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Abstract

The detection of quasi-periodic patterns, such as those found
in clustered-dot halftones, can be efficiently achieved by search-
ing for strong peaks in the frequency domain. In this paper, we
quantify four factors that contribute to the attenuation of those
characteristic peaks related to mobile hand-held image capture.
These include MTF, halftone cluster size, blur, and contrast. We
derive the expected theoretical attenuation for each of these fac-
tors, and then compare these with experimentally measured re-
sults from mobile captured images of test prints.

1. Introduction

Embedding data in hardcopy has a number of useful appli-
cations for which the image capture can be easily accomplished
with mobile cameras. 1D and 2D barcodes are the most common
means of embedding such data. Barcode readers require fidu-
cial marks, such as the large concentric squares on three corners
around a QR code that preprocessors use to detect the barcode [1].
Fiducial marks, and barcodes in general, are considered by many
as perceptually ugly, particularly when used in documents.

A high capacity more aesthetically pleasing alternative to
barcodes is embedding data in clustered-dot halftones. Methods
include modulating the orientation of elliptical halftone dot clus-
ters [2] or shifting the positions of the dot clusters [3]. While
data-bearing halftones are more attractive than barcodes, the lack
of fiducials can make camera-based detection more challenging.
However, the quasi-periodic nature of these patterns affords very
easy detection in the frequency domain [4]. The halftone patterns
reveal four characteristic peaks in the Fourier Transform ampli-
tude. The relative locations of these peaks also indicate to the
decoder the orientation and scale of the halftone. As these fre-
quency peaks are central to fast decoding, it is important to ac-
count for the things that can affect their amplitude. Knowing a
priori the conditions that account for peak attenuation helps with
the peak detection process. In addition, directly measuring peak
attenuation can serve as an indicator of the quality of the captured
image.

While there is considerable work in the area of image quality
measurement, and particularly for mobile devices [5], the quan-
tification of the factors that contribute to the collective attenuation
of frequency peak amplitude has not been reported. Examining
the details of Fourier peak attenuation for quasi-periodic patterns
is the focus of this work. We organize the paper into two main
parts. In the first part, we identify four of the most influential
factors affecting peak amplitude, and derive the expected atten-
uation. In the second part, we compare this with experimental
measurements using a mobile camera.

2. Four Peak Attenuation Factors
Our goal is to quantify each of the factors that contribute to

the attenuation of characteristic peaks in the frequency domain.
These include:
(1) Optical System MTF – the modulation transfer function is the
magnitude response to sinusoids of different frequencies [6]. It is
a measure that comes into play with pattern resolution and camera
to object distance;
(2) Size of dot clusters – the size of the clusters that make up a
halftone change as the gray level to be rendered varies from light
to dark;
(3) Motion blur and focus – consequences of hand-held mobile
devices; and
(4) Contrast – a measure characterizing the difference between the
lightest and darkest part of the halftone pattern, resulting primar-
ily from differences in illumination.

The next subsection will first define the periodic pattern that
is of interest and its Fourier peak. The following subsections will
then address each of the factors separately.

2.1 Peak of Periodic Pattern
In this section, we analyze the characteristics of the type of

periodic pattern that is of interest in this paper. We assume that it
consists of an array of dot clusters d(x,y) that repeat on a square
lattice with interval X×X within a square window with size W ×
W . Thus, the image can be expressed as

f (x,y) = repX ,X (d(x,y)) · rect(
x

W
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y
W
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Here D(u,v) is the CSFT of the dot cluster d(x,y). To obtain
Equation (3) from Equation (2), we assume that X �W , i.e. that
the W ×W window contains a sufficient number of repetitions of
the dot cluster d(x,y).

Equation (3) shows that there will be strong localizations
of energy in F(u,v), at frequencies (u,v) = (k/X , l/X), where
k and l are integer-valued. In order to determine these loca-
tions digitally, we sample in the x and y directions at interval
S, and compute the Discrete-Space Fourier Transform (DSFT)
F(µ,ν), where the frequency variables µ and ν have units in
cycles/pixel. The spectrum F(µ,ν) is of interest in the range
−0.5 < µ,ν < 0.5, and the peaks indicated in Equation (3) will
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occur at frequencies (µ,ν) = (k/M, l/M), where M = X/S is as-
sumed to be integer-valued. We define the peak of the fundamen-
tal frequency as the maximum peak value which is not located on
the µ or ν axis. More specifically,

max(|F (µ,ν |µ,ν 6= 0)) .= max
(
|D
(
± k

M
,± l

M
|k, l 6= 0

)
|
)

