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Abstract
Coherent change detection (CCD) images, which are prod-

ucts of combining two synthetic aperture radar (SAR) images

taken at different times of the same scene, can reveal subtle sur-

face changes such as those made by tire tracks. These images,

however, have low texture and are noisy, making it difficult to au-

tomate track finding. Existing techniques either require user cues

and can only trace a single track or make use of templates that are

difficult to generalize to different types of tracks, such as those

made by motorcycles, or vehicles sizes. This paper presents an

approach to automatically identify vehicle tracks in CCD images.

We identify high-quality track segments and leverage the con-

strained Delaunay triangulation (CDT) to find completion track

segments. We then impose global continuity and track smooth-

ness using a binary random field on the resulting CDT graph

to determine edges that belong to real tracks. Experimental re-

sults show that our algorithm outperforms existing state-of-the-

art techniques in both accuracy and speed.

Introduction
Multiple synthetic aperture radar images taken at different

times of the same scene can be combined to produce coherent

change detection images that can reveal subtle surface changes

such as those made by tire tracks [1, 2]. The CCD images,

however, are noisy due to SAR speckle, vegetation, shadows,

and other weather related phenomena. These undesirable noise

sources make it difficult to automatically identify and label vehi-

cle tracks. In addition, SAR images are unimodal [3], making it

difficult to identify high-quality image features that can differen-

tiate tracks from background noise.

The difficult nature of this problem is exemplified by the lim-

ited success of existing techniques [4, 5]. Given a search cue, e.g.,

starting location of a path, the technique in [4] finds the vehicle

track by tracing parallel lines (tire tracks). The proposed method

can find a single track provided that the user supplied the initial

search cue. A related method uses cubic spline fitting to extract

vehicle tracks [5]. It is limited to a single non-overlapping track.

In practice, a scene can have an arbitrary number of tracks, includ-

ing no tracks. In addition, these tracks may come from different

types of vehicles. Any automatic technique must be able to ac-

count for these conditions. A recent method addresses some of

these limitations by finding the simplest set of tracks that explains

the observed data [6]. It is a greedy method that finds one track

at a time, until the objective function can no longer decrease. The

obtained tracks, which are line segments, are iteratively merged

to form full tracks. The merging step is important as the ini-

tially obtained tracks may not be complete and the merging pro-

cedure allows the algorithm to discover missing parts of tracks. It

is, however, also computationally expensive as it considers every

possible pairwise merges recursively until convergence. Further-

more, the approach uses a parallel track template to find candi-
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Figure 1: Branching (a): the original track (left) is split into three

tracks (right) at the intersection. Linearizing (b): a track is split

until the angle θ is larger than a threshold. Best viewed in color.

date tracks. It is unclear how that approach can be generalized to

find single tracks, such as those made by motorcycles, or parallel

tracks made by various vehicle sizes.

This work presents an approach that can find different types

of tracks. We first identify a track feature based on the Hessian

of the image surface that can be used to initially identify good

track segments. We then find the remaining segments using the

CDT where the initially identified segments form the constrained

edges. We further reduce the set of edges by leveraging the fact

that tracks tend to be smooth. We determine which edges of the

augmented CDT belong to real tracks by forming a binary random

field on the edges. Our energy function consists of unary and

submodular pairwise terms for which a globally optimal solution

can be found in polynomial time using graph cut.

We are, of course, not the first to use the CDT to find con-

tours. Our approach is similar to the one proposed in [7]. In that

work, the CDT is used to find boundaries in natural images. They

use the probability of boundary (Pb) feature [8] to find edges and

form a binary random field on the CDT. In contrast, we are inter-

ested in finding tracks, which are not natural image boundaries.

Furthermore, we augment the CDT by leveraging the fact that

tracks tend to be smooth, resulting in a smaller graph. Our en-

ergy function is also different. Specifically, our energy function

allows for a global solution via graph cut. In contrast, the original

work uses belief propagation to find an approximate solution to a

higher-order energy function.

The next section describes the track feature and the con-

struction of the augmented CDT. We then present the submod-

ular energy function that allows for a global solution. Following

that, we present experimental results demonstrating the effective-

ness of our algorithm on real and synthetic data sets. Concluding

thoughts are provided in the last section.

