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Abstract
One of the most successful features for texture recognition

is the Local Binary Pattern. The LBP is the 8 digit binary num-
ber created by comparing the value of a central pixel with its 8
neighbours where 1s and 0s are assigned when respectively the
central pixel is larger or smaller than its neighbour. This pattern
is bit shifted circularly to its maximum value to obtain rotational
invariance. Comparing histograms of LBPs provides leading tex-
ture recognition.

In our research, we rank the center pixel with all its 8 neigh-
bours. Each pixel is substituted by a 3x3 grid where the numbers
one through nine appear once and correspond to the rank of the
underlying pixel values (of the local 3x3 neighbourhood) i.e. an
input image is transformed to look like a Sudoku grid. Then, we
read out the ranks clockwise starting with the right-most rank and
appending the central pixel to the end, we then rotate to the max-
imum value (so achieving rotational invariance). Each 9 digit
number is non-linearly mapped to the interval [0,1] so that the
overall dataset histogram has a uniform distribution. By com-
paring the histograms of our Sudoku rank features, we observe a
significant increase in recognition performance for the Outex and
Curet benchmark datasets.

Introduction
The topic of texture classification hinges on the assumption

that it can be quantified and/or understood using computational
methods. It has been an intensive area of research since the
1960s [1]. One of the most significant early contributions was
the Co-occurrence matrix proposed in [2]. The authors generated
features which, given a spatial relationship, describe how many
times varying grey-level intensities occur simultaneously. These
features were, by necessity, very fast to compute and showed
good performance on images of sandstone and aerial photog-
raphy. Another classical method is the Markov Random Field
(MRF). In [3] the authors model real world textures using MRFs.
They show that their method can reproduce small-scale “micro-
textures” well, but not larger scale “macro-textures”. A long
standing technique is the Gabor Filter. These are linear filters
which extract orientation and frequency information and do so in
a similar way to the human visual system [4]. They are commonly
used in the field of texture. These include texture segmentation
[5] and texture-based defect detection [6]. A more recent method
is the Dual Tree Complex Wavelet Transform. This uses multi-
ple filter-banks to extract orientation and magnitude information
from the images [7]. More specifically it uses two discrete wavelet
transforms in tandem to form a decomposition of the image with
bands of orientation and magnitude information. While applica-
ble to a wide range of vision applications they have shown good
performance in texture classification [8, 9]. The Local Binary Pat-
tern (LBP) is another recent method based on the idea that pixel
comparisons in local neighborhoods across an image can form

an index which can be used for classification [10]. Good perfor-
mance has been shown in a number of areas including texture
classification, face recognition [11] and medical imaging [12].
There has also been a lot of research into extending this initial
idea. These methods attempt to add to the feature, or change how
patterns are formed or selected to improve the baseline perfor-
mance. Examples include Dominant LBP [13] and Centre Sym-
metric LBP [14, 1].

A significant problem in the area of texture is that no stan-
dard description of it exists and no single method works best in all
conditions. Methods have been proposed which attempt to organ-
ise how we classify texture. A major contribution to this was [15],
where the authors propose that texture classification can be split
into four categories: statistical properties, mathematical models,
geometric methods and signal processing methods. This work
was then furthered by [16] where they define an entire taxonomy
of texture which also considers colour. One particular descrip-
tion of a set of texture classification methods is the Histograms of
Equivalent Patterns (HEP) [17]. This defines a framework which
encompasses many benchmark methods such as LBP and Gray
Level Co-occurrence Matrices . It makes the distinction that all
methods which are instances of HEP partition the feature space
based on image patches by applying a pre-defined function on the
intensities of that patch. Our method is most comparable to LBP.
We apply a function to a local 3x3 neighborhood to form a pattern
and then separate these patterns to form a histogram. This places
our method within the HEP framework.

Background
Our work is based on LBP. An LBP is a binary string which

describes a neighborhood of pixels. It is formed by comparing a
central pixel with its neighbors, if the neighbor is greater than the
centre it is assigned 1, if less than it is assigned 0.

Figure 1. LBP transformation of a local neighborhood.

