

Automated Lane Detection by K-means Clustering: A Machine
Learning Approach
Ajaykumar R, Arpit Gupta, Prof S N Merchant, Indian Institute of Technology Bombay, Mumbai

Abstract
With the advent of the driverless cars, the importance and
accuracy of lane detection has achieved paramount importance in
the field of perception and imaging. In this paper, we propose an
algorithm to achieve lane detection on roads using the real-time
data gathered by the camera and applying K-means clustering
method to report data in a manner suitable to create a solvable
map. The proposed method uses the physical nature of the data to
cluster the data. Silhouette coefficient is used to determine the
number of clusters in which the data should be divided. Lanes are
interpolated to get the correct markings. We demonstrate the
efficacy of, the proposed method using real-time traffic data to
noise, shadows, and illumination variations in the captured road
images, and its applicability to both marked and unmarked roads.

1. Introduction
With the start of the new millennia, driverless cars have

achieved great impetus due to DARPA Grand Challenge and now-
a-days, many automobile companies like Mercedes, Audi and
Nissan have entered in the field of driverless technology. Any
driverless technology for an automobile needs to sense the
environment and access data that are vital for taking real time
decisions to control the car. This is achieved by the help of various
types of sensors such as Camera, Light Detection and Ranging
(LiDAR) sensors, Radio Detection and Ranging (RADAR) sensors
[2], Ultrasonic sensors, Stereo vision camera sensors, even thermal
imaging in certain cases. Among all of these sensors, the camera
sensors are one of the cheapest and most readily available sensors.
It is also the kind of sensor whose data is very easy to visualize.
Thus Computer Vision is one of the core aspects for any
autonomous technology that controls any automobile for the
foreseeable future.

An important part of autonomous driving is lane detection.
Lanes provide an order in urban driving scenarios. They provide a
direction for the car to follow. It is of utmost importance for a
vehicle to drive in a lane and judge when to cross the lane for the
purpose of overtaking or taking turns. The paper deals with
improving the result of Lane Detection with a Machine Learning
Approach. This improves the accuracy of lane detection to a higher
degree than traditional lane detection algorithms. The algorithm’s
accuracy is limited by the quality of the image taken and is of
polynomial time complexity.

The problem statement is to improve current lane detection
algorithms. Our method involves state-of-the-art and proven
machine learning algorithms. Traditionally, B-snake curve fitting
is used for this purpose. There are a number of shortcomings with
B-snake algorithm. It uses vanishing point method to extrapolate
the line segment which represents lane data. This does not work
well at the truncation points of the images. It also fails when the
boundaries in the image are not clear. The proposed algorithm
takes care of these shortcomings as it does not depend on the
perspective transform and does the lane detection on original
image itself.

We propose K-Means Clustering to obtain a reasonable
estimate of the number of clusters in the data. That is, we can
cluster the data accurately into reasonable number of clusters.
Compared to other lane detection algorithms like B-spline, this is a
very simplified model which does not require any calibration for
perspective transformations as in B-spline. The present algorithm
takes the raw image and outputs the lane data without change in
the kernel of view space.

2. Background

2.1. Shortcomings of existing methods in Lane
Detection

In B-snake algorithm for lane detection [1], the following is a
short description of the algorithm:
1. Construct an edge map of image using Canny Edge Detector

(according to CHEVP model)
2. Divide the image into a number of segments for compensating

the bend of the lane
3. Apply Hough Transform on each of the image segments and

individually detect the vanishing points of each segment and
further detect the horizon of the image

4. From these vanishing points, compute the control points for
the construction of the B-snake

5. From these control points, a spline would then have to be
constructed. From this, the lane boundary would be
extrapolated using the width of the road

Following are the issues with the B-snake algorithm:

1. In our understanding of the entire algorithm, it is clearly
capable of detecting the lane if there was only a single lane in
the image. It is not clear how multiple lanes would be
detected and/or distinguished from each other.

2. The CHEVP model (Canny/Hough Estimation of Vanishing
Points) does not remove the illumination noises to the
required levels. There are too many cases where this method
of calculating the vanishing point fails mainly because of
illumination noise. This is because, in certain cases, the noise
is sharper, distinguishable than the lane part of the image.

