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Abstract  

An emerging poultry meat quality concern is associated with 
chicken breast fillets having an uncharacteristically hard or rigid 
feel (called the wooden breast condition). The cause of the wooden 
breast condition is still largely unknown, and there is no single 
objective evaluation method or system known for rapidly and non-
invasively detecting this quality defect in boneless-skinless chicken 
breast fillets. Thus, there is an immediate need to develop a rapid 
and non-invasive sensing technique to detect the wooden breast 
condition. In this study, sub-surface microstructure and optical 
properties of poultry meat were measured by optical coherence 
tomography (OCT) at 930 nm and hyperspectral imaging from 400 
to 1,000 nm. The analysis of the measured OCT B scan images 
showed that the thickness and pattern of the epimysium (the fibrous 
connective tissue surrounding the muscle tissue) of the meat could 
be a good feature to differentiate between normal and wooden 
breast fillets. The OCT signals under the fats and whitish strong 
connective tissue were smeared with speckle noise so that the 
epimysium layer edge disappeared under these locations. Because 
OCT imaging had a small field of view (~1 cm x 1 cm), it was 
implied that the scanning time of a large area such as a chicken 
fillet would be very long. On the other hand, hyperspectral 
imaging was effective to rapidly scan the entire surface of each 
fillet and detect excessive fats and strong connective tissue 
although a spectral analysis showed that there was no pronounced 
difference between mean spectra of normal and wooden breast 
fillets. The study results suggested that hyperspectral imaging 
would increase the throughput of OCT imaging while OCT would 
detect the wooden breast condition, when both modalities were 
fused. Thus, a fusion of OCT and hyperspectral imaging will 
provide a sensing tool to rapidly and accurately detect and sort 
chicken breast fillets with the wooden breast condition. 

Introduction  
In the U.S. poultry industry, advancements in genetic 

selection and nutrition of birds have produced large, fast-growing 
broilers [1, 2]. However, poultry-meat quality defects are also 
becoming more prevalent in modern large, fast growing broiler 
chickens [3]. These quality defects are mainly associated with 
muscle myopathies such as white-striping (white striations parallel 
to the muscle fibers on the surface of the breast muscle) [4] and the 
wooden breast condition (breast fillets with an uncharacteristically 
hard or rigid feel) [5]. The cause of these muscle myopathies (i.e. 
white striping and wooden breast) is largely unknown. The 
symptoms of these quality defects include abnormal microstructure 
and appearance such as severe muscle degeneration and fibrosis 
(connective tissue irregularity) in the wooden breast condition 
(WBC) and abnormal accumulation of connective tissue causing 
excessive white striations on the skin surface in the white striping 
problem. Currently, there is no single objective evaluation method 
or system known for rapidly and non-invasively detecting and 

sorting boneless-skinless breast fillets with these myopathies. 
Thus, there is an immediate need to develop a rapid and non-
invasive sensing and sorting technique to detect these quality 
defects while measuring the overall quality of fillets.  

The purpose of this study was to investigate the potential of 
optical coherence tomography (OCT) and hyperspectral imaging to 
measure subsurface microstructure and optical properties (diffusive 
reflectance/absorption) of wooden breast (WB) fillets. OCT is an 
interferometric technique capable of non-invasive 1D, 2D, and 3D 
imaging of subsurface microstructure [6] whereas hyperspectral 
imaging is an imaging modality to measure optical properties of 
samples, such as reflectance [7]. The specific objective of the study 
was to investigate the pros and cons of OCT and hyperspectral for 
rapid and non-invasive measurement of the wooden breast 
condition of poultry meat and explore how to fuse these two 
imaging modalities in practice. 

Materials and Methods  
Chicken Fillet Samples  

As a preliminary study, 14 skinless, boneless breast 
(pectoralis major) fillets were collected from the deboning line (~3 
h postmortem) of a commercial processing plant that slaughters 
large broilers (7-9 lbs. live weight). The broiler birds were about 8 
weeks old. Fillets were selected in collaboration with experienced 
industry personnel based on the severity of the wooden breast 
condition (7 normal and 7 severe). Fillets were placed in plastic 
bags, packed on ice, and transported back to the U.S. National 
Poultry Research Center in Athens, GA (~40 min). Prevalence of 
visual defects (white striations, blood splash, excessive viscous 
fluid on surface, etc.) was recorded. Fillets were trimmed of excess 
fat and connective tissue and weighed. Note that some fats and 
connective tissue remained even after the trimming. Grouped into 
two classes (normal vs. severe) based on the rigidity of the fillet 
and the palpable severity of the diffuse hardened areas. Figure 1 
shows two fillet examples with normal vs. severe wooden breast 
condition. 

