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Abstract 

This paper explores how noise equivalent quanta (NEQ) can 
be estimated conveniently in digital imaging systems, and provides 
two very different examples of its application. A principal result is 
that, if an imaging system has a flat noise power spectrum (NPS) 
prior to down-sampling, and if pre-filtration is used to control 
aliasing while maintaining reasonable sharpness, the NPS will 
again become roughly flat after down-sampling, with the 
magnitude reduced by approximately the square of the down-
sampling factor. This result allows the NEQ of a digital system to 
be conveniently estimated as the square of the product of the 
capture modulation transfer function (MTF), the linear pixel signal 
to noise ratio (SNR), the resampling factor, and the pre-filter MTF. 
Two examples of applications of this approximation are described: 
(1) understanding likely performance of pedestrian detection 
algorithms as a function of automotive image sensor properties; 
and (2) developing a new usability metric for mobile imaging, 
digital zoom factor, that combines the information contained in the 
commonly used parameters of megapixels and SNR10. 

1. Introduction 
There are many cases in imaging where performance is traded 

off between signal fidelity, which can be measured using 
modulation transfer function (MTF), and noise, which is best 
characterized by noise power spectrum (NPS). In such cases, if 
both MTF and NPS can be determined, then it is useful to calculate 
a powerful Fourier metric, the noise equivalent quanta (NEQ). This 
metric combines MTF and NPS to quantify the square of the signal 
to noise ratio (SNR) as a function of spatial frequency [1a]. 
Although used heavily and to great advantage in medical imaging 
optimization [2,3], NEQ has infrequently been applied elsewhere 
in imaging. Examples of non-medical imaging studies using NEQ 
include Refs. [4 – 7].  

Several barriers to the more widespread use of NEQ exist. 
First, NPS is less familiar to most people than is MTF, making 
NEQ a somewhat non-intuitive quantity. Second, although the 
propagation of MTF through a digital imaging system is well 
known, that of NPS is less so, with the Doerner equation [8] not 
explicitly covering sampled systems. Although the extension does 
not require any new concepts, the aliasing of two-dimensional 
noise can be hard to picture. I hope that this paper will lower both 
of these barriers somewhat, through presentation of a small amount 
of tutorial material, and the derivation of an approximate 
expression for digital system NEQ.  

This paper is organized as follows. Section 2 provides 
background information on NEQ, including a defining equation 
and its role in signal detection. Sections 3 and 4 quantify the effect 
of image resampling on MTF and NPS, respectively. A 
surprisingly simple relationship is found for resampled NPS, 
derived under reasonable constraints. Section 5 uses this result to 
write an approximate equation for NEQ in an imaging system with 

resampling, which then allows systems with different numbers of 
capture pixels to be compared fairly and with some rigor. Section 6 
applies this equation to analyze imaging system performance 
versus distance and light level, as it relates to algorithmic detection 
of pedestrians. Finally, Section 7 describes a rather different 
application of the same equation, in which a usability metric, 
digital zoom factor, is defined and used to predict the optimal 
number of capture pixels for a fixed optical format.  

2. Noise Equivalent Quanta (NEQ) 
NEQ is a Fourier metric combining MTF and NPS as shown 

in Eq. 1 [2].  
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Here  is the mean linear signal and  is spatial frequency, 
which can have a variety of units, such as cycles per mm in the 
sensor plane, cycles per pixel (equivalent to cycles per sample), or 
cycles per degree at the retina. There are two simplifications that 
occur when choosing to express spatial frequency in cycles per 
pixel, in which units the monochrome Nyquist frequency is one-
half. First, NEQ is more easily interpreted (see next paragraph), 
and second, this choice yields a simple relationship between noise 
variance and flat NPS magnitude. Specifically, the noise variance 
is always equal to the integral of the NPS over all frequencies. If 
the NPS is flat (constant noise power, independent of frequency, 
corresponding to white noise), then the variance is equal to that 
constant noise power times the frequency integral. For cycles per 
pixel frequency, this integral is trivial; it runs from –½ to +½ in x 
and y, and so has a value of unity. Thus, the NPS magnitude 
exactly equals the variance, which is convenient.  