(4)

To find the location of the maximum peak, we apply the
method described in [3]. It will be convenient to normalize the
maximum peak magnitude by the DC value F(0,0) of the spec-
trum. In addition, we will be interested to study the behavior of
the peak magnitude as the dimension of the dot cluster varies. So
we define the normalized maximum peak magnitude as

Pm =
max(|F(µ,ν)|)
|F(0,0)|

, where µ,ν 6= 0 (5)

Here, m denotes the number of pixels in the dot cluster. In the
remainder of this paper, we will drop the adjective normalized
when referring to the peak magnitude. However, we will always
mean normalized peak magnitude.

2.2 Optical System MTF
Among the effects that may change the image quality, the

modulation transfer function (MTF) behaves as a low pass filter
to decrease the magnitude of higher frequencies. We measured
the MTF of our mobile device by using the (ISO 12233) slanted
edge analysis tool with the (ISO 16067) QA-62 target. Figure 1
was measured on an iPhone 5 by the slant edge method. The MTF
curve provides an understanding of how much the peak is attenu-
ated for periodic objects with different repetitive frequencies.

An awareness of the MTF effect is important because the
fundamental peak does not occur at a fixed location. The magni-
tude of the fundamental peak is decided by how close the cam-
era is to the target, as well as the resolution at which the target
has been printed. Depending on the combination of the printing
resolution and camera resolution, the location of the peak value
changes significantly. The peak will suffer MTF attenuation even
if the camera is perfectly focused and still. Theoretically, if the
fundamental peak is perfectly taken at frequency fp, the peak
value will be

Pm,MT F ( fp) = MT F( fp)
|Pm( fp)|
|Pm(0,0)|

(6)

2.3 Size of Dot Clusters
The dot cluster size also affects the peak magnitude. In this

section, we will use ideal digital images to show the peak magni-
tude for both 1D and 2D cases. An analysis will be provided to
understand the theoretical maximum peak attenuation in the 1D
case.

Assume the 1D highlight dot clusters shown in Figure 2(a)
with period X inches and the dot cluster width mS inches, where
as before, S is the sampling interval. Thus, each cluster contains
m pixels. Let the black value of the dot cluster be 0, and the rest
is 1. The 1D highlight dot cluster is given by

dm,1D(x) = 1− rect(
x

mS
) (7)

Figure 1: MTF measured on an iPhone 5 by slant edge analysis
tool with (ISO 16067) Q-62 target. The cropped image on the
right shows the vertical slanted edge being used.

Define Dm,1D(u) as the 1D CSFT of dm,1D(x).

Dm,1D(u) = δ (u)−mS · sinc(mSu) (8)

As we did in Section 2.1, we next consider the digital equivalent
dm,1D[i] = dm,1D(iS) of the 1D Continuous-Space (CS) dot cluster
function. Here i is our spatial index. We then have for the absolute
value of the DSFT of the dot cluster function

Dm,1D(µ)= e− jπ(M−1)µ sin(πMµ)

sin(πµ)
−e− jπ(m−1)µ sin(πmµ)

sin(πµ)
(9)

Here, as before, M = X/S is the number of samples per period
of the dot pattern. We define a 1D array fm,1D that consists of an
array of dot clusters dm,1D that repeats with interval X with total
length W . Thus the 1D signal fm,1D can be expressed as

fm,1D(x) = repX (dm,1D(x)) · rect(x/W ) (10)

Define Fm,1D as the 1D CSFT of fm,1D. Then

Fm,1D (u) =
1
X

comb 1
X

Dm,1D(u)∗Wsinc(Wu) (11)

≈ W
X ∑

k
Dm,1D(

k
X
)δ (u− k

X
) (12)

To calculate the peak attenuation in the 1D case, we use the nor-
malized peak magnitude defined in Section 2.1. The 1D form of
the maximum peak to DC value is

Pm,1D
(

fp,1D) =
max(|Fm,1D(µ|µ 6= 0)|)

|Fm,1D(0)|
(13)

=
|m · sin(πm/M)|

(M−m)|sin(π/M)|
(14)

Here, we have used the fact that the maximum peak is located
at µ = 1/M. We substitute µ in Equation (13) with 1/M to get
Equation (14). Figure 2(b) shows that for a fixed period M = 8
pixels, the peak magnitude gradually increases as the dot cluster
m increases from size 1 to 4.