 
Figure 1.  Normal breast fillet (left) and wooden breast fillet (right) 
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OCT Imaging System 
OCT is a non-invasive, sub-surface optical imaging modality, 

providing micrometer resolution and millimeter imaging depth. 
OCT is based on a theory of low coherence interferometry, where 
interference of broadband light with low temporal coherence 
occurs over a distance of micrometers (i.e. a short coherence 
length). A broadband light source (e.g. a superluminescent diode) 
in near-infrared wavelength regions (e.g. at around 900 nm and 
1,300 nm) is typically used for OCT. The use of a near-infrared 
light source for OCT allows a better light penetration into 
biological tissue than the visible light. The basic scanning 
mechanism of OCT is to form an interferogram by combining the 
reflected light profiles from the reference arm and at a point in the 
sample, which is called a single-point A-scan. A B-scan generates 
a 2D cross-sectional image (called a longitudinal image) in the X 
(lateral)-Z (depth) plane. A 3D volumetric OCT image can be 
achieved by multiple line scans (B scans) in an area. A C-scan 
image, called en face image or transverse image in the X-Y plane 
can be obtained from a 3D data set. 

In this study, a spectral-domain OCT (SD-OCT) imaging 
system (Callisto, Thorlabs, Newton, NJ, USA) was used to acquire 
2D cross-sectional B-scan images. The SD-OCT system consisted 
of a 930-nm superluminescent diode light source with a 100-nm 
spectral bandwidth, a scanning system, an objective lens with a 36-
mm focal length, a linear CCD array-based spectrometer with 1024 
pixels, and an en face video camera with white light and 640 x 480 
pixel resolution. The maximum B-scan frame rate for 512 A scans 
was 2 frames per second. The maximum field of view (FOV) for a 
3D scan was 10 mm (X) x 10 mm (Y) x 1.7 mm (Z, depth). In 
practice, the small FOV and slow frame rate limited the number of 
B scans and the size of scanning area. In this study, the skin-side 
surface locations at three major portions (cranial, middle, and 
caudal) of each fillet were manually selected to measure OCT B-
scan images. A total of 41 OCT B-scan images were collected 
from three locations per each fillet. The length of a B-scan was 
8.08 mm and the depth was 1.69 mm. The acquisition time of one 
B-scan image with 1,040 (X) and 512 (Z) pixels was 2.64 seconds. 
The pixel resolution was 7.77 µm (lateral) and 3.31 µm (axial), 
respectively. 

Hyperspectral Imaging System 
Hyperspectral imaging combines spectroscopy and optical 

imaging to acquire spatially co-registered images in a pre-defined 
wavelength range of the electromagnetic spectrum (typically, 400-
1,000 or 1,000-2500 nm) to obtain spectral information at each 
image pixel location in the scanned area. Hyperspectral imaging 
has shown great potential in safety and quality assessment of food 
and agricultural products by measuring biological, chemical and 
physical properties of the products [7, 8]. In fresh red meat, near-
infrared spectroscopy has been used to assess tenderness, water-
holding capacity, color, pH, marbling, and sensory attributes [9]. 
Although a hyperspectral imaging system has been successfully 
developed for the detection of fecal materials [10, 11] and systemic 
disease [12] in poultry carcasses in a commercial setting, its use for 
poultry meat quality assessment has been underexplored. It can be 
hypothesized that detection of the wooden breast condition may be 
possible through the use of hyperspectral imaging. Being able to 
accurately detect the wooden breast condition using hyperspectral 
imaging online would allow processors to produce more uniform 
products in terms of meat quality through product segregation and 
to more accurately monitor how broiler production, handling, and 

slaughtering practices influence the occurrence of the wooden 
breast condition.  