3. Vanishing points may not be calculated for certain images if
the entire lane is not visible in the image. Thus we feel that it
is not right to focus attention on finding the mid-lane. Rather,
we must detect each lane boundary individually. This is
important for autonomous systems because it focuses on a
wider range of possibilities for which lane detection is
attempted. In case of corrupted output as seen in case of non-
uniform illumination in the image, we may assume that the

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.14.IPMVA-386

IS&T International Symposium on Electronic Imaging 2016
Image Processing: Machine Vision Applications IX IPMVA-386.1

3

previous lane boundary is parallel to the present lane
boundary

2.2. Advantages of using present algorithm
The major advantage of this algorithm is that it does not

assume that the lanes that are to be detected are of any prescribed
shape or number. It is capable of detecting lanes of any number,
width and shape even if the shape changes dynamically. This has
been made possible because of the use of an unguided machine
learning algorithm to detect all the lanes and its number. Thus we
don’t see a necessity of assuming that the lane boundaries are
parallel to each other. The algorithm also detects multiple lanes as
viewed in the image.

A large fraction of lane detection algorithms including this
one may not produce reliable results if there is a drastic change in
illumination [7] in the image which may be caused in certain
regions of the image due to reflected rays from the sun that are
incident directly on the lenses of the camera used. This algorithm
does capture lanes in all cases, but has a tendency to classify these
bright spots of sunlight also as lanes. This case is not handled by
this algorithm and may be specially treated after applying an
illumination correction on the image. The algorithm produces the
best results when the lane is clearly marked on a cloudy day with
negligible amount of sunlight.

3. Algorithm Steps:
We overcome the above shortcomings of the B-Snake

algorithm in the following way:
1. We assume that the camera is always pointed towards the

road i.e. the road is a major part of the image. By applying a
3-channel filter, we can easily get the lane boundaries from
the image as a binary threshold image

2. From the binary image, extract all contours and reject all
small area contours. This removes the salt and pepper noises
from the image

3. Apply Probabilistic Hough Transform (PHT) to the binary
image. We end up with an output that has a lot of clustered
lines in the region of the lane boundaries. In simpler words,
the lines are clustered at the lane boundaries

4. Then we segregate the output from the PHT according to
which contour they are present in i.e. group the line segments
according to the contours they occur in

5. Apply K-Means Clustering algorithm to each group of line
segments. The output would give us an idea about the shape
of the lane. The cluster means inside each group would be the
required output for the lane boundaries in the image

6. Arrange the means in a particular order to plot the spline
representing the lane boundary
This algorithm has an advantage that it can find all lanes in

the image with a high degree of accuracy. An even better
observation is that the shape of the lane plays absolutely no role in
its detection. Thus no lane model is assumed for its detection. Also
as a result, any number of lanes may be simultaneously detected in
the image.

This represents a generalized algorithm for lane detection
from a camera and it gives the best results when there are no sun
spots or areas of bright color on the road. As for illumination
correction, there are many algorithms available for removing those
bright regions and the output of such a correction must be fed to

this algorithm for optimum results. The next section talks of the
algorithm in detail.

Fig-1.1 Source Image

Fig-1.2 3-Channel Thresholding

Fig-1.3 Area Thresholding

Fig-1.4 Hough Transform

Fig-1.5 K-Means Output and Post Processing

3.1. Preprocessing Image

3.1.1. White Color Thresholding
A basic assumption of this algorithm is that any white patch

on the road is a lane marking. Then this white patch is captured by
a 3-channel filter with an appropriate threshold.

For each pixel, individual threshold are applied to 3-channels,
red, green and blue channel. For an 8-bit image, the green
threshold is set as 200, the red threshold is set as 200 and the blue
threshold is set as 200.
∀𝑝 ∈ 𝐼𝑚𝑎𝑔𝑒 𝐼, ⟨𝑅|𝐺|𝐵⟩𝑝 > ⟨200|200|200⟩ => ⟨𝑅|𝐺|𝐵⟩𝑝

≡ ⟨255|255|255⟩

3.1.2. Area Thresholding
After white color thresholding, salt and paper noises tend to

remain in the image. To remove them, the white color patches are
assigned as separate closed contours. These contours are then
further passed through an area filter to reject all oddly placed white
markings. All contours with the area lesser than 100 sq.pixel (for
image resolution of 1280 × 720) are rejected. Thus, we obtain an
image which has the lane markings in a black background. This
removes any oddly illuminated isolated pixel or a small group of
pixels.