For the 2D case, the size of the clusters is defined by a dither-
ing template [3] shown in Figure 3(a). The cluster is periodic and
repeats every 8×8 pixels. Similar to the 1D case, the peak mag-
nitude for a cluster with size m pixels is the value of the largest
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(a)

(b)
Figure 2: Relationship between peak spectral magnitude and 1D
cluster width. (a) Cluster sizes 1 to 4. From left to right are non-
periodic clusters with width 1/8, 2/8, 3/8, 4/8. (b) The DFTs of
the corresponding periodic patterns.

peak to DC ratio denoted as Pm( fp,2D) which occurs at frequency
fp,2D = (µp,νp). We shorten fp,2D to fp in the rest of paper. Un-
like the 1D case, Pm is not monotonically increasing or decreasing
from cluster size 1 to 16. The peak magnitude gradually increases
as m increases from 1 to 16; but it decreases a little at cluster
sizes 12 and 16 as indicated by the red line in Figure 3(b). This is
caused by the asymmetric shape of the clusters along the x and y
axes. However, if we take the peak magnitude to be the average of
the magnitudes of the two largest peaks, this value will increase
monotonically as the size of the dot cluster increases.

Figure 3(b) shows the peak magnitude for each size of high-
light dot cluster in the 2D case. All peak magnitudes are normal-
ized by the peak magnitude for the size 16 dot cluster. The blue
line in Figure 3(b) shows the average peak magnitude of the maxi-
mum peak and second maximum peak for the indicated frequency
range. In this case, the size 16 dot cluster has the maximum peak
magnitude; and the size 1 dot cluster has the minimum peak mag-
nitude.

2.4 Motion Blur and Focus
Blurriness would attenuate the peak magnitude. However,

we want to find another metric that helps to identify image quality.
The new quality metric does not search for the peak magnitude,
but looks at the frequencies higher than the fundamental peak. We
present two different image quality metrics largely based on fea-
tures in the frequency domain. The two metrics we propose for
quantifying quality are
(1) QE : a metric that measures the mean spectral magnitude at
high frequencies;
(2) Qσ 2 : a metric that measures the variance in the spectral mag-
nitude at high frequencies.

The introduction of blurriness to the image will increase

(a)

(b)
Figure 3: Relationship between peak 2-D DSFT spectral magni-
tude and 2D cluster area. (a) 2D highlight cluster sizes 1 to 16.
The shape of the cluster is defined by [3]. Row one shows dot
cluster sizes 1 to 8. Row two shows dot cluster sizes 9 to 16 (left
to right). (b) Peak magnitude versus size of dot cluster. We use the
highlight clusters defined in (a). The red line shows the maximum
peak magnitude for the frequencies−0.5 < µ < 0.5, 0 < ν < 0.5.
The blue line shows the normalized average peak magnitude of
the two maximum peaks for the frequencies −0.5 < µ < 0.5,
0 < ν < 0.5.

the energy at low frequencies and attenuate the peak at the fun-
damental frequency. The two quality metrics QE and Qσ 2 ob-
serve the mean and variance values at high frequencies, which
may indicate the blurriness of the periodic image. From Equation
(3), the higher frequency part of the periodic pattern CSFT spec-
trum will only have some smaller peaks located at frequencies
(u,v) = (k/X , l/X), where k and l take on integer values, and at
least one of them must be greater than 1 in absolute value. The rest
of the spectrum should have values close to 0. When blurriness
is introduced to the image, energy is shifted to the low frequency
part of the spectrum which reduces the mean and variance in high
frequency part of the spectrum.

To examine this property, we define the two quality metrics
mentioned at the beginning of this subsection. To align more
closely with the calculations that are to be performed, we define
these metrics in terms of the DSFT frequencies (µ,ν). We first
define the frequencies above r as a set Ωr.

Ωr = {(µ,ν)|
√

µ2 +ν2 > r, 0.5 < µ,ν < 0.5} (15)

The set Ωr is illustrated by the grey area shown in Figure 4. Here,
we specifically choose the radius r so that Ωr does not include the
peaks corresponding to the fundamental frequencies of the peri-
odic pattern. The area of Ωr is denoted as Ar.