This number is then read clockwise starting from an arbitrary
point and rotated to its maximum value. For reference the LBP in
Figure 1 would be 11110010, or 242 in decimal. This can be
expressed as

LBP(Np) =
P

∑
i=1

(pi > pc)
2(i−1)
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where N is the neighbourhood, P is the number of pixels and pc
is the central pixel. Once this process has been applied to every
pixel in an image a histogram of all the resultant integers forms
the feature vector. This representation has two main advantages:
firstly, it is invariant to any monotonic changes in the grey-scale
and secondly, it is rotationally invariant. It is also very computa-
tionally efficient; the only calculations needed are inequality tests
and for an eight pixel neighbourhood there are only 36 rotation-
ally invariant 8-bit LBPs. A further addition to the LBP was the
concept of uniformity. It was found that up to 95% of patterns
in an image contain two or less 0 to 1 transitions. These LBPs
are denoted uniform and are used to form the histogram with the
remaining patterns grouped into one bin. This significantly com-
presses the feature length such that each histogram now has p+2
bins, where p is the number of points in the neighbourhood.

LBP is a benchmark method and has proven performance on
many datasets. Its main drawback is the fact that it assumes the
magnitude of the difference between two pixels is unimportant.
An extreme case is a neighbourhood with a central pixel value of
0 and two outer pixels with values 1 and 255. Both are assigned
a 1 despite the fact that one represents near black and the other
white. We believe this difference is important. Our representation,
while it does not encode absolute difference, does describe how a
local area is organised in terms of magnitude while retaining the
benefits of LBP as described above [10].

The rest of this paper is organised as follows. In the fol-
lowing Section we propose the method for forming our Sudoku
patterns and the subsequent feature vector. We then go on to dis-
cuss classification. Finally we will discuss our results and then
move on to a conclusion.

Method
We form a pattern in a similar way to LBP however instead of

using just the centre pixel for comparisons we compare all pixels
in a neighbourhood simultaneously to form a rank-ordering.

Figure 2. Transformation of pixel intensities to rank values.

We read this clockwise as an integer starting at the right-most
pixel and appending the central pixel’s rank to the end. This can
be expressed as

S(P) =
n

∑
i=1

RANK(pi)∗10i

where the RANK operator assigns the rank to pixel p in neigh-
borhood P. This number is then “bit” shifted with circular wrap
around to its maximum value to achieve rotational invariance.
The pattern in Figure 2 would be 786139254 and then shifted to
925478613. This process is applied to every pixel in an image
to form our “Sudoku” image. Figure 3 shows transforms of three

images to their Sudoku Counterparts, note how in the first image
the lines are represented by lighter pixels (patterns with a higher
value) and the areas in between tend to be darker.

Figure 3. Transformation of raw images to their Sudoku counterparts.

A key feature of LBP and also our Sudoku representation
is that it is invariant to all typical photometric changes that can
occur when the capture conditions change (e.g. scaling, offsets
or any non-linear increasing functions applied to the image).
However, the Sudoku rank also has the advantage that it is a full
rank order and is not based on the binary relation of a central
pixel and its neighbours. As all our Sudoku patterns begin with
a 9 there are only 8 numbers in each pattern which can change.
As each pattern contains each number from 1 to 9 only once this
means the number of rotationally invariant Sudoku patterns is
8! = 40320. We plausibly have more information because the
number of rotationally invariant LBPs is 36. Our hypothesis is
that the Sudoku rank which compares all pixels with each other
will capture yet more salient information and so support yet more
accurate texture recognition.

Histogram Formation
Because we choose to begin the Sudoku rank with 9 all our

initial ranks are large integers. In order to remove any bias in
the representation–from how we make the nine digit rank number
we map the calculated Sudoku rank to the interval [0,1] so that
the probability of each mapped value is uniform. Specifically we
would like the raw histogram of Sudoku ranks to be uniform and
this can be achieved by histogram equalization [18]. A visualiza-
tion of histogram equalization is that it defines an increasing func-
tion f () when applied to our input data-the Sudoku ranks-have the
property that the histogram of the data is uniform. In our work we
apply f (), calculated for the whole dataset, on a per image ba-
sis. The histogram of mapped Sudoku ranks for a given image
will not be uniform and is used as an index for texture recogni-
tion. See Figure 4 where the points on the x axis correspond to
the upper and lower bounds for each histogram bin.