3.1.3. Hough Transform
Now we have obtained lane markings from the image, this

does not specify the lane boundaries. Interpretation of this line
segment data is required for getting the lane boundary position. We
need to accurately determine the boundary of multiple lanes.

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.14.IPMVA-386

IS&T International Symposium on Electronic Imaging 2016
Image Processing: Machine Vision Applications IX IPMVA-386.2

Thus we apply Probabilistic Hough Transform [4][5] on the
resultant image. This gives us a set of line segments which are
useful to determine the lane boundary position.

Probabilistic Hough Transform is later applied on the
resulting binary image that is obtained from the 3 channel filter
and area threshold. This provides us with a vector of line segments
on which the clustering algorithm is applied. K-means clustering
was chosen as it provided a natural principle to go about for lane
detection. Hough Transform does give us the lane marking
position, but it does the same in an unclustered and unusable
output. The output of the probabilistic hough line transform comes
in the form of extremes of the line. Let each line be given an index
i. Initial point be denoted by index o and final point be denoted by
index f. So extreme points are (𝑥𝑜𝑖 𝑦𝑜𝑖 𝑥𝑓𝑖 𝑦𝑓𝑖)

After we apply hough transform, we then split the line
segments into groups corresponding to the nearest white patch.
This was done by enclosing a tight rectangle (close fit) around
each contour. Let each contour be defined by (k). So a line (i) with
initial point (o) and final point (f) in a contour (k) is denoted
by (𝑥𝑜𝑖𝑘 𝑦𝑜𝑖𝑘 𝑥𝑓𝑖𝑘 𝑦𝑓𝑖𝑘). If the midpoint of the line lies within a
rectangle, then it is said to be associated with the group of lines
corresponding to that white patch.

Any line segment that lies between two patches is classified
as noise and rejected from the set of line segments. This also aids
us in decreasing the runtime of the algorithm.

Hough transform was chosen as the line segments obtained
after the white thresholding filters are almost always concentrated
on the lane marking positions. This aggregation of line segments
tells us that the LOCALISED MEANS of these line segments may
be considered as the lane marking positions.

K-Means was chosen to be a solution for this unique problem.
It can be used very efficiently to extract these localized means
provided we know how many such means are there.

Fig-2.1 Image after applying Threshold

Fig-2.2 Prob Hough Transform output

3.2. Application of K-means to get Line Data

3.2.1. Procedure to Apply the Clustering Algorithm
We intend to apply the clustering algorithm inside each group

of line segments (split according to white patches). The basic idea
of clustering Line segments means to find the “Average” of all the
line segments inside a cluster.

Let us take the case of point data. K-Means clustering of point
data involves finding clusters of point data. Thus the algorithm
provides us with the means of the clusters.

Within a rectangle, we arrange all the indices of the hough
lines such that (𝑦𝑜𝑖𝑘 > 𝑦𝑓𝑖𝑘) so that the line segments can be
interpreted in a progressive fashion only as per the distance from
the vehicle. Now all the observations within a rectangle have these
two properties:
 𝐶1 ∪ 𝐶2 ∪ 𝐶3 ∪ . .. ∪ 𝐶𝐾 = {1,2,3,… , 𝑛}. In other
words, all the line segments are covered within a rectangle.
 𝐶𝑘 ∩ 𝐶𝑘′ = 𝜑 for all 𝑘 ≠ 𝑘

′. In other words, the
clusters are non–overlapping.

If the data has n number of clusters, then the algorithm for
obtaining n clusters is as follows:
(Sample Data with 4 clusters, K-Means Terminates here in 6
iterations)

Fig-3.1 Sample Data

Fig-3.2 Initiate K-
Means

Fig-3.3 Iteration 1

Fig-3.4 Iteration 2

Fig-3.5 Iteration 3

Fig-3.6 Iteration 4

A - Initialization: Randomly associate n line segments as the
cluster means, 𝑐𝑚𝑗

B - Iteration: Find the distance of each point from all the

cluster means. The distance is calculated using Euclidean distance
and associates each data point with appropriate cluster. The
distance between the line segments is termed to be the distance
between their midpoints. Distance between two lines 𝑙1 & 𝑙2 with
mid points (𝑥𝑚𝑙1 , 𝑦𝑚𝑙1) and (𝑥𝑚𝑙2 , 𝑦𝑚𝑙2) is defined as