Returning to Eq. 1, the numerator represents fractional signal 
modulation squared. By dividing the NPS by the square of the 
mean signal , the denominator becomes fractional noise power, 
which is fractional noise amplitude squared per unit frequency 
squared (i.e., per unit area in an x-y frequency plane). Now 
fractional modulation divided by fractional noise amplitude is just 
the signal to noise ratio (SNR) at the corresponding frequency, so 
the NEQ is SNR2 per reciprocal unit frequency squared. With our 
choice of frequency units, the NEQ conveniently becomes SNR2 
per pixel area, meaning the SNR2 that would be achieved by 
integrating signal over an area equaling one pixel. Had we instead 
chosen the frequency to be cycles per mm, the NEQ would be 
SNR2/mm2, the SNR2 achieved by integrating signal over an area 
equaling one square mm.  

An interesting point is that a linear operation such as 
convolution with a space-invariant kernel (to sharpen, or denoise) 
does not change NEQ, because the numerator and denominator are 
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affected equally, the MTF squared being cascaded with the kernel 
MTF squared, and the NPS being shaped by that same kernel MTF 
squared. This accords with the general intuition that such an 
operation does not fundamentally change image utility. In contrast, 
SNR as usually calculated (mean signal divided by the root-mean-
square noise, with no frequency dependence), will improve 
markedly with the application of a blurring filter, reflecting the 
decrease in noise, but not the commensurate decrease in sharpness.  

NEQ is closely related to another Fourier metric, detective 
quantum efficiency (DQE), which is the NEQ divided by exposure 
in quanta. Because an ideal detector has only Poisson (shot) noise, 
the highest possible SNR is equal to the square root of the number 
of quanta, and thus the maximum value of DQE is unity. Although 
DQE is convenient, being normalized in this way, NEQ is the more 
relevant quantity when predicting the imaging system performance 
under a specific set of circumstances (that is, a particular 
exposure).  

Quantification of task performance falls in the realm of signal 
detection theory, where detectability index, d', is a commonly 
employed metric [9]. It is essentially the number of standard 
deviations of separation between distributions of two outcomes; a 
high d' corresponds to a high likelihood of detection. NEQ can be 
used to estimate the d' of a signal having a mean-normalized 
frequency spectrum, S, via Eq. 2. [3a].  

   yxyxyx ddSNEQd  ),(),(' 22  (2) 

This equation and more advanced analogues based on model 
observers are commonly used to design and to optimize 
performance of medical imaging instrumentation for particular 
diagnostic tasks [3b]. A philosophically similar but simpler 
approach with be used in Section 5 to estimate image suitability for 
pedestrian detection.  

To recap those points that will be used later, with spatial 
frequency in cycles per pixel, NEQ can be interpreted as the pixel 
SNR2 as a function of frequency, and a flat NPS has a magnitude 
equal to the noise variance.  

3. MTF and Resampling 
It is commonly the case today that a higher number of pixels 

are captured than are ultimately displayed or analyzed 
algorithmically in computer vision. Two means of reducing 
numbers of pixels need to be distinguished: cropping and down-
sampling. Cropping is simply discarding capture pixels to leave a 
smaller image corresponding to a reduced field of view (which 
need not be centered with respect to the original field of view). It is 
the principal operation employed in digital zooming, which 
emulates the reduced field of view of a longer focal length lens. 
Down-sampling involves resampling the image to reduce the 
number of pixels, while maintaining the same field of view. The 
simplest type of down-sampling is decimation, in which rows and 
columns of the original image are periodically removed. For 
example, a 2x decimation could be accomplished by deleting even-
numbered rows and columns. 

Digital zoom can have great compositional advantages 
through the removal of distracting and/or irrelevant content and the 
increased angular subtense of the main subject in the final 
displayed image. However, the cropping operation does not 
fundamentally change the quality of the individual pixel data 
(though it will generally lead to more challenging viewing 
conditions). In contrast, down-sampling has no effect on 

composition (as the field of view is preserved), but it can have a 
substantial effect on the quality of the image data, by changing 
sharpness and noise, and introducing aliasing and other artifacts 
associated with reconstruction error [10a].  