Ar = 1−πr2 (16)
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We define Er as the sum of the spectral magnitude |F(µ,ν)| in
Ωr; and we define QE and Qσ 2 according to,

QE = Er/F(0,0) (17)

Qσ 2 =

∑
(µ,ν)∈Ωr

(|F(µ,ν)|− Er

Ar
)2

Ar · (F(0,0))2 (18)

As indicated above, QE and Qσ 2 are both functions of r which
determines the range of high frequencies. For our testing image,
we perform a search for the radius r which yields the maximum
value for Qσ 2 .

Figure 4: Illustration of high frequency region Ωr used to calcu-
late the quality metrics QE and Qσ 2 .

2.5 Contrast
Image contrast affects the binary image by reducing the dif-

ference between the grey values of the black and white colors.
Cameras, just like human eyes, are sensitive to image contrast.
When the contrast is reduced, the difference between the black
and white colors becomes more difficult to distinguish. Contrast
is another factor that would affect the peak magnitude. In order to
study the effect of contrast, we first define f0(x,y) as the periodic
pattern of full-range-contrast dot clusters d0(x,y) that repeat on
a square lattice with interval X ×X within a square window with
size W ×W , where the grey value of a black dot is 0 and the rest
of the area is 1.

Let d(x,y) be the imperfect version of dot cluster d0(x,y),
where the black and white values of the dot cluster are shifted so
the contrast is reduced. We define f (x,y) as the periodic pattern
of dot clusters d(x,y) that repeats on the square lattice with inter-
val X×X inches within a square window with size W×W inches.
As before, we sample f (x,y) with interval S inches to represent
f (x,y) digitally, where M = X/S and N =W/S are assumed to be
integer-valued. We use the luminance contrast to define the sen-
sitivity to change in grey level. The luminance contrast is given

by

λ =
max f −min f

average( f )
=

max f −min f

1
N2

N−1

∑
i=0

N−1

∑
j=0

f [i, j]

=
max f −min f

1
N2 F(0,0)

, (19)

where F(0,0) is the DC value of the DSFT of f [i, j]. We can also
write Equation (19) in terms of the dot cluster function d[i, j].

λ =
maxd−mind

1
N2 (

N
M )2

M−1

∑
i=0

M−1

∑
j=0

d[i, j]

=
maxd−mind

1
M2

M−1

∑
i=0

M−1

∑
j=0

d[i, j]

, (20)

We define γ = mind and ξ = maxd−mind. The contrast λ is

λ =
ξ

a · (γ +ξ )+b · γ
(21)

where 1/2 < a < (x2− 2)/x2 and b = 1− a for a highlight dot
cluster. Here a and b are the ratio of the areas covered by white
and black color, which depends on the size of the highlight dot
cluster. In general, a 6= b. For example, the size 4 highlight dot
cluster shown in Figure 3(a) is covered by a = 7/8 white and
b = 1/8 black. The ratio of the peak magnitude to the contrast
that was derived in Equation (19) is

Pm

λ
=

F( fp)

F(0,0)
(

1/N2 ·F(0,0)
max f −min f

) (22)

Next, we replace f (x,y) in terms of f0(x,y). That is f (x,y) =
ξ f0(x,y)+ γ . As before, for purpose of computation, we work
with the sampled versions of these functions. The DFT F [k, l] of
f [i, j] is given by

F [k, l] = ξ F0[k, l]+ γδ [k, l], where k, l = 0, ...,M−1 (23)

Here δ [k, l] denotes the 2D unit sample function, which has value
1 for (k, l) = (0,0) and value 0, otherwise. Then,

F [k, l] =

{
ξ F0[k, l] , for k 6= 0, or l 6= 0
ξ + γ , for k, l = 0

(24)

Because fp 6= (0,0), Equation (22) can be written as

Pm

λ
=

1/N2(ξ F0( fp))

ξ
=

F0( fp)

N2 (25)

F0( fp) and N2 are the same for different contrast levels. Thus,
equation (25) shows that the peak-magnitude-to-contrast ratio is a
constant.

3. Experimental Results
To study the four quality factors that affect the peak in the

Fourier spectrum of a periodic pattern, we designed the following
experiment which will be explained in Sections 3.1 through 3.4.
All experimental images are printed by HP LaserJet monochrome
printers and captured by the back camera on an iPhone 5.
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3.1 Optical System MTF
We designed a test page to examine the influence of the op-

tical system MTF on the peak magnitude in the Fourier spectra of
periodic patterns with different fundamental frequencies. In or-
der to minimize the the effect of digital camera image processing
(i.e., auto white balance, auto exposure), all the periodic patterns
with different fundamental frequencies should be captured in one
shot. This will allow the same image processing adjustment by the
camera to all the periodic patterns. The test page for measuring
MTF attenuation is designed as a set of samples with gradually
increasing periodic frequency. We use a size 4 dot cluster. In
other words, the period M changes from sample-to-sample. We
designed a test page with 8 samples with gradually increasing pe-
riodic M. We shot the test page under conditions such that the
illumination was the same over the entire the test page.

