the binary image, extract all contours and reject all 
small area contours. This removes the salt and pepper noises 
from the image 

3. Apply Probabilistic Hough Transform (PHT) to the binary 
image. We end up with an output that has a lot of clustered 
lines in the region of the lane boundaries. In simpler words, 
the lines are clustered at the lane boundaries 

4. Then we segregate the output from the PHT according to 
which contour they are present in i.e. group the line segments 
according to the contours they occur in 

5. Apply K-Means Clustering algorithm to each group of line 
segments. The output would give us an idea about the shape 
of the lane. The cluster means inside each group would be the 
required output for the lane boundaries in the image 

6. Arrange the means in a particular order to plot the spline 
representing the lane boundary 
This algorithm has an advantage that it can find all lanes in 

the image with a high degree of accuracy. An even better 
observation is that the shape of the lane plays absolutely no role in 
its detection. Thus no lane model is assumed for its detection. Also 
as a result, any number of lanes may be simultaneously detected in 
the image. 

This represents a generalized algorithm for lane detection 
from a camera and it gives the best results when there are no sun 
spots or areas of bright color on the road. As for illumination 
correction, there are many algorithms available for removing those 
bright regions and the output of such a correction must be fed to 

this algorithm for optimum results. The next section talks of the 
algorithm in detail. 
 

 
Fig-1.1 Source Image 

 
Fig-1.2 3-Channel Thresholding 

 
Fig-1.3 Area Thresholding 

 
Fig-1.4 Hough Transform 

 
Fig-1.5 K-Means Output and Post Processing 

3.1. Preprocessing Image 

3.1.1. White Color Thresholding 
A basic assumption of this algorithm is that any white patch 

on the road is a lane marking. Then this white patch is captured by 
a 3-channel filter with an appropriate threshold. 

For each pixel, individual threshold are applied to 3-channels, 
red, green and blue channel. For an 8-bit image, the green 
threshold is set as 200, the red threshold is set as 200 and the blue 
threshold is set as 200. 
∀𝑝 ∈ 𝐼𝑚𝑎𝑔𝑒 𝐼, ⟨𝑅|𝐺|𝐵⟩𝑝 > ⟨200|200|200⟩  =>  ⟨𝑅|𝐺|𝐵⟩𝑝

≡ ⟨255|255|255⟩ 

3.1.2. Area Thresholding 
After white color thresholding, salt and paper noises tend to 

remain in the image. To remove them, the white color patches are 
assigned as separate closed contours. These contours are then 
further passed through an area filter to reject all oddly placed white 
markings. All contours with the area lesser than 100 sq.pixel (for 
image resolution of 1280 × 720) are rejected. Thus, we obtain an 
image which has the lane markings in a black background. This 
removes any oddly illuminated isolated pixel or a small group of 
pixels. 

3.1.3. Hough Transform 
Now we have obtained lane markings from the image, this 

does not specify the lane boundaries. Interpretation of this line 
segment data is required for getting the lane boundary position. We 
need to accurately determine the boundary of multiple lanes. 
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Thus we apply Probabilistic Hough Transform [4][5] on the 
resultant image. This gives us a set of line segments which are 
useful to determine the lane boundary position. 

Probabilistic Hough Transform is later applied on the 
resulting binary image that is obtained from the 3 channel filter 
and area threshold. This provides us with a vector of line segments 
on which the clustering algorithm is applied. K-means clustering 
was chosen as it provided a natural principle to go about for lane 
detection. Hough Transform does give us the lane marking 
position, but it does the same in an unclustered and unusable 
output. The output of the probabilistic hough line transform comes 
in the form of extremes of the line. Let each line be given an index 
i. Initial point be denoted by index o and final point be denoted by 
index f. So extreme points are (𝑥𝑜𝑖  𝑦𝑜𝑖 𝑥𝑓𝑖  𝑦𝑓𝑖) 

After we apply hough transform, we then split the line 
segments into groups corresponding to the nearest white patch. 
This was done by enclosing a tight rectangle (close fit) around 
each contour. Let each contour be defined by (k). So a line (i) with 
initial point (o) and final point (f) in a contour (k) is denoted 
by (𝑥𝑜𝑖𝑘  𝑦𝑜𝑖𝑘  𝑥𝑓𝑖𝑘  𝑦𝑓𝑖𝑘 ). If the midpoint of the line lies within a 
rectangle, then it is said to be associated with the group of lines 
corresponding to that white patch. 

Any line segment that lies between two patches is classified 
as noise and rejected from the set of line segments. This also aids 
us in decreasing the runtime of the algorithm. 