Track Completion
Tracks can be viewed as ridges (or trenches) on the image

surface. Given input image I, our first step is to compute a ridge

feature for each pixel [9]. Specifically, the ridge feature at pixel i

is λi, the largest, in magnitude, eigenvalue of the Hessian matrix
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Figure 2: Example CDT output and removal of irrelevant com-

pletion edges: (a) tracks found by thresholding process, (b) CDT

output showing completion edges in green, (c) relevant comple-

tion edges. Completion edges bridge many missing parts of the

vehicle track. The removal step keeps meaningful completion

edges.

of I at pixel i. We generally filter I with a Gaussian kernel so that

the Hessians are more stable. Next, we form binary image Ibw by

thresholding the ridge features: Ibw(i) = 1 if λi > τ . The initial

set of tracks is formed by thinning Ibw, branching, and recursively

splitting each track until they are approximately linear. Figure 1

illustrates the branching procedure, which splits a track into mul-

tiple tracks at each intersection, and the linearizing process, which

recursively splits a track until the minimum angle formed by any

interior point (c) along the track and its two end points (a and b)

is above a threshold.

The resulting set of tracks forms the constrained edges of

the CDT. The new edges formed by the CDT are the comple-

tion edges. These completion edges bridge the gaps between con-

strained edges. Figure 2(b) shows an example CDT output. The

black lines are constrained edges and the green lines correspond

to completion edges. The completion edges discover the miss-

ing parts of the vehicle track. The example also shows that many

completion edges are not meaningful, especially those that run

in the middle of the parallel tracks. Using prior knowledge that

tracks tend to be smooth, we keep only relevant completion edges

as follows. We keep a completion edge if the angle formed by

the completion edge and one of its neighboring constrained edges

is larger than a threshold. This condition must hold at both ends

of the completion edge. In other words, we want the completion

edges to be relatively straight with respect to its neighboring con-

strained edges. The result of this removal procedure is illustrated

in Figure 2(c).

Energy Minimization
In order to determine which edges belong to real tracks, we

impose a binary random field on the obtained CDT graph. Let the

set of edges of the CDT graph be E, the set of constrained edges

be EC ⊂ E, and N ⊂ E × E be the neighborhood system on E

that stores adjacent edges. For each edge i ∈ E, we assign a label

xi ∈ {0,1}, where xi = 1 indicates that edge i is part of a track.

The optimal labeling minimizes the following objective function:

∑
i∈E

fi(xi)+ ∑
i, j∈N

[xi 6= x j][i ∈ EC ∨ j ∈ EC]g(i, j), (1)

where fi(xi) is the cost of assigning label xi to edge i, g(i, j) is a

smoothing cost based on the angle formed by edges i and j, and

[φ ] is an indicator function on predicate φ .

Let the set of pixels corresponding to edge i be P(i) and

λ i = 1
|P(i)| ∑ j∈P(i)λ j is the average ridge feature of the pixels

along edge i. Our label cost is

fi(xi) =− log p(λ i|xi). (2)

Let µ0 and σ0 be the mean and standard deviation of the back-

ground ridge feature, respectively, and µ1 and σ1 be the mean

and standard deviation of the track ridge feature, respectively. By

the central limit theorem, we expect λ i to be normally distributed

given xi:

p(λ i|xi = 0)≈ N (µ0,σ0/
√

|P(i)|) (3)

and

p(λ i|xi = 1)≈ N (µ1,σ1/
√

|P(i)|). (4)

We note that these equalities only hold approximately as adjacent

pixels are not strictly independent. The means, µ0 and µ1, and

standard deviations, σ0 and σ1, can be obtained from ground-truth

images. Note that our objective function does not explicitly model

track lengths, but they are captured in fi(xi). The longer an edge

is, the more confident we are about its label.

Let the angle formed by edges i and j be θi j . The smoothing

cost is a logistic function

g(i, j) =
α

1+exp(−β (θi j −θ0))
, (5)

where α , β and θ0 are constants. Note that the smoothing cost

only applies when the adjacent edges have different labels and at

least one of them must be a constrained edge; we do not enforce

smoothness on adjacent completion edges as their purpose is to fill

in the gaps between constrained edges. Once again, the smoothing

cost favors large angles as these incur larger penalties.

Since our objective function is submodular, a globally opti-

mal solution can be obtained via graph cut [10]. As a final step,

we remove any short, isolated edges.