𝑑𝑖𝑠𝑡(𝑙1, 𝑙2) = √(𝑥𝑚𝑙1 − 𝑥𝑚𝑙2)
2
+ (𝑦𝑚𝑙1 − 𝑦𝑚𝑙2)

2

(1)

For clustering the line in a particular cluster, Ck, the following
criteria is used

𝑘 = 𝑚𝑖𝑛𝑗=1
𝑛 (𝑑𝑖𝑠𝑡 (𝑖, 𝑐𝑚𝑗

)) => 𝑖 ⋲ 𝐶𝑘.

(2)

C - After Updating: Calculate the new cluster means which
are the means of the clusters so formed. Average is calculated as
the centroidal line segment defined as the line segment joining the
centroid of all the initial points (𝑥𝑜𝑖 , 𝑦𝑜𝑖) and centroid of all the
final points (𝑥𝑓𝑖 , 𝑦𝑓𝑖)

𝑐𝑚𝑘
= 𝑎𝑣𝑔{𝑖: 𝑖 ∈ 𝐶𝑘} (3)

D - Termination: Check the position of the new means with
the old ones. If they are “very close” then terminate the process, or
else go to step 2 with the updated means as the cluster means.

This process is very effective in determining the clusters from
the data. To figure out the number of clusters in the data, again an
iterative approach is used. This is accomplished by looking at a
coefficient called as the Silhouette Coefficient. After clustering
the lines, the mid-point of the line is used to determine the
Silhouette Coefficient.

E - Silhouette Coefficient:
Within a cluster, for each point:

 𝑎𝑖𝑘 is defined as the average distance of the point from the
other points in the same cluster, (cohesion factor)

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.14.IPMVA-386

IS&T International Symposium on Electronic Imaging 2016
Image Processing: Machine Vision Applications IX IPMVA-386.3

5

𝑎𝑖𝑘 = 𝑎𝑣𝑔{𝑑𝑖𝑠𝑡(𝑖, 𝑗): 𝑖 ≠ 𝑗, 𝑗 ∈ 𝐶𝑘}
(4)

 𝑏𝑖𝑘 is defined as the average distance of the point from the
other points in the nearest cluster, (separation factor)

𝑏𝑖𝑘 = min (𝑑𝑖𝑠𝑡(𝑖, 𝑗): 𝑖 ∈ 𝐶𝑘,

𝑗 ∈ 𝐶𝑝

 𝑝 = min (𝑑𝑖𝑠𝑡(𝑐𝑚𝑘
, 𝑐𝑚𝑡

), 𝑡 ≠ 𝑘)𝑡=1
𝑛)

(5)

The silhouette coefficient for that data point is then defined
as:

𝑠𝑖 =
(𝑏𝑖𝑘 − 𝑎𝑖𝑘)

max ((𝑏𝑖𝑘 , 𝑎𝑖𝑘))

(6)

Then the overall silhouette coefficient is defined as:

𝑆 = 𝑎𝑣𝑔(𝑠𝑖)∀𝑖

(7)

From the definition of the silhouette coefficient, it is clear that
the range of the coefficient is between -1 and 1.

So we have the following,

𝑠𝑖 =

{

 1 −

𝑎𝑖𝑘
𝑏𝑖𝑘

 𝑖𝑓 𝑏𝑖𝑘 > 𝑎𝑖𝑘

0 𝑖𝑓 𝑏𝑖𝑘 = 𝑎𝑖𝑘
𝑏𝑖𝑘
𝑎𝑖𝑘

− 1 𝑖𝑓 𝑏𝑖𝑘 < 𝑎𝑖𝑘

(𝑎𝑖𝑘 ≪ 𝑏𝑖𝑘 => 𝑠𝑖 → 1, 𝑎𝑖𝑘 ≫ 𝑏𝑖𝑘 => 𝑠𝑖 → −1)

(8)

In the given data, if variation within the cluster is small (𝑎𝑖𝑘is
small), and variation from data points which are part of another
cluster (𝑏𝑖𝑘is large), this indicates a good clustering of data. (Low
cohesion and large separation)