The experimental results are shown in Figure 5. Figure 5(a)
shows the peak magnitude for the different samples. To obtain
an accurate estimate of the peak magnitude from the entire sam-
ple, we randomly cropped each sample into five 128×128 pixels
patches, computed the DFT of each patch, and averaged the peak
magnitudes over the five cropped patches. We normalized each
peak magnitude to 1 by dividing it by the peak magnitude of the
lowest fundamental frequency patch among all the samples.

Figure 5(a) shows that the peak attenuation becomes more
serious when the fundamental peak moves to a higher frequency.
The peak magnitude is attenuated to nearly zero when the fre-
quency of the fundamental peak is above 0.2 cycles/pixels, in
which case the period of the dot clusters is 5 pixels. The low-
est frequency that we measured in this experiment is 0.05 cy-
cles/pixel, which corresponds to a period of 20 pixels. We con-
jecture that for longer periods, the fundamental frequency in the
periodic pattern may be masked by noise in the vicinity of origin
of the spectrum of the periodic pattern. From our experiments, the
range of the fundamental peak location that is able to be captured
by the camera is roughly from 0.05 to 0.33 cycles/pixels.

Compared to the camera MTF curve measured in Figure
1, the peak in the Fourier spectrum of the printed and camera-
captured periodic pattern has a narrower range of fundamental
frequencies that can be used with dot cluster size 4. Comparing
our peak magnitude measurements with the optical system MTF,
we observe that both the peak magnitude and the MTF decrease
with increasing frequency.

3.2 Size of the Dot Cluster
In Section 2.3, we showed that the peak magnitude depends

on cluster size. To test the peak attenuation caused by cluster size,
we designed a test page with patches that have different cluster
sizes. For the same reason we mentioned in Section 3.1, all the
patches are captured in one shot with similar illumination over
the entire image to minimize the variation of the camera signal
processing. We randomly cropped fifteen 128× 128 pixels sam-
ples from each patch of dot clusters, and computed the average
of peak height. Example of two cropped samples are shown in
Figure 6(a).

In this experiment, all clusters size patterns are captured at
the same fundamental frequency; so the MTF should attenuate the
peaks equally. However, different cluster sizes would not have the
same contrast value. This can be explained by the Murray-Davies
dot gain equation. This will further attenuate the peak magnitude

(a)

(b)
Figure 5: Effect of optical system MTF on Fourier spectrum peak
magnitude. (a) Peak magnitude for six different fundamental fre-
quencies corresponding to the periodic patterns shown in (b) from
left to right with image size 128×128 pixels.

of the smaller sized dot clusters due to the low contrast. We can
observe this in Figure 6(a). The size 1 cluster pattern is lighter
than the size 16 cluster pattern.

The experimental result is shown in Figure 6(b). The peak
height is defined as the average magnitude of the two maximum
peaks. We normalized the peak magnitude by dividing it by the
peak magnitude of size 16 dot cluster. We use the red dashed line
to show the peak magnitude from the digital cluster, and use the
blue solid line to show the experimental peak magnitude. It is
shown that the camera captured peak magnitude generally agrees
with the digital sample. However, the peak magnitudes for the
camera-captured dot-clustered patterns do not monotonically in-
crease with the size of the dot cluster. The pattern for cluster size
16 has the largest peak magnitude; and the pattern for size 1 dot
cluster has the smallest peak magnitude.

3.3 Motion Blur and Focus
We have defined two quality metrics in Section 2.4 to check

the mean and variance of the high frequency content. In this sec-
tion, the two quality metrics are examined with a set of images.
We first grouped the images into three quality levels, bad, fair and
good according to the following criteria. In the good level, dot
clusters are clearly separated with clean boundaries between black
and white values. The size and shape of dot clusters may be hard
to recognized, but clean boundaries can be observed. For images
categorized to the good level, they are recommended for further
processing, such as image alignment or decoding the embedded
data. For the fair level, the boundaries of dot clusters are blurry,
but each cluster is still separated. The observer can distinguish the