Experimental Results
We demonstrate the effectiveness of our approach using real

SAR CCD images from a publicly available data set [11]. The

results are shown in Figure 3. The first column shows the in-

put CCD images. The middle column shows the images obtained

from thresholding the ridge features. The last column shows the

final results obtained by our algorithm. As described earlier, the

thresholded images contain disconnected pieces of tracks. By

forming the CDT using these pieces as constrained edges, our

algorithm fills in the missing pieces, resulting in smoother, more

contiguous tracks.

In order to quantitatively compare the performance of our al-

gorithm, we use the image set tested by the greedy track finder [6].

This image set consists of two subsets, dark and medium, repre-

senting varying track thicknesses. Each subset consists of 40 CCD

images of size 800×600 containing simulated tire tracks of var-

ious curvatures. Each test image is generated from a real SAR
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Figure 3: Example results on real SAR CCD images: input CCD images (left), thresholded images (middle), and output images (right).

The thresholded images contain broken pieces of tracks and the algorithm fills in the missing pieces resulting in smoother, more contigu-

ous tracks.
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Figure 4: Example test images: (a) dark, (b) medium. Each set

consists of 40 images of size 800× 600 containing various track

curvatures and background clutters. The average track length is

705.18 pixels.

image pair (from the same publicly available data set) and con-

tains a single randomly-generated tire track. Given a track and a

pair of SAR images of the same scene, the track is added to the

output CCD image by adding random (Gaussian) phase shifts to

pixels along the track trajectory in the non-reference image of the

SAR image pair [12]. The average track length is 705.18 pixels.

Example images are shown in Figure 4. We note that this im-

age set is not complete as it does not capture other aspects that

are present in practice such as scenes containing multiple tracks

made by different vehicle sizes.

We use the accuracy metric proposed in [6] to evaluate the

performance of our algorithm:

T P

GT +FA
, (6)

where T P is the number of correctly detected track pixels, GT is

the total number of track pixels, and FA is the number of non-track

pixels incorrectly identified as track pixels. This accuracy metric

is a real number between 0 and 1. It is 1 if and only if all track

pixels are detected and there are no false alarms. As the number

of false alarm pixels increases, accuracy decreases. Likewise, as

the number of correctly detected pixels decreases, accuracy also

decreases.

The tire track midline is taken to be the ground-truth track

pixels. A track pixel is correctly detected if and only if there is

a candidate pixel (classified by the algorithm as track) within a

Euclidean distance of r+5 from it, where r is the tire track radius

from the midline. The constant 5 is a buffer to accommodate for

candidate track pixels that lie on or near the tire tracks. Any can-

didate pixel that does not have a corresponding ground-truth pixel

is considered a false detection (FA).

We note that our algorithm actually finds the tire tracks, not

the midlines. However, in order to compare our algorithm against

the greedy algorithm, which only finds the midlines, we have to

use the same ground-truth midlines. The mean accuracies for the

two image sets are shown in Table 1. We use the same algorithm

parameters to detect tracks in both image sets. The results show

that the algorithm performs well on both sets. In particular, the ac-

curacy for the medium data set increases significantly, from 0.84

to more than 0.98.

Unlike the greedy algorithm, which recursively finds and

merges tracks until convergence, our algorithm finds the optimal

set of tracks by solving the energy function once. In practice, this

leads to significant computational advantage. On average, it takes

less than one minute to find tracks in 4000-by-4000 images. In

contrast, the greedy algorithm takes 30 minutes.

Table 1: Mean accuracies of the greedy algorithm [6] and the

current algorithm on the dark and medium image sets.

Greedy [6] Current

dark 0.9767 0.9941

medium 0.8429 0.9822

Conclusion
The ability to find tracks is an important tool in the areas of

security and surveillance. While CCD images offer the possibility

of seeing subtle surface changes caused by vehicle tire tracks, de-

veloping automatic algorithms to find these tracks have been lim-

ited. This work presented an approach that can accomplish this

task. Our approach exploits the fact that it is easier to find small

pieces of tracks than whole tracks. Using these initial pieces, we

can then discover the missing pieces to complete the tracks using

the CDT. The best set of tracks is found via graph cut on a binary

energy function that has a global solution. The resulting algorithm

is computationally efficient and produces results that outperform

the existing greedy algorithm.

Our current formulation does not take advantage of the fact

that vehicle tracks may be parallel. Expanding our approach to

account for this condition may further improve our algorithm. We

defer investigating this problem to our future work.
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