Fig-4.1 1-means

Fig-4.2 2-means

Fig-4.3 3-means

Fig-4.4 4-means

Fig-4.5 5-means

Fig-4.6 6-means. It
represents the data
perfectly

Fig-4.7 7-means. Data clustered to 7 clusters. This is not an appropriate number of
clusters in the data. So the algorithm decides that the earlier method to cluster the data
was appropriate and terminates the loop

Figures positioned above Fig-4.1 to Fig-4.6 show progression
of means from 1 to 6 in a clearly clustered data. Algorithm
terminates after calculating coefficient for 7 means as it is smaller
than that of 6 means.

Then we can state that if we divide the data set into partitions
such that the average silhouette coefficient of the entire data set or
the average silhouette coefficient is maximized, then the data is
adequately clustered into the correct number of clusters. In this
case, the silhouette coefficient approaches 1 (Any value more than
0.7 indicates good clustering).

Also note that if the data has not been clustered properly or if
the data has no clear number of clusters, the Silhouette Coefficient
is smaller compared to that of a properly clustered data. This
happens because the data has cohesion and separation in
comparable ranges. This indicates that some sample data have been
misclassified.

K-means clustering fails when the data distribution is uniform
i.e. there is no clear clustering of data. In these cases, silhouette
coefficient comes near 0. (Any value between 0 and 0.25 means
the data is uniformly distributed)

If the Silhouette Coefficient [6] is positive and close to 1, say
something like 0.75, from above definition of Silhouette
coefficient, we have the inequality𝑎𝑖𝑘 < 𝑏𝑖𝑘. This means that the
factor of cohesion is small compared to factor of separation. This
means that on an average, distance between data points within the
same cluster is smaller than the distance between points in
different clusters. This means that points within the same cluster
are close to each other compared to points in different clusters.

This is indicative of good clustering. Thus Silhouette
Coefficient value close to 1 indicates good clustering of data.

On the other hand, if the Silhouette Coefficient is small, say
something like less than 0.25, it means that the distance between
points within the same cluster I comparable to points in different
clusters. This means that the data is not clustered properly. Better
clustering is possible. An immediate solution is to increase the
number of clusters to be considered for clustering the data. This
may or may not increase the Silhouette Coefficient.

This may occur because increasing the number of clusters
may lead to better clustering, but beyond a point, the clusters start
to overlap. If we keep on blindly increasing the clusters, then we
get to a situation where each and every single data point is a cluster
on its own. This leads to breakdown of the concept of cluster in
data. Thus it is unwise to keep increasing the number of clusters if
the silhouette coefficient begins to fall.

A better implementation of the algorithm is to compute the
cluster means of all reasonably possible number of clusters in the
data keeping a threshold in the value of the Silhouette Coefficient,
figure out the global maxima of the Silhouette Coefficient value
and then it corresponds to the appropriate number of clusters in the
data. This process would be computationally expensive and may

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.14.IPMVA-386

IS&T International Symposium on Electronic Imaging 2016
Image Processing: Machine Vision Applications IX IPMVA-386.4

induce lag in the real time lane detecting module. Thus the
algorithm was simplified to terminate whenever the Silhouette
Coefficient falls.

So the Silhouette Coefficient is an important factor in cluster
formation. It is to be noted that the silhouette coefficient just gives
us an indication of the clustering in the data. It gives us a guess on
how many clusters exist in the data.

This is the basic logic that is iteratively applied properly
figure out the appropriate clustering of the data. The idea is to
repeatedly evaluate the Silhouette Coefficient for all iterations and
stop the process when the coefficient starts to fall from the
previous value. In the end, we are left with some line segments that
are the means of the clusters in the data.

3.2.2. Advantages
The line segments from the Hough Transform are mostly

clustered around the lane markings. Thus the local means of these
clusters or the ‘clustered means’ can be thought to be the accurate
positions of the lane markings. This kind of clustered data openly
demands K-means clustering for accurate implementations. The
problem with the normal implementation of K-means clustering is
that we need to know how many clusters exist in the data. This is
not available with us in case of lane detection. So we get around
that particular problem by comparing the cluster means that we
obtain from the K-means algorithm with the data set available with
us. We compare the means with the data by a parameter known as
Silhouette Coefficient. Maximizing the silhouette coefficient leads
to appropriate clustering of data. This accurately gives us the
number of clusters in the data.