Hough transform was chosen as the line segments obtained 
after the white thresholding filters are almost always concentrated 
on the lane marking positions. This aggregation of line segments 
tells us that the LOCALISED MEANS of these line segments may 
be considered as the lane marking positions. 

K-Means was chosen to be a solution for this unique problem. 
It can be used very efficiently to extract these localized means 
provided we know how many such means are there. 
 

 
Fig-2.1 Image after applying Threshold 

 
Fig-2.2 Prob Hough Transform output 

3.2. Application of K-means to get Line Data 

3.2.1. Procedure to Apply the Clustering Algorithm 
We intend to apply the clustering algorithm inside each group 

of line segments (split according to white patches). The basic idea 
of clustering Line segments means to find the “Average” of all the 
line segments inside a cluster. 

Let us take the case of point data. K-Means clustering of point 
data involves finding clusters of point data. Thus the algorithm 
provides us with the means of the clusters. 

Within a rectangle, we arrange all the indices of the hough 
lines such that (𝑦𝑜𝑖𝑘 > 𝑦𝑓𝑖𝑘 ) so that the line segments can be 
interpreted in a progressive fashion only as per the distance from 
the vehicle. Now all the observations within a rectangle have these 
two properties: 
 𝐶1 ∪ 𝐶2 ∪ 𝐶3 ∪ . ..  ∪ 𝐶𝐾 = {1,2,3,… , 𝑛}. In other 
words, all the line segments are covered within a rectangle. 
 𝐶𝑘  ∩  𝐶𝑘′ =  𝜑 for all 𝑘 ≠  𝑘

′. In other words, the 
clusters are non–overlapping.  

If the data has n number of clusters, then the algorithm for 
obtaining n clusters is as follows: 
(Sample Data with 4 clusters, K-Means Terminates here in 6 
iterations) 
 

 
Fig-3.1 Sample Data 

 
Fig-3.2 Initiate K-
Means 

 
Fig-3.3 Iteration 1 

 
Fig-3.4 Iteration 2 

 
Fig-3.5 Iteration 3 

 
Fig-3.6 Iteration 4 

A - Initialization: Randomly associate n line segments as the 
cluster means, 𝑐𝑚𝑗

 
B - Iteration: Find the distance of each point from all the 

cluster means. The distance is calculated using Euclidean distance 
and associates each data point with appropriate cluster. The 
distance between the line segments is termed to be the distance 
between their midpoints. Distance between two lines 𝑙1 & 𝑙2  with 
mid points (𝑥𝑚𝑙1 , 𝑦𝑚𝑙1) and (𝑥𝑚𝑙2 , 𝑦𝑚𝑙2) is defined as 
 

𝑑𝑖𝑠𝑡(𝑙1, 𝑙2) =  √(𝑥𝑚𝑙1 − 𝑥𝑚𝑙2)
2
+ (𝑦𝑚𝑙1 − 𝑦𝑚𝑙2)

2
 

 

 
(1) 

For clustering the line in a particular cluster, Ck, the following 
criteria is used 
 

𝑘 =  𝑚𝑖𝑛𝑗=1
𝑛 (𝑑𝑖𝑠𝑡 (𝑖, 𝑐𝑚𝑗

)) => 𝑖 ⋲ 𝐶𝑘. 
 

 
(2) 

C - After Updating: Calculate the new cluster means which 
are the means of the clusters so formed. Average is calculated as 
the centroidal line segment defined as the line segment joining the 
centroid of all the initial points (𝑥𝑜𝑖 , 𝑦𝑜𝑖) and centroid of all the 
final points (𝑥𝑓𝑖 , 𝑦𝑓𝑖) 

𝑐𝑚𝑘
= 𝑎𝑣𝑔{𝑖: 𝑖 ∈ 𝐶𝑘} (3) 

D - Termination: Check the position of the new means with 
the old ones. If they are “very close” then terminate the process, or 
else go to step 2 with the updated means as the cluster means. 

This process is very effective in determining the clusters from 
the data.  To figure out the number of clusters in the data, again an 
iterative approach is used. This is accomplished by looking at a 
coefficient called as the Silhouette Coefficient.  After clustering 
the lines, the mid-point of the line is used to determine the 
Silhouette Coefficient. 
 