For purposes of pixel book-keeping, it is helpful to define the 
quantities Mc (capture megapixels), Md (display or final image 
megapixels), digital zoom factor Z (where Z = 2 reduces the 
number of pixels to ¼ of the original number), and resampling 
factor R (where R = 2 down-samples to ¼ of the original pixels). 
These quantities are related by Eq. 3:  

22 RZMM dc   (3) 

The effect of linear resampling on MTF is well explained 
elsewhere [11]. In brief, a resampling operation can be viewed as 
comprising two steps: (1) an interpolating step that formally 
produces a continuous image with values at all points within the 
field of view; and (2) a sampling step that extracts discrete points, 
creating a new sampled image. The interpolating step involves a 
filter with an associated MTF, which modifies the system MTF up 
to that stage by being cascaded with it. The sampling step does not 
have an associated MTF, but the resampling factor R is essentially 
a magnification that scales the frequencies of the system MTF.  

There are a number of common interpolators, such as linear, 
cubic spline, bicubic, and replication (sample and hold). Better 
filters have high response in the pass-band, for good sharpness, and 
low response in the stop-band, to prevent aliasing (if down-
sampling) and reconstruction artifacts. Aliasing is the mapping of 
high-frequency signal and noise to lower frequencies during down-
sampling, producing artifacts and increasing noise [10a]. 
Conversely, reconstruction error is the mapping of low frequency 
content to higher frequency, again creating artifacts [10a]. For the 
best trade-off of sharpness and artifacts/noise, the transition 
between the pass-band and the stop-band should occur near the 
Nyquist frequency of the resampled image. Consequently, 
regardless of resample factor, the MTF of good filters have a 
relatively modest range of variation of shape when plotted against 
cycles per pixel in the resampled image plane. This is convenient 
because it allows us to select a representative filter for 
computations and expect that similar results would be found for 
other good interpolators.  

Considering the simplest case of a monochrome system prior 
to spatial image processing, we can now write the system MTF 
after resampling as: 

)()/()( rrrcr MTFRMTFMTF    (4) 

where νr is cycles per pixel in the resampled image plane, MTFc is 
the capture MTF (lens plus sensor), MTFr is the resample MTF, 
and R is the resampling factor.  

4. NPS and Resampling 
The behavior of the NPS during resampling is more complex. 

The capture NPS (prior to image processing operations) in most 
digital cameras at most light levels is very close to being flat, 
although exceptions occur when there is significant structured 
noise and/or at very low signal levels where shaped noise sources 
(like 1/f noise) may not be washed out by shot noise, which has flat 
NPS. We hereafter assume that the capture NPS is indeed flat. Fig. 
1 shows the changes that occur in the NPS during resampling.  
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Figure 1. Contour plots of two-dimensional noise power spectra show the 
effect of down-sampling on noise. The x- and y-axes run from zero to Nyquist 
(capture Nyquist in the top and middle plots, resampled Nyquist in the bottom 
plot). The three color codings of z-data are the same in the three plots. Top: 
The NPS is initially flat, with only small fluctuations about the mean power, 
which has a value of 1.00. Middle: After digital low-pass pre-filtering, the NPS 
is peaked and band-limited, with most high-frequency noise suppressed to 
mitigate aliasing. Bottom: After 2x decimation, the NPS again is flat, with a 
mean power of  ≈0.25, about ¼ as much power as initially. Thus, the effect of 
an ideal resampler on white noise is approximately to reduce noise power by 
the down-sampling factor squared, without changing the NPS shape. 

Each of the three contour plots have the same x and y axes, 
running from zero to Nyquist frequency, and the same color coding 
over the same range of z-data, from which the contours are drawn. 
The top plot shows the NPS in two dimensions, computed from a 
synthetic image. The NPS is initially flat, with only minor random 
fluctuations about the mean noise power value of 1.00 (red on the 
color bar), arising from the 4% standard error in NPS measurement 
expected for the 1024 synthetic noise realizations [1b]. The middle 
plot shows the NPS after a simple interpolation filter, 
corresponding to a 2x average-down operation, has been applied. 
The NPS is now more or less bell-shaped (the plot shows only one 
of four symmetric quadrants), being peaked at low frequency, and 
dropping close to zero at the highest frequencies, which have been 
very effectively smoothed. It can be seen that much of the power 
below the resampled Nyquist (0.25 units because of the 2x sample-
down) has been retained, as desired in the stop-band, whereas most 
of the power in the stop-band has been suppressed, also as desired. 
Better filters, such as bicubic, would have a somewhat sharper 
transition from pass-band to stop-band.  