The hyperspectral imaging system used for this study was a 
pushbroom line scanner in the visible and near-infrared (VNIR) 
spectral wavelength range from 400 to 1,000 nm. This 
hyperspectral imaging system consisted of a hyperspectral camera, 
a copy stand to which the camera was attached, and a computer 
that controlled the hyperspectral image acquisition. Illumination 
was provided by two soft boxes with tungsten lamps. The 
hyperspectral camera (Themis Vision Systems, Richmond, VA, 
USA) consisted of a VNIR spectrograph (ImSpector V10M, 
Specim, Oulu, Finland), a 16-bit 5.5 megapixel sCMOS detector 
(pco.edge, PCO-Tech Inc., Romulus, MI, USA), a focal plane 
scanner, and a front lens (Zeiss Distagon T* 35mm f/2 ZE, Zeiss, 
Thornwood, NY, USA). The front lens unit was moved by a 
motion control in order to scan the field of view line by line. The 
spectrograph had a nominal spectral range between 350 nm and 
1000 nm. The sCMOS camera provided a 2560 x 2160 pixel 
resolution. The hyperspectral imaging system captured a series of 
2D spectral images of the target with each image possessing spatial 
information along the x-axis and spectral information along the y-
axis. These 2D spectral images were combined to create a 3D 
hyperspectral image data cube via HyperVisual software (Themis 
Vision Systems, Richmond, VA, USA) on the fly. Diffuse 
reflectance was measured. The measured digital numbers at each 
pixel in the hyperspectral image were normalized (i.e. calibrated) 
to relative reflectance R using a 99% reflectance Spectralon® 
target (25.4 cm × 25.4 cm, SRT-99-100, Labsphere, North Sutton, 
NH, USA). The dimensions of one hyperspectral image data cube 
were 1,351 (width) x 751 (lines) x 836 (wavelengths, 400-1,000 
nm). The noise in the measured spectra was reduced by a Savitzky-
Golay smoothing filter (window size: 25; order of moment: 4) at 
each pixel position. After that, the calibrated hyperspectral images 
with relative reflectance values were stitched together into a single 
image mosaic, as shown in Figure 2 for normal and severe WB 
fillets, respectively.  

Data Processing and Analysis 
In SD-OCT, the signal processing algorithm to obtain the A 

scan profile from an interferogram is based on fast Fourier 
transform (FFT). The basic steps to create the depth-resolved 
intensity profile of a single A scan were the acquisition of a 
spectrogram (i.e. a spectrum), background subtraction, re-
sampling, and inverse FFT [6, 13]. The hyperspectral images were 
analyzed by first creating regions-of-interest (ROIs) using ENVI 
software (Exelis Visual Information Solutions, Boulder, CO, 
USA). The ROIs were obtained to extract spectral information in 
user-defined regions and to train/test classification and prediction 
models. Two types of ROIs were prepared. One type was to define 
the ROIs where the OCT images were collected. The other type of 
the ROIs was to define the representative spectra of meat, 
excessive fats, and whitish connective tissue. Notice that the 
excessive fats and connective tissue including white stripes still 
remained after sample trimming.  

The microstructure of chicken breast fillets was analyzed 
from the OCT B scan images. The structural difference between 
normal and severe wooden breast fillets was analyzed qualitatively 
and quantitatively. In this study, the analysis of the images was 
limited to the first layer of meat (muscle). A histology study with 
tissue samples spatially associated with OCT images is highly 
recommended in the future in order to better explain the OCT 
images and the structure information that OCT reveals. The area of 
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the first layer was objectively analyzed by image processing 
including histogram equalization, noise filtering, morphological 
filtering, and intensity thresholding. A classification model that 
was used to classify meat, fat and connective tissue was based on 
principal component analysis (PCA) and linear discriminant 
analysis (LDA) using principal component (PC) scores on the PC 
domain. Notice that the OCT images and hyperspectral images 
were not spatially co-registered because the primary goal of this 
study was to quickly investigate the potential of both OCT and 
hyperspectral imaging and evaluate the pros and cons of each 
imaging modality.  

Results and Discussion 
Figure 2 shows the mosaics of color video frames overlaid 

with the OCT B-scan lines and the mosaics of color-composite 
images obtained from hyperspectral images overlaid with the 
regions of interest where the OCT probe was pointed. Each OCT 
scan line (a red horizontal arrow on each video frame) was set 
within about 8 mm x 10 mm area. The color video frames of 
normal and WB fillets were arranged in 3 rows (probing locations 
at cranial, middle, and caudal parts from top to bottom) and 7 
columns (fillet samples) in each mosaic, respectively. 

 

 

(a) Normal fillets 
 

 

 

(b) Wooden breast fillets 
 

Figure 2.  Mosaics of color video frames overlaid with the OCT scan lines (red 
arrows) and mosaics of color-composite images of whole fillets overlaid with 
the regions of interest (boxes) where the OCT probe was pointed.  

(a) Normal 

 
(b) Severe WB 

 
(c) Severe WB with strong white stripes 

 
Figure 3.  Example video frames, scan lines, B scans, and A scans for (a) 
normal fillet, (b) severe WB fillet and (c) severe WB fillet with strong white 
stripes.  

Similarly, the hyperspectral images were mosaicked in 7 
columns (fillet samples) from left to right in Figure 2. The visual 
difference between normal and severe WB fillet images was minor, 
strongly implying that color vision would not be appropriate to 
detect the WBC. Because the degree of white stripes appeared to 
be highly related to the severity of WBC of each fillet, the ability 
of white stripes to measure the severity of WBC needs to be 
investigated in the future. 