E - Silhouette Coefficient: 
Within a cluster, for each point: 

 𝑎𝑖𝑘  is defined as the average distance of the point from the 
other points in the same cluster, (cohesion factor) 
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𝑎𝑖𝑘 = 𝑎𝑣𝑔{𝑑𝑖𝑠𝑡(𝑖, 𝑗): 𝑖 ≠ 𝑗, 𝑗 ∈  𝐶𝑘} 
(4) 

 𝑏𝑖𝑘  is defined as the average distance of the point from the 
other points in the nearest cluster, (separation factor) 

𝑏𝑖𝑘 =  min (𝑑𝑖𝑠𝑡(𝑖, 𝑗): 𝑖 ∈  𝐶𝑘,

𝑗 ∈  𝐶𝑝 

  𝑝 =  min (𝑑𝑖𝑠𝑡(𝑐𝑚𝑘
, 𝑐𝑚𝑡

), 𝑡 ≠ 𝑘)𝑡=1
𝑛 )  

(5) 

The silhouette coefficient for that data point is then defined 
as: 
 

𝑠𝑖 =
(𝑏𝑖𝑘 − 𝑎𝑖𝑘)

max ((𝑏𝑖𝑘 ,   𝑎𝑖𝑘))
 

 
(6) 

 
Then the overall silhouette coefficient is defined as: 

𝑆 =  𝑎𝑣𝑔(𝑠𝑖)∀𝑖  
 

(7) 

From the definition of the silhouette coefficient, it is clear that 
the range of the coefficient is between -1 and 1. 

So we have the following, 
 

𝑠𝑖 = 

{
 
 

 
 1 −

𝑎𝑖𝑘
𝑏𝑖𝑘

      𝑖𝑓 𝑏𝑖𝑘 > 𝑎𝑖𝑘

0                  𝑖𝑓 𝑏𝑖𝑘 = 𝑎𝑖𝑘
𝑏𝑖𝑘
𝑎𝑖𝑘

− 1      𝑖𝑓 𝑏𝑖𝑘 < 𝑎𝑖𝑘

 

 
( 𝑎𝑖𝑘 ≪ 𝑏𝑖𝑘 => 𝑠𝑖  → 1,  𝑎𝑖𝑘 ≫ 𝑏𝑖𝑘 => 𝑠𝑖  → −1) 

 

 
 
(8) 

In the given data, if variation within the cluster is small (𝑎𝑖𝑘is 
small), and variation from data points which are part of another 
cluster (𝑏𝑖𝑘is large), this indicates a good clustering of data. (Low 
cohesion and large separation) 
 

 
Fig-4.1 1-means 

 
Fig-4.2 2-means 

 
Fig-4.3 3-means 

 
Fig-4.4 4-means 

 
Fig-4.5 5-means  

Fig-4.6 6-means. It 
represents the data 
perfectly 

 
Fig-4.7 7-means. Data clustered to 7 clusters. This is not an appropriate number of 
clusters in the data. So the algorithm decides that the earlier method to cluster the data 
was appropriate and terminates the loop 
 

Figures positioned above Fig-4.1 to Fig-4.6 show progression 
of means from 1 to 6 in a clearly clustered data. Algorithm 
terminates after calculating coefficient for 7 means as it is smaller 
than that of 6 means. 

Then we can state that if we divide the data set into partitions 
such that the average silhouette coefficient of the entire data set or 
the average silhouette coefficient is maximized, then the data is 
adequately clustered into the correct number of clusters. In this 
case, the silhouette coefficient approaches 1 (Any value more than 
0.7 indicates good clustering). 

Also note that if the data has not been clustered properly or if 
the data has no clear number of clusters, the Silhouette Coefficient 
is smaller compared to that of a properly clustered data. This 
happens because the data has cohesion and separation in 
comparable ranges. This indicates that some sample data have been 
misclassified. 

K-means clustering fails when the data distribution is uniform 
i.e. there is no clear clustering of data. In these cases, silhouette 
coefficient comes near 0. (Any value between 0 and 0.25 means 
the data is uniformly distributed) 

If the Silhouette Coefficient [6] is positive and close to 1, say 
something like 0.75, from above definition of Silhouette 
coefficient, we have the inequality𝑎𝑖𝑘  <  𝑏𝑖𝑘. This means that the 
factor of cohesion is small compared to factor of separation. This 
means that on an average, distance between data points within the 
same cluster is smaller than the distance between points in 
different clusters. This means that points within the same cluster 
are close to each other compared to points in different clusters. 

This is indicative of good clustering. Thus Silhouette 
Coefficient value close to 1 indicates good clustering of data. 

On the other hand, if the Silhouette Coefficient is small, say 
something like less than 0.25, it means that the distance between 
points within the same cluster I comparable to points in different 
clusters. This means that the data is not clustered properly. Better 
clustering is possible. An immediate solution is to increase the 
number of clusters to be considered for clustering the data. This 
may or may not increase the Silhouette Coefficient. 