The bottom figure shows the NPS after the sampling step. The 
Nyquist frequency now corresponds to the resampled image, rather 
than the capture image, as in the preceding two plots. The 
sampling operation creates spectral replicates of the bell-shaped 
NPS centered at all integer pairs of cycle per pixel frequencies, and 
this grid of bells adds up to produce the final noise distribution. 
Referring to the middle plot of Fig. 1, and ignoring smaller 
contributions from more distant spectra, this is like adding 
inwardly pointing bell quadrants at the top left, top right, and 
bottom right corners of the plot. Remarkably, though composed of 
a sum of bell-shaped noise power spectra, the final result is again 
essentially flat. Essentially, the noise aliasing during sampling has 
filled in the higher noise frequencies that were suppressed by the 
filtering operation. But with the change in frequency to resampled 
cycles per pixel in the bottom plot, the mean power value is 
reduced to approximately 0.25 (blue on the color bar), a factor of 
R2 lower than the starting noise power. In summary, if the NPS 
before resampling is fairly flat, then the NPS after resampling can 
be approximated by the NPS before resampling, divided by the 
square of the resampling factor, a very convenient result!  

5. NEQ After Resampling 
In this section we combine results from the previous three 

sections to write a simple equation for estimating NEQ after 
resampling. As mentioned in Section 2, when frequency is in 
cycles per pixel, a flat NPS will have a constant noise power equal 
to the noise variance. Assuming this to be true, the denominator of 
Eq. 1, which is fractional noise power, becomes equal to the 
variance divided by the square of the mean. This is exactly 
1/SNR2, where SNR is measured in the usual fashion, namely, as 
mean raw sensor signal divided by the root-mean-square noise, 
with no frequency dependence. Combining this result, Eq. 1, Eq. 4, 
and the conclusion from the preceding section (resampled NPS ≈ 
original NPS divided by the resample factor squared), finally 
yields the desired equation:   

)()/()( 2222
rrrcr MTFRMTFSNRRNEQ    (5) 

Eq. 5 is quite informative. As mentioned earlier, good quality 
reconstruction MTFs do not vary widely when expressed in the 
resampled frequency space, so it is the first three terms that cause 
the principal variations in NEQ. SNR is universally used in the 
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digital imaging industry and could be considered the baseline 
metric, from which NEQ represents an improvement. In that light, 
the principal extensions to SNR in Eq. 5 are the squares of the 
resample factor and the capture MTF at rescaled frequency.  

The former addresses a first key SNR limitation, namely, that 
pixel SNR is not suitable for comparison of sensors having 
different numbers of pixels, without further adjustments. For 
example, at equal optical format and technology, lower megapixel 
sensors will always have better pixel SNR, but are likely to yield 
lower final image quality (discussed further in Section 7). The R2 
term allows sensors with different numbers of pixels to be 
resampled by different factors to yield the same number of pixels 
for display or analysis, allowing rigorous comparison.  

The second extension to SNR, the square of the capture MTF, 
addresses a second limitation of SNR, namely, that pixel SNR can 
be improved to arbitrarily high values by averaging operations 
such as convolution with a blur filter. As mentioned in Section 2, 
NEQ is unaffected by such operations if they are linear, because 
the filter MTF is cascaded with the other components of the 
capture MTF (which includes everything prior to resampling).  

The two terms above also reflect the two ways in which 
down-sampling improves NEQ. As seen in the argument to the 
capture MTF, down-sampling reduces the frequencies in the 
capture plane that “matter”. As MTFs generally decrease with 
increasing frequency, this translates to improved modulation 
transfer and NEQ at a given frequency in the resampled image 
plane, which could be the display plane for visual applications or 
the analysis plane for a computer vision algorithm.  