We have observed that the number of bins in each histogram
can have a significant effect on the performance of our system,
and that the optimal number of histogram bins varies between
datasets. In Figure 5 we show a graph of percentage accuracy
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Figure 4. Function f () applied to a dataset.

vs number of histogram bins for the Outex 13 dataset. As di-
mensionality increases so does average performance, however it
is worth noting that there are certain very specific partitions of the
feature space which provide either significant performance ben-
efits or losses. This is interesting and will be a topic of future
research. To decide on the number of histogram bins for our fi-
nal result we simply choose the value with the highest percentage
accuracy.

Figure 5. Classification accuracy against number of histogram bins on the

Outex TC 00013 dataset.

Uniformity
LBP also considers the concept of “uniformity”. This con-

cerns the number of transitions between 0 and 1 that a pattern
contains. Consider the LBPs 11111110 and 00000100. Both
these patterns have “uniformity” 2 (two transitions from 0 to
1). Through statistical analysis of pattern occurrence it has been
shown that in LBP8,1 the patterns with uniformity 2 or less typi-
cally correspond to 95 percent of the patterns in the image [10].
In the LBP method we typically histogram LBPs that have uni-
formity of 2 or less and group all the remaining higher uniformity
pixels into a single histogram bin. In our Sudoku method we ap-
ply the LBP “uniformity of 2” method to our Sudoku ranks. We
do this by only considering patterns which vary above or below
the central pixels rank more than twice. All other patterns are
placed in a bin appended to the end of the histogram.

Classification
To classify we separate our data into a training and testing

set. To do this we take every second histogram from each class
and use this as our training set, the remainder we use for testing.

We classify our histograms using a K Nearest Neighbor (KNN)
classifier [19]. We calculate the distance between a test sample
and every training sample. We then take the top K results and
assign the test sample with the modal class within those K results.
In our experiments we use K = 7 (empirically this gave the best
result across all three datasets). The distance measure we use is
the Kullback-Leibler divergence

KL(S,M) =
b

∑
i=1

SblogMb

where S is the test sample, M is the training sample and B is the
number of bins[20].

Data
We test our method on three benchmark datasets:

• Outex - A large dataset comprising multiple test suites of
images with varying image conditions. We test on Ou-
tex TC 00000 which is a grey-scale suite with 24 texture
classes under constant illumination, Outex TC 00010 which
is a grey-scale suite with 24 texture classes with varying ro-
tations and Outex TC 00013 which is a colour suite with 68
texture classes under constant illumination. All images are
128x128 pixels.

• Curet - A dataset of 61 classes of colour images under vary-
ing illumination conditions. The images are 200x200 pixels.

• Vistex - A grey-scale dataset of 167 texture classes. Each
class contains 64 patches each at 64x64 pixels.

Figure 7 shows examples of the images we use in our ex-
periments. The colour datasets are converted to grey-scale in pre-
processing. We also up-scaled the images in the Vistex dataset to
twice their original size after observing a significant performance
boost when doing so. Figure 6 is a graph of performance against
image scale for the Vistex dataset. For these results we used 191
histogram bins.

Figure 6. Percentage accuracy against image scale for the Vistex dataset.
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Figure 7. Examples of images from our five experimental datasets. Row 1 is Outex TC 00000, row 2 Outex TC 00010, row 3 Outex TC 00013, row 4 Curet

and row 5 Vistex.

Results
Table 1 shows our results. We compare our Sudoku method

with an 8 bit uniform rotationally invariant LBP and achieve
higher performance for all of our datasets.

Results of our experiments (percentage accuracy).
Outex00 Outex10 Outex13 Curet Vistex

Sudoku 98.9% 88.9% 73.8% 77.7% 83.4%
LBP 92.5% 86.1% 71.4% 76.7% 76.1%

Conclusion
In conclusion we have presented a novel feature based on

the benchmark method Local Binary Patterns. Our feature con-
siders the relationships between all pixels in a local neighborhood
instead of just the central pixel. We have achieved good perfor-
mance on a number of benchmark datasets outperforming LBP in
every case.
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