This may occur because increasing the number of clusters 
may lead to better clustering, but beyond a point, the clusters start 
to overlap. If we keep on blindly increasing the clusters, then we 
get to a situation where each and every single data point is a cluster 
on its own. This leads to breakdown of the concept of cluster in 
data. Thus it is unwise to keep increasing the number of clusters if 
the silhouette coefficient begins to fall. 

A better implementation of the algorithm is to compute the 
cluster means of all reasonably possible number of clusters in the 
data keeping a threshold in the value of the Silhouette Coefficient, 
figure out the global maxima of the Silhouette Coefficient value 
and then it corresponds to the appropriate number of clusters in the 
data. This process would be computationally expensive and may 
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induce lag in the real time lane detecting module. Thus the 
algorithm was simplified to terminate whenever the Silhouette 
Coefficient falls. 

So the Silhouette Coefficient is an important factor in cluster 
formation. It is to be noted that the silhouette coefficient just gives 
us an indication of the clustering in the data. It gives us a guess on 
how many clusters exist in the data. 

This is the basic logic that is iteratively applied properly 
figure out the appropriate clustering of the data. The idea is to 
repeatedly evaluate the Silhouette Coefficient for all iterations and 
stop the process when the coefficient starts to fall from the 
previous value. In the end, we are left with some line segments that 
are the means of the clusters in the data. 

3.2.2. Advantages 
The line segments from the Hough Transform are mostly 

clustered around the lane markings. Thus the local means of these 
clusters or the ‘clustered means’ can be thought to be the accurate 
positions of the lane markings. This kind of clustered data openly 
demands K-means clustering for accurate implementations. The 
problem with the normal implementation of K-means clustering is 
that we need to know how many clusters exist in the data. This is 
not available with us in case of lane detection. So we get around 
that particular problem by comparing the cluster means that we 
obtain from the K-means algorithm with the data set available with 
us. We compare the means with the data by a parameter known as 
Silhouette Coefficient. Maximizing the silhouette coefficient leads 
to appropriate clustering of data. This accurately gives us the 
number of clusters in the data. 

Advantage of using K-Means is that it provides us with a 
remarkably accurate output consistently. The algorithm’s error is 
actually dependent on the error of the available data (Error 
generated from Hough Transforms) which are quite accurate by 
their own right. 

K-Means Clustering algorithm is the most basic algorithm in 
case of Unsupervised Machine Learning Algorithms. The basic 
crux of the algorithm is widely understood and respected within 
the world of Algorithms. Thus this provides us with a fool-proof 
way of obtaining the lane from the image. 
Another realization from the algorithm is that it is real time. Thus 
processing power and memory requirement is also quite within the 
limits. 

3.2.3. Post Processing of K-Means output: 
A simple way to use the K-Means output is to simply consider 

the midpoints of the cluster-mean-line-segments. They are the 
control points with which the entire lane may be represented as a 
spline which can be constructed from these points. As stated 
earlier, curved lanes have more means than straight lanes. This 
means that any curvature can be easily captured by this algorithm. 
Thus highly curving lanes get more data for representation and 
straight lanes get lesser data for representation. 

Thus the midpoints of the cluster-mean-line-segments are the 
lane data. Lanes are commonly visualized as splines. Now one 
obstacle remains. As a result of using a randomized clustering 
initiation, these data points are not listed in order. We have not yet 
visualized the lane in its complete form. It is imperative to 
understand that the points still may not plot a lane as per our 
requirements. We cannot plot this spline properly if the order of 
the points is incorrect. Thus to make the data in a more useful 
form, we need to arrange the points in an order that would be used 
for plotting a spline i.e. there exists a starting point for the lane and 
an ending point for it. 

This problem was solved by a common observation. Lanes are 
usually characterized as long thin strips irrespective of color. The 
image contours that bound these lanes are usually long and thin 
polygons. These polygons usually have tips from where the lanes 
begin. Thus the lane data point closest to this tip is the starting 
point of the lane. These sharp “tips” or “corners” are most often 
close to the beginning point of the spline which accurately 
represents the lane. So among the set of points we have obtained 
from the K-Means clustering, we need to figure the point closest to 
this “tip”. This would be the starting point of the spline. 

After finding this point, we can iteratively find the next point 
to this one by finding the closest point among the leftovers. This 
leads to an algorithm: 
 For a contour, approximate it to a polygon and find the point 
of sharpest turn (many known algorithms exist to do the job). 
 Find the lane point that is closest to the tip of the polygon. 
 Iteratively find the next point that is closest to the recently 
added point. 
 Joining them in this order gives us the natural spline which 
accurately maps the lane. 