The R2 term represents noise improvement, arising from the 
filtering step having an effect similar to the averaging of R2 pixels. 
This degree of averaging provides a good balance between 
sharpness, noise, aliasing, and other artifacts. This statement is 
equivalent to the previous assertion that a good interpolator should 
have an MTF that transitions from the pass-band to the stop-band 
around the Nyquist frequency of the resampled image. It is also 
equivalent to the geometrical view that the spatial extent of the 
filter kernel should be similar to that of one resampled image pixel, 
projected back to the capture plane.  

Before proceeding to the two sample applications of NEQ, it 
is appropriate to review the primary underlying assumptions of Eq. 
5: (1) the original NPS is flat (corresponding to white noise), and 
(2) the interpolator filter has a “reasonable” response, in which the 
transition from pass-band to stop-band is approximately centered 
on the Nyquist frequency of the resampled image. The latter 
assumption can be violated but should be met in imaging pipelines 
of reasonable quality. The former assumption can be violated at 
very low light levels or in sensors with significant amounts of 
structured (fixed pattern) noise. Furthermore, in color sensors, 
even the luminance NPS is likely to be shaped somewhat by the 
demosaic operation, especially if it involves adaptive denoising. 
Despite these limitations, Eq.5 is conceptually very useful, and 
when comparing systems, estimation errors are likely to be quite 
correlated, so that predicted differences will be fairly accurate.  

6. Example 1: Pedestrian Detection 
Computer vision in automotive applications is currently an 

area of intense activity. Initiatives related to safety ratings in 
Europe particularly are bringing sensor performance in difficult 
conditions under scrutiny. Our first application of NEQ is to the 
problem of algorithmic pedestrian detection, which could provide 
input to warning, headlight steering, and braking systems. We 
expect that the computer vision efficacy would depend 

significantly upon the sensor signal fidelity and noise, and so 
anticipate that NEQ could provide a useful predictor of algorithmic 
performance. (As a contrived example of when this would not be 
true, if all pedestrians were mauve, color reproduction accuracy 
might be more important than spatial image characteristics.) Signal 
fidelity and noise would be strongly dependent upon distance to 
the pedestrian (affecting pixels subtending the pedestrian) and light 
level (affecting SNR). The most rigorous treatment of the problem 
would be to use Eq. 2 to predict detectability by cascading NEQ (at 
different distances and light levels) with the square of the signal 
(pedestrian) spectrum and integrating.  

Not having a robust estimate of the signal spectrum, we will 
instead perform a single-frequency analysis, at the highest 
frequency of importance in one published pedestrian detection 
algorithm [12], which was 5 cycles per pedestrian height. We 
choose to focus on the highest frequency of importance because 
that is where the NEQ will be lowest and so most limiting. To 
capture 5 cycles per pedestrian, we will need at least 10 pixels 
vertically subtending the pedestrian. Most algorithms performing 
object detection will search at a number of scales to find the 
objects at different distances, so it is reasonable to assume that a 
resample factor has effectively been selected by the algorithm to 
produce a region of interest on the appropriate scale for analysis. 
As already stated, this could correspond to a situation in which the 
pedestrian were vertically subtended by as few as 10 pixels (to 
meet the Nyquist criterion for 5 cycles per pedestrian). However, it 
could be advantageous to have a larger number of subtending 
pixels, which would improve the modulation transfer of 5 cycles 
per pedestrian, but would reduce pixel SNR. The best resample 
factor would depend upon the details of the algorithm, but we will 
proceed assuming that a good compromise would be to resample 
so that the pedestrian is subtended vertically by 20 pixels. In most 
cases this will involve down-sampling, but if the pedestrian were 
far enough away, it could require up-sampling.  