©2016 Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2016
Image Quality and System Performance XIII IQSP-214.5

DOI: 10.2352/ISSN.2470-1173.2016.13.IQSP-214



(a)

(b)
Figure 6: Effect of size of dot cluster to peak magnitude on the
camera-captured image. (a) Example of a cropped sample of size
1 cluster and a size 14 cluster from camera-captured image. (b)
Digital peak magnitude is shown in red dashed line. Camera-
captured peak magnitude is shown in blue solid line.

width of periodic dot clusters. The quality of the fair level may
be the result of camera lens movement or hand shaking when the
image is captured. Such video frames can be used for further de-
coding, but we can expect the decode accuracy to decrease. For
the bad level, the clusters are not separated and strong blurriness
due to motion or improper focus can be observed. These images
are not recommended for further processing.

Figure 7 shows examples of the three quality levels. We cap-
tured video on the same object with 56 frames in total. The object
contains all sizes of dot cluster. We cropped a 256× 256 pixels
window from every frame at the same location, and categorized
every video frame to one of the three quality levels. To capture our
video samples, we first wait for the camera to focus then slightly
shake the camera to blur the video. We then stop shaking the cam-
era and wait for the camera to refocus. Because the video frame
is continuous, the quality level will be consistent at neighboring
frames. For example, frames 1 to 10 in our experimental video
are categorized to the quality level fair. Frames 11 to 25 are cate-
gorized to the quality level good. Frames 28 to 32 are categorized
to the quality level bad.

Figure 7: Three different image quality levels of periodic patterns.
Columns from left to right show image quality level from bad to
good. The object is a periodic dot cluster pattern with mixing
cluster sizes.

To compare the three categories with the quality metrics, we
use the two quality metrics QE and Qσ 2 from Equation 17 and 18.
The experimental result is shown in Figure 8. Figure 8(a) uses
the quality metric QE to measure the quality levels and Figure
8(b) uses the quality metric Qσ 2 to measure the quality levels.
Our results show that the quality metrics QE separates the three
quality levels better than Qσ 2 .

3.4 Contrast
To study contrast, we generated two types of test pages. The

Type 1 patches fix the middle grey value, and shift the black and
white value equally toward the middle value. The Type 2 patches
fix the black value, and shift the white value toward the black
value. Figure 9 shows the camera-captured images of the two
types of contrast. The image is captured in one shot. Theoreti-
cally, Type 2 contrast has the minimum grey value γ fixed to zero.
Equation (20) shows when γ = 0, contrast is equal to 1/a regard-
less of how much the white value is shifted. However, this will
not happen in the real scenario, since the minimum grey level will
not be zero under sufficient lighting. If the minimum grey level
is nearly zero, the entire picture is most likely taken in very low
light condition and the entire target may not be seen.

To measure the relationship between contrast and peak mag-
nitude on the camera-captured images, we randomly crop fifteen
128× 128 pixels samples from the each of the patches as shown
in Figure 9. The measured contrast versus peak magnitude is de-
picted in Figure 10. Each dot represents the measurement from a
cropped sample. For the ideal periodic dot cluster, Equation (25)
shows that the peak magnitude to the contrast is a constant. For
the experimental results, 160 samples of Type 1 and Type 2 are fit-
ted onto a straight line. Our result shows that the peak magnitude
increases with the contrast.

4. Conclusion
In this paper we quantify four factors that contribute to the

attenuation of the characteristic peaks related to mobile hand-held
image capture of periodic clustered-dot halftone patterns contain-
ing embedded metadata. These include blur, MTF, halftone clus-
ter size, and contrast. We first used a theoretical approach based
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(a)

(b)
Figure 8: Quality metrics tested on 56 continuous video frames.
We first group the video frames into three quality levels by the
rules defined in Section 3.3. Then, we calculate the image quality
by the two quality metrics. Green dots are frames with good qual-
ity. Blue dots are frames with fair quality. Red dots are frames
with bad quality. (a) and (b) show the results of quality metric QE
and Qσ 2 .

Figure 9: Two types of contrast being captured by camera. The
upper row shows Type 1 contrast. The lower row shows Type 2
contrast.

on ideal digital images to discuss the four factors. An experiment
was then conducted to verify the four factors using digital images
captured with a camera. A comparison between theoretical values
and experimental values were made for each of the factors.

Figure 10: Relationship of the contrast to the peak magnitude
computed from 160 samples of Type 1 and 2 patches. The sample
points are fitted onto a straight line.
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