Advantage of using K-Means is that it provides us with a
remarkably accurate output consistently. The algorithm’s error is
actually dependent on the error of the available data (Error
generated from Hough Transforms) which are quite accurate by
their own right.

K-Means Clustering algorithm is the most basic algorithm in
case of Unsupervised Machine Learning Algorithms. The basic
crux of the algorithm is widely understood and respected within
the world of Algorithms. Thus this provides us with a fool-proof
way of obtaining the lane from the image.
Another realization from the algorithm is that it is real time. Thus
processing power and memory requirement is also quite within the
limits.

3.2.3. Post Processing of K-Means output:
A simple way to use the K-Means output is to simply consider

the midpoints of the cluster-mean-line-segments. They are the
control points with which the entire lane may be represented as a
spline which can be constructed from these points. As stated
earlier, curved lanes have more means than straight lanes. This
means that any curvature can be easily captured by this algorithm.
Thus highly curving lanes get more data for representation and
straight lanes get lesser data for representation.

Thus the midpoints of the cluster-mean-line-segments are the
lane data. Lanes are commonly visualized as splines. Now one
obstacle remains. As a result of using a randomized clustering
initiation, these data points are not listed in order. We have not yet
visualized the lane in its complete form. It is imperative to
understand that the points still may not plot a lane as per our
requirements. We cannot plot this spline properly if the order of
the points is incorrect. Thus to make the data in a more useful
form, we need to arrange the points in an order that would be used
for plotting a spline i.e. there exists a starting point for the lane and
an ending point for it.

This problem was solved by a common observation. Lanes are
usually characterized as long thin strips irrespective of color. The
image contours that bound these lanes are usually long and thin
polygons. These polygons usually have tips from where the lanes
begin. Thus the lane data point closest to this tip is the starting
point of the lane. These sharp “tips” or “corners” are most often
close to the beginning point of the spline which accurately
represents the lane. So among the set of points we have obtained
from the K-Means clustering, we need to figure the point closest to
this “tip”. This would be the starting point of the spline.

After finding this point, we can iteratively find the next point
to this one by finding the closest point among the leftovers. This
leads to an algorithm:
 For a contour, approximate it to a polygon and find the point
of sharpest turn (many known algorithms exist to do the job).
 Find the lane point that is closest to the tip of the polygon.
 Iteratively find the next point that is closest to the recently
added point.
 Joining them in this order gives us the natural spline which
accurately maps the lane.

These post processing operations are usually much quicker
than the algorithm run time and thus post no issues regarding the
time complexity.

4. Results and Discussions
4.1. Testing Results

The output of the algorithm is a set of points with which the
lane may be reconstructed using splines. It is a very usable format
as we get pixel-wise information on which part of the image
actually contains the lane markings.

This is very useful as the same information can be used to
mark the lanes in a grid map after inverse perspective mapping to
clearly map the environment. This information is clearly
independent of the lane width.

It can be clearly seen that the output is best observed when the
image is of uniform illumination. The lane markings must be
clearly distinguishable. One clearly notices the fact that the
algorithm is capable of detecting multiple lanes simultaneously and
gives an output in a very user friendly format.

It must be noted that the algorithm is extremely sensitive to
sunlight and thus may not give the required output in case of
excessive sunlight. Best results were seen on cloudy days and on
days with minimal sunlight.

Output of the algorithm is an array of points in the image
which correspond to lane boundary locations in the image. A
sample is shown below:

Fig-7.1 Raw Image 3

Fig-7.2 3-Channel Thresholding

Fig-7.3 Area Thresholding

Fig-7.4 Marking Contours

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.14.IPMVA-386

IS&T International Symposium on Electronic Imaging 2016
Image Processing: Machine Vision Applications IX IPMVA-386.5

7

Fig-7.5 Hough Transform

Fig-7.6 K-Means and post processing

Table 1 : Output of Raw Image 1
Lane 1:
(48,212),(60,200),

(71,187),(115,138),

(134,125),(173,93),

(197,79),(229,53),

(268,26)