NEQ at 5 cycles per pedestrian, in an image bicubically 
resampled so that the pedestrian subtended 20 vertical pixels, was 
computed for a range of light levels and distances. The latter, with 
camera lens focal length (3.1 mm), pixel pitch (3.75 and 3 µm), 
and pedestrian height (1.75 m), determined capture pixels 
vertically subtending the pedestrian, in turn implying the needed 
resampling factor R. This calculation was repeated for real 1-
megapixel and 2-megapixel sensors having the same optical format 
(1/2”) and using the same automotive grade camera lens. 
Parameters for which representative values were assumed included 
integration time (66 ms), pedestrian reflectance (20%), and camera 
lens f-number (f/2.2) and transmittance (90%). Pixel SNR was 
computed from real sensor data for pixel sensitivity (electrons per 
lux-s), linear full well, and noise floor (read noise, dark current 
shot noise, etc.). The two sensors shared very similar technology 
so this comparison was realistic but was not biased by factors 
unrelated to the pixel pitch per se. Lens MTF was approximated 
using the standard diffraction-limited formula, with the f-number 
increased 10% above the actual f-number, emulating some 
degradation from aberrations. Sensor MTF was estimated based on 
pixel size, microlens fill factor, crosstalk, and sampling phase 
MTF. The latter reflects the random alignment of the pixel 
sampling grid with signals in a scene [13]. For example, the 
modulation transfer of a sine wave at Nyquist can vary from good 
(peaks and troughs align with pixel centers) to zero (they fall on 
the pixel boundaries). The sampling phase MTF is a sinc function 
of the pixel pitch and should be included when modeling capture 
MTF or using super-sampled slanted edge MTFs. 

©2016 Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2016
Image Quality and System Performance XIII IQSP-213.4

DOI: 10.2352/ISSN.2470-1173.2016.13.IQSP-213



 

 

 
 
Figure 2. Contour plots of the common logarithm of noise equivalent quanta at 
the key frequency of 5 cycles per pedestrian, for 1-megapixel (top) and 2-
megapixel (bottom) sensors with equal optical format. Good algorithm 
detection of pedestrians is likely for values above approximately 2.5 log units. 
Performance drops at long distances (upper parts of plots) because there are 
not enough pixels subtending the pedestrian. Performance drops at low light 
levels (left parts of plots) because SNR is reduced. At constant optical format, 
the higher megapixel sensor provides slightly better results because of the 
increased number of pixels subtending a pedestrian. 

Results are shown in Figure 2, with the top figure 
corresponding to the 1-megapixel sensor, and the bottom to the 2-
megapixel sensor. The x-axes are logarithmic light level from 1 to 
10 lux, corresponding to very low illumination. The y-axes are 
logarithmic distance from 5 to 50 meters. The contours show the 
common logarithm of NEQ. As expected, the lowest NEQ values 
occur at low light levels (producing low SNR) and long distances 
(producing poor MTF because of the small number of pixels 
subtending the pedestrian), which map to the top left corners of the 
plots.  

Although we do not have algorithm performance data against 
which to “calibrate” the NEQ, it is plausible that an algorithm 
would perform adequately under conditions yielding good visual 

image quality. A mid-tone linear SNR of 40 (32 dB) is often 
assumed to enable fine pictorial quality, and typical mid-frequency 
system modulation transfer for a stationary capture with good 
focus might be about ½. So an NEQ of (40×½)2 = 400 would seem 
sufficient for good algorithmic performance, although adequate 
performance might be possible at substantially lower values. 
However, taking this as a guideline, we’d anticipate that a 
log10(NEQ) of 2.6 would support viable pedestrian detection, so 
most of the (logarithmic) space mapped in the figures would be 
covered.  

Comparing the top and bottom plots, it is seen that the 2-
megapixel sensor performs slightly better, providing coverage to 
longer distances and lower light levels. The reason for this result is 
that the 2-megapixel sensor always has √2 more pixels subtending 
the pedestrian, providing an MTF advantage, because the pixel 
aperture, essentially a point spread function, is always smaller 
when projected onto the pedestrian. Although the pixel SNR is 
poorer, after resampling to the same number of pixels in the 
resampled image used for algorithmic analysis, the SNR of the two 
sensors are very close, implying that the pixel performance 
approximately “scales”. This is a good achievement but not too 
surprising at the large pixel sizes involved (3.75 and 3 µm). We 
will see a different behavior with smaller pixels in the next 
example.  