The analysis of the cross-sectional OCT images suggested 
that the first layer of poultry muscle tissue might have different 
optical properties (e.g. refractive index and reflectivity). The first 
layer is called epimysium. The epimysium is a specialized form of 
the deep fascia that surrounds the muscle and is continuous with 
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the fascia. The epimysium is fibrous connective tissue that is 
comprised mostly of densely packed and interconnected collagen 
molecules. Figure 3 shows three examples of video frames, OCT 
scan lines, B scans, and A scans for one normal fillet and two 
severe WB fillets. Figure 4 shows the mosaics of OCT B-scan 
images for normal (top) and WB fillets (bottom). When there was 
neither strong connective tissue nor white striping visible on the 
fillet surface as in Figure 3(a) and 3(b), the corresponding 
epimysium was clearly visible and pronounced with contrasting 
edges along the scan line. However, when either strong connective 
tissue or white striping was present in the scanning path, the OCT 
signals under the fats and whitish strong connective tissue were 
smeared with speckle noise so that the epimysium layer edge 
disappeared. For example as in row 3 and column 4 of WB fillet 
mosaic in Figure 4, when the OCT probe scanned the fatty area, 
the epimysium was no longer clearly visible and only speckle noise 
was observed under the surface. The air-epimysium interface was 
more pronounced in normal fillets. These observations implied that 
the excessive fats and connective tissue including strong white 
stripes would make the detection of WBC more complex and 
difficult because normal fillets may also have excessive fats and 
strong connective tissue on their surfaces. 

The thickness and the area of the epimysium were measured 
by image processing. The processing results are shown as binary 
images in Figure 5. The estimated thickness of the epimysium was 
about 0.097 mm and 0.214 mm for normal and severe WBC fillets, 
respectively. The area of the epimysium was 15.71 mm2 And 36.29 
mm2 for normal and severe WBC fillets, respectively. 

 

 
 

Figure 4.  Mosaics of OCT B-scan images: Normal (top) and WB fillets 
(bottom).  

 

 
 
Figure 5.  Mosaics of processed B-scan images showing the potentially 
epimysium layers: Normal (top) and WB (bottom) fillets.  

The mean spectra obtained from the hyperspectral images are 
shown in Figure 6. The overall shape and reflectance of the mean 

spectra of normal and WB fillets were very similar across the 
entire spectral range from 400 to 1,000 nm. This observation 
suggested that there were no obvious spectral features to use for 
detecting WBC. However, a more close examination revealed that 
although the differences are subtle, the spectral regions between 
400 nm and 425 nm and between 525 nm and 600 nm could be 
potential spectral areas for a further investigation in the future. 
Figure 7 shows the mean spectra of fat, meat (muscle tissue) and 
whitish connective tissue. The mean spectral analysis clearly 
indicated that hyperspectral imaging could differentiate these three 
materials on the surface of each chicken fillet. The PCA-LDA 
classification results for fat, meat and connective tissue, as shown 
in Figure 8, implied that the hyperspectral imaging would be 
appropriate to detect these normal features of chicken fillets  
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Figure 6.  Mean spectra of normal and WB fillets.  
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Figure 7.  Mean spectra of fat, meat (muscle) and whitish surface connective 
tissue. 

 

 
 
Figure 8.  Classification of fat, meat and connective tissue on severe WB 
fillets.  

Conclusion 
Spectral domain OCT and hyperspectral imaging modalities were 
examined to investigate the potential of both techniques for rapid 
and non-invasive detection and sorting of boneless, skinless 
poultry breast fillets with the wooden breast condition. The OCT 
imaging showed a potential for differentiating between 
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microstructures of normal and wooden breast fillets. The analysis 
of the OCT cross-sectional images showed that the epimysium 
(outer later) encompassing chicken breast muscle tissue with the 
wooden breast condition was consistently thicker than normal 
fillets. The epimysium thickness of the wooden breast filets was 
about 2 times larger than normal fillets. Hyperspectral imaging 
showed that it could distinguish between fat, muscle tissue and 
excess connective tissue and assess their quantities. Although the 
capability to detect the wooden breast condition using 
hyperspectral imaging was limited, hyperspectral imaging 
combined with OCT imaging would increase the throughput of 
OCT imaging. Thus, a fusion of OCT and hyperspectral imaging is 
recommended to rapidly and accurately detect and sort chicken 
breast fillets with the wooden breast condition. 
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