Lane 2:
(49,74),(120,49),

(128,48),(423,153),

(399,120),(398,114),

(378,88)

Array of points depicting the lane boundary positions by pixel
positions in the image are shown above. This can further be used in
Inverse Perspective Mapping to map the environment in a Grid
Map [3]
Following images show the output of the lane detection algorithm:

Fig-5.1 Raw Image 1

Fig-6.1 Raw Image 2

Fig-5.2 Raw Image 1 output

Fig-6.2 Raw Image 2 output

Fig-7.1 Sample Image 1

Fig-8.1 Sample Image 2

Fig-7.2 Sample Image 1 output

Fig-8.2 Sample Image 2 output

Fig-10.1 Sample Image 3

Fig-11.1 Sample Image 4

Fig-10.2 Sample Image 3 output

Fig-11.2 Sample Image 4 output

The next part talks of the computational complexity of the
algorithm.

4.2. Computational Complexity
Let 𝑚 × 𝑛 be the image size with 𝑙 number of lane markings.
1. 3 channel filter: 𝑂(𝑚 × 𝑛)
2. Area Thresholding: 𝑂(𝑙)
3. Hough Transform: 𝑂(𝑚 × 𝑛)
4. K-Means on the Hough Output: 𝑂(∑(𝑛 × 𝑘 × 𝑙)) =

𝑂(𝑛 × 𝑘2 × 𝑙), 𝑘 ∈ {2, 3, 4,⋯ , 𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 𝑙𝑖𝑚𝑖𝑡 𝑜𝑛 𝐾 −

𝑀𝑒𝑎𝑛𝑠}, 𝑙 < 𝑚 × 𝑛
o Initiate number of means as 1.
o Iteratively calculate k means by clustering.
o After means have been calculated, find the silhouette
coefficient of each data point as defined above.
o Find average silhouette coefficient of the entire data set.
o If the silhouette coefficient drops below the previous

calculated value, present clustering is considered to be
adequate. Else increase number of clusters.

5. Arranging output to plot a lane: 𝑂(𝑘 × k)
On an average, the K-Means output converges to 4-5 clusters with
the max number of clusters being the limit set (10 in our case). So
the time complexity of the entire algorithm is polynomial, thus real
time with a high degree of accuracy.

5. Conclusion and Future Developments
The algorithm was developed with the aim of detecting lane
boundaries and converting their data into a usable format for
further processing in autonomous systems. This aim has been
clearly achieved by this algorithm and thus, can be integrated into
autonomous automotive systems for various applications.
Future developments of the algorithm may include certain
improvements in K-Means with better clustering approximations
with a more mathematical basis, better illumination normalization
techniques and better noise removal techniques.

5. References
[1] Wang Y, “Lane detection and tracking using B-Snake”, Journal of

Image and Vision Computing, pp. 269-280, 2003

[2] Peter Hyde, Mapping forest structure for wildlife habitat analysis
using multi-sensor, Remote Sensing of Environment, Vol 102, Issues
1-2, May 2006, Pg 63-73

[3] Tao Yan, “Seamless Stitching of Stereo Images for Generating
Infinite Panoramas”

[4] Pao D.C.W, Li H.F , Jayakumar R, "Shapes Recognition Using the
Straight Line Hough Transform: Theory and Generalization", IEEE
Transactions on Pattern Analysis & Machine Intelligence, vol.14, no.
11, pp. 1076-1089, November 1992, doi:10.1109/34.166622

[5] KIRYAT N, “A Probabilistic Hough Transform” Department of
Electrical Engineering and Department of Computer Science,
Technion, Israel Institute of Technology, Haifa 32000, Israel

[6] Peter J. Rousseeow, Silhouettes: a graphical aid to the interpretation
and validation of cluster analysis, Journal of Computational and
Applied Mathematics 20 (1987) 53-65 University of Fribourg, ISES,
CH-I 700 Fribourg Switzerland

[7] Vijitha P, “Better Quantification of Vitiligo by ICA on Illumination
Corrected Images”, Medical Intelligence and Language Engineering
(MILE) Laboratory, Department of Electrical Engineering Indian
Institute of Science (IISc), Bangalore, India

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.14.IPMVA-386

IS&T International Symposium on Electronic Imaging 2016
Image Processing: Machine Vision Applications IX IPMVA-386.6