7. Example 2: Digital Zoom Factor 
The two most common parameters cited in connection with 

sensor capabilities for mobile applications are, at the point of sale, 
number of capture pixels (hereafter, just “megapixels”), and in 
discussions between sensor vendors and handset manufacturers, 
SNR10, the light level in lux at which a linear SNR of 10 is 
achieved [14]. Although both can be correlated with image quality, 
they each have major shortcomings. SNR10 is only useful for 
making comparisons between sensors having the same number of 
pixels. Because SNR10 is a capture pixel-based metric, taken 
literally, it predicts that the optimal number of pixels is always 
exactly one, which would produce a sensor that was a bit deficient 
in resolution. Conversely, capture megapixels provides a rigorous 
metric for comparison only when comparing sensors using the 
same pixel design. Taken literally, it implies that the best number 
of pixels is always the maximum number that can be 
manufactured. An example of a question that cannot be answered 
by either SNR10, or megapixels, is the optimal number of capture 
pixels for a given optical format, a question of significant practical 
interest.  

The purpose of this section is to use NEQ to define a metric 
that combines some of the content of SNR10 and megapixels, so 
that the above “optimal number of pixels” question can be 
answered. It is desired that the metric be something that can be 
understood by end consumers, and so possibly useful at the point 
of sale. One way of achieving this is to have the metric relate to a 
particular use case of interest. An example of such a benchmark 
metric is enlargeability factor, which is the maximum optical 
magnification to which a frame of film can be enlarged, without 
the overall image structure quality falling below a threshold [10b]. 
This metric could tell an end consumer how large a print could be 
made from a particular size of negative, if well exposed.  

The metric proposed here, digital zoom factor, has some 
similarities to enlargeability factor. Mobile devices are desired to 
be thin and so are heavily constrained with respect to optical zoom, 
which creates a distinct difference from the single lens reflex 
experience. A primary, arguably the primary, benefit of increased 
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megapixels is the possibility of supporting higher levels of 
cropping for compositional improvement, as discussed in 
connection with, and quantified by, the digital zoom factor Z of 
Eq. 3. Physically, digital zoom factor can be interpreted as follows: 
if the user places their fingertips on a touchscreen or touch-pad, 
and then spreads them apart to zoom into an image, until the 
quality is just acceptable, then Z is the ratio of their final to initial 
separation. This metric could be explained to end users with a 
simple graphic, which relates to a use case that is likely of 
significant relevance to them.  

Because digital zoom factor relates quality to degree of 
zooming, the important factors to incorporate into the metric are 
those that vary with zoom. This includes those factors that are 
frequency-dependent, such as sharpness and noise, but excludes 
those that are not, such as color and tone reproduction. Given the 
sharpness and noise dependence, NEQ could provide a reasonable 
basis for determining the quality threshold. As discussed in the 
previous section, a final (resampled) image NEQ of around 400 
might correspond with a pretty high quality threshold, and that 
value is used in the analyses that follow.  

As in the previous section, a single frequency was analyzed 
for simplicity. In this example, there is no single scene component 
determining that choice (viz., a pedestrian), so instead the choice 
was made based on display capability. Specifically, the NEQ was 
computed at the mid-frequency of one-half the resampled image 
Nyquist frequency, an arbitrary but not unreasonable choice. 
Representative mobile imaging values of input parameters were 
assumed; these included: light level (500, 50, and 5 lux); scene 
reflectance (20%); lens aperture (f/2.1), transmittance (90%), and 
MTF (like f/2.3 diffraction-limited lens); exposure criterion (ISO 
saturation exposure if not limited by maximum integration time  of 
66 ms); display addressability (1080p 16:9 = 2.1 megapixels); 
resampling (bicubic); and optical format (1/2.3”, 1/3”, and 1/4”). 
Realistic estimates were used for sensor MTF and pixel 
performance (linear full well, noise floor, and sensitivity) versus 
pixel size, for a similar pixel technology level.  

To find the digital zoom factor for a given case, Eq. 5 was 
solved iteratively for the value of resample factor R that produced 
an NEQ of 400 at display half-Nyquist. That value of R was then 
used in Eq. 3 to determine the digital zoom factor Z. Before 
considering the question of optimal megapixels at a fixed optical 
format, the predictions were tested in cases where the correct 
behavior was known. Table 1 shows Z values for the three optical 
formats at the three light levels. As must be true, Z decreased 
(corresponding to lower quality) as photosensitive silicon area 
decreased (left to right) or light level decreased (top to bottom). Z 
values of less than one correspond to cases where the NEQ = 400 
threshold could not be achieved even without cropping; in fact, the 
imagery would actually have to be minified (down-sampled) to 
meet the NEQ criterion, producing a Z value below unity. 

