

Real-time Machine Vision with GPU-acceleration using Quasar
Jonas De Vylder, Simon Donné, Dirk Van Haerenborgh, Bart Goossens; dept. of Telecommunications and Information Processing,
 iMinds, IPI, Ghent University, Belgium

Abstract

The computational performance of graphical processing units
(GPUs) has improved significantly, achieving even speed-up
factors of 10x-50x compared to single-threaded CPU execution are
not uncommon. This makes their use for high throughput machine
vision very appealing. However, GPU programming is
challenging, requiring a significant programming expertise. We
present a new programming framework that mitigates the
challenges common for GPU programming while maintaining the
significant acceleration.

Introduction
There is an increasing interest in high throughput machine

vision, both for industrial as bio-medical applications. These
applications are typically constrained by a set of hard constraints
related to accuracy and real-time performance. Often these
constraints are contradictory, i.e. in order to achieve the required
accuracy more complex techniques are needed, whereas achieving
real-time performance often requires simple and computational
efficient algorithms. One approach to mitigate this contradicting
requirements is the use of hardware accelerators such as GPUs.
Unfortunately, efficiently implementing algorithms on
heterogeneous hardware is even for expert developers a
challenging, time consuming task.

We present a new programming framework, Quasar, which
facilitates GPU programming. Our high-level programming
language relieves the developer of all implementation details such
that he can focus on the algorithm and the required accuracy.

Background
Given the great speedup that can be achieved by using

hardware accelerators, several approaches have been proposed in
the past to facilitate programming on heterogeneous hardware.
Most approaches fall within one of the following groups:
• The use of classic programming language, (e.g. java,

MATLAB, python, etc.) in combination with a low-level
programming language (e.g. CUDA, OpenCL, …) for the
hardware accelerated parts.

• The use of programming languages with integrated support
such as Mozilla Rust.

• The use of existing libraries as a set of accelerated building
blocks (e.g. Thrust, CUSP, Armadillo MAGMA, FLAME,
GPU-accelerated functions in OpenCV, …).

• The use of domain-specific languages (e.g. Halide,
OpenACC, Rootbeet, …)

While all these approaches have their merit, they generally
require fixed programming patters which limits the flexibility of a
developer. Moreover, most of these approaches still require a lot of
manual optimization in order to achieve proper acceleration, thus
relying on the available programming expertise for specific
hardware, instead of being properly device agnostic.

Quasar programming language
With this paper we present Quasar, a new programming

framework consisting of a simple high-level programming
language, an advanced compiler system, a runtime system and
IDE.

The Quasar language is a high level scripting language with
an easy to learn syntax similar to python and MATLAB (see Fig. 1
for an example). This makes Quasar well suited for fast
development and prototyping. A Quasar program is first processed
by a front-end compiler that automatically detects serial and
parallel loops that could be accelerated by heterogeneous
hardware. In the code of Fig. 1, the four for-loops are for example
merged into a single kernel that can run in parallel, and this
without any specific parallel constructs or other requirements of
the programmer. In a second compilation phase, a number of back-
end compilers processes the output of the front-end compiler, thus
generating C++, OpenCL, LLVM and/or CUDA code. Based on
the generated code the runtime system can dynamically switch
between CPU and GPU. This automatic scheduling at runtime is
done by analyzing the load of all devices, the memory transfer cost
and the complexity of the task. This way, the programmer is
relieved from complicated implementation issues that are common
for programming heterogeneous hardware.

Figure 1 example Quasar code - calculation of the location
of the mask in the image based on the MSE.

High throughput machine vision
We evaluate the usability of our programming framework

using three different machine vision methods. We chose these
three methods for their usability in both industrial and biomedical
inspection systems.
1. Super-pixel segmentation: An algorithm that clusters similar

pixels in groups, so called super-pixels. The clustering is
done based on intensity, while regularizing the shape of the
super-pixels based on compactness [1].

2. Template matching: An algorithm that locates the location in
an image that best resembles an input template. A simple
implementation is shown in Fig. 1. In our implementation we

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.14.IPMVA-375

IS&T International Symposium on Electronic Imaging 2016
Image Processing: Machine Vision Applications IX IPMVA-375.1

create an extra speedup by the use of an image pyramid with
two levels.

3. Model based segmentation: robust segmentation by jointly
optimizing a data-fit term based on intensity and a term
regularizing the shape. While this method is robust against
noise and clutter, it is computationally demanding since it
requires an iterative optimization step [2].

Results
For each of the three mentioned algorithms we evaluate the

performance of three different runs: a single-threaded C++
implementation and two Quasar runs, one only using a multi-core
CPU, a second one combining CPU and GPU. All runs where
executed on a machine with an Intel i7-4712HQ CPU and NVIDIA
GeForce 750M graphics card. Table 1 summarizes the
performance of all runs. Note that the Quasar implementation that
runs on GPU achieves real-time performance for all three methods.

Table 1. Performance results for different applications.

C++ Quasar
(CPU)

Quasar
(CPU+GPU)

Super-pixel
segmentation 8.85 fps 9.54 fps 34.48 fps

Template
Matching 2,91 fps 4.93 fps 64.01 fps

Model based
segmentation 0.79 fps 1.18 fps 21.09 fps

Conclusion
Quasar allows developers to focus on design aspects of the

algorithms rather than implementation aspects. We showed that
using quasar, real-time performance can be achieved for several
machine vision methods and this without any change to the
algorithm or implementation.

References
[1] R. Achanta, A. Shaji, K. Smith, and A. Lucchi, “SLIC Superpixels

Compared to State-of-the-art Superpixel Methods,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 34,
no. 11, pp. 2274–2281, 2012.

[2] Bresson, X.; Esedoglu, S.; Vandergheynst, P.; Thiran, J. P. & Osher,
S. Fast global minimization of the active Contour/Snake model
Journal of Mathematical Imaging and Vision, vol. 28, pp. 151-167,
2007.

Author Biography
Jonas De Vylder received his M.Sc. in informatics from Ghent University
(2007) and his PhD in engineering science from Ghent University (2014).
Since then he has worked in the Quasar team of iMinds – Ghent University.
His work has focused on the development of efficient load balancing on
heterogeneous hardware.

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.14.IPMVA-375

IS&T International Symposium on Electronic Imaging 2016
Image Processing: Machine Vision Applications IX IPMVA-375.2