These post processing operations are usually much quicker 
than the algorithm run time and thus post no issues regarding the 
time complexity.  

4. Results and Discussions 
4.1. Testing Results 

The output of the algorithm is a set of points with which the 
lane may be reconstructed using splines. It is a very usable format 
as we get pixel-wise information on which part of the image 
actually contains the lane markings. 

This is very useful as the same information can be used to 
mark the lanes in a grid map after inverse perspective mapping to 
clearly map the environment. This information is clearly 
independent of the lane width. 

It can be clearly seen that the output is best observed when the 
image is of uniform illumination. The lane markings must be 
clearly distinguishable. One clearly notices the fact that the 
algorithm is capable of detecting multiple lanes simultaneously and 
gives an output in a very user friendly format. 

It must be noted that the algorithm is extremely sensitive to 
sunlight and thus may not give the required output in case of 
excessive sunlight. Best results were seen on cloudy days and on 
days with minimal sunlight. 

Output of the algorithm is an array of points in the image 
which correspond to lane boundary locations in the image. A 
sample is shown below: 
 

 
Fig-7.1 Raw Image 3 

 
Fig-7.2 3-Channel Thresholding 

 
Fig-7.3 Area Thresholding 

 
Fig-7.4 Marking Contours 
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Fig-7.5 Hough Transform 

 
Fig-7.6 K-Means and post processing 

 
Table 1 : Output of Raw Image 1  
Lane 1: 
(48,212),(60,200), 

(71,187),(115,138), 

(134,125),(173,93), 

(197,79),(229,53), 

(268,26)  

Lane 2: 
(49,74),(120,49), 

(128,48),(423,153), 

(399,120),(398,114), 

(378,88)   

Array of points depicting the lane boundary positions by pixel 
positions in the image are shown above. This can further be used in 
Inverse Perspective Mapping to map the environment in a Grid 
Map [3] 
Following images show the output of the lane detection algorithm: 

 
Fig-5.1 Raw Image 1 

 
Fig-6.1 Raw Image 2 

 

 
Fig-5.2 Raw Image 1 output 

 

 
Fig-6.2 Raw Image 2 output 

 

 
Fig-7.1 Sample Image 1 

 

 
Fig-8.1 Sample Image 2 
 

 
Fig-7.2 Sample Image 1 output 

 
Fig-8.2 Sample Image 2 output 

 
Fig-10.1 Sample Image 3 

 
Fig-11.1 Sample Image 4 

 
Fig-10.2 Sample Image 3 output 

 
Fig-11.2 Sample Image 4 output 

 

The next part talks of the computational complexity of the 
algorithm. 

4.2. Computational Complexity 
Let 𝑚 × 𝑛 be the image size with 𝑙 number of lane markings. 
1. 3 channel filter: 𝑂(𝑚 × 𝑛) 
2. Area Thresholding: 𝑂(𝑙) 
3. Hough Transform: 𝑂(𝑚 × 𝑛) 
4. K-Means on the Hough Output: 𝑂(∑(𝑛 × 𝑘 × 𝑙)) =

𝑂(𝑛 × 𝑘2 × 𝑙), 𝑘 ∈ {2, 3, 4,⋯ , 𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 𝑙𝑖𝑚𝑖𝑡 𝑜𝑛 𝐾 −

𝑀𝑒𝑎𝑛𝑠}, 𝑙 < 𝑚 × 𝑛 
o Initiate number of means as 1. 
o Iteratively calculate k means by clustering. 
o After means have been calculated, find the silhouette 
coefficient of each data point as defined above. 
o Find average silhouette coefficient of the entire data set. 
o If the silhouette coefficient drops below the previous 

calculated value, present clustering is considered to be 
adequate. Else increase number of clusters. 

5. Arranging output to plot a lane: 𝑂(𝑘 × k) 
On an average, the K-Means output converges to 4-5 clusters with 
the max number of clusters being the limit set (10 in our case). So 
the time complexity of the entire algorithm is polynomial, thus real 
time with a high degree of accuracy. 

5. Conclusion and Future Developments 
The algorithm was developed with the aim of detecting lane 
boundaries and converting their data into a usable format for 
further processing in autonomous systems. This aim has been 
clearly achieved by this algorithm and thus, can be integrated into 
autonomous automotive systems for various applications. 
Future developments of the algorithm may include certain 
improvements in K-Means with better clustering approximations 
with a more mathematical basis, better illumination normalization 
techniques and better noise removal techniques. 
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