 
 1/2.3” 1/3” 1/4" 

500 lux 2.31 1.79 1.35 
50 lux 1.23 0.96 0.72 
5 lux 0.40 0.31 0.23 

 
Table 1. Digital zoom factor at constant pixel size (1.1 µm) for three optical 
formats (columns) and three light levels (rows). As expected, digital zoom 
factor (and spatial quality) decreases with decreasing photosensitive silicon 
area (left to right) and decreasing light level (top to bottom). This is essentially 
a sanity check that digital zoom factor behaves sensibly in well-understood 
cases. Values below unity imply that an image does not clear the NEQ 
threshold even if no cropping is done; rather, minification of the image would 
be needed to meet the NEQ criterion.  

 
 1.75 µm 1.4 µm 1.1 µm 0.875 µm 

500 lux 1.87 2.10 2.31 2.47 
50 lux 1.20 1.22 1.23 1.22 
5 lux 0.44 0.42 0.40 0.37 
 

Table 2. Digital zoom factor at constant optical format (1/2.3”) for four pixel 
sizes (columns) and three light levels (rows). At high light level (500 lux), 
digital zoom factor increases as there are a larger number of smaller pixels 
(left to right) because of improved MTF. At low light level (5 lux), the opposite 
trend is observed, because the noise floor does not scale down with pixel size, 
and becomes a larger fraction of the diminished signal (which does 
approximately scale with pixel area). This effect more than compensates for 
the MTF advantage of the smaller pixels, which is still present. At intermediate 
light level (50 lux), the MTF and noise floor effect just about cancel out, so the 
digital zoom factor is essentially independent of pixel size.  

Table 2 summarizes the results for the much more interesting 
case of optimal number of pixels for a fixed optical format, in this 
case, 1/2.3”. The three rows are the same as in Table 1, 
representing high, medium, and low light levels. The columns 
correspond to four pixel sizes. Consider first the 500 lux results. 
Digital zoom factor increases with decreasing pixel size, which 
corresponds to a larger number of smaller pixels. The improvement 
here is for essentially the same reason as identified in the 
pedestrian detection case – as pixel size decreases, MTF improves. 
If the pixel performance “scales”, the resampled image SNR is 
approximately independent of pixel size, so there is a net benefit to 
increasing megapixels. However, at 5 lux, the opposite trend is 
observed: digital zoom factor decreases (slowly) as pixel size 
decreases. The MTF advantage of smaller pixels is still present, but 
it is more than compensated by the increased impact of the noise 
floor. As pixel size decreases, noise floor does not usually decrease 
proportionally (at least for smaller pixels), whereas sensitivity can 
vary almost proportionally. Thus, with decreasing pixel size, signal 
can decrease faster than noise floor, resulting in lower SNR and 
NEQ. At 5 lux, that is the dominant effect. Finally referring to the 
50 lux results, the MTF and SNR effect almost perfectly cancel, 
leaving hardly any change in digital zoom factor over a factor of 
two change in pixel size.  

So the optimal number of pixels for a given optical format is 
dependent upon light level, with a smaller number (larger pixel 
size) being optimal at lower light levels, and with the optimal 
number increasing as noise floor decreases.  

8. Conclusion 
A simple equation for estimating NEQ from SNR, capture 

MTF, resample factor, and resampling MTF (Eq. 2) is derived. It is 
approximately valid when capture NPS is reasonably flat 
(representing white noise) and the resample filter has a transition 
from pass-band to stop-band near the Nyquist frequency of the 
resampled image (which provides a good balance between 
sharpness, noise, aliasing, and other artifacts). NEQ permits 
rigorous comparison of sensor performance between sensors 
having different numbers of pixels, and provides a significant 
improvement over traditional SNR for evaluating spatial quality of 
digital imaging systems. Two very different examples of the 
application of NEQ are described, one regarding the computer 
vision task of pedestrian detection, the other involving the 
definition of digital zoom factor, a new usability metric of 
potential utility in mobile photography. The latter metric quantifies 
the degree of cropping possible from a camera, without falling 
below a spatial quality threshold.  
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