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Abstract
More and more people are getting access to 3D; 3D-TV is a

next expecting step in telecommunication. Before being presented
to the public, any 3D content has to be coded, compressed and
transmitted. All these treatments can impact the quality of the fi-
nal product, thus it is essential to have a measurement tool for the
estimation of the quality of stereoscopic content. Several studies
have already modified the existing 2D quality metrics to be able
evaluate 3D images, however the results are not satisfying. In this
work, we propose a full-reference metric for a quality assessment
of stereoscopic images employing the properties of binocular per-
ception. The principle of the metric estimates the probability of
fusion, that can be obtained perceptually. The quality of one view
is assessed relatively to the other, and according to the result met-
ric makes a decision, that is based on the binocular fusion prop-
erties. The comparison between views is performed only on the
salient area. It is detected using the visual attention model based
on the monocular depth cues and interest points. The metric has
been tested on the publicly available dataset, and its results are
coherent to the subjective scores.

Introduction
Image quality is an important factor in the design of any im-

age processing system. The most common example is the applica-
tion to compression algorithms in order to decrease required data
size and keep high quality. Besides, quality evaluation metrics
are used in acquisition, transmission and visualization processes.
Numerous quality assessment metrics have been developed for 2D
image and video [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. Even
though 3D quality assessment (QA) can seems close to 2D quality
evaluation, it is far more complicated. The key issue is related to
the limited access to the perceived 3D visual stimulus. The chal-
lenge is how to extract the features presenting the perceived 3D
quality from the available information, like two views or depth/
texture.

First metrics for the evaluation the 3D quality were based on
2D quality metrics, like PSNR, MSE SSIM [15], PQS [16], V SNR
[17], IFC [18], UQI [5], V IF [19], NQM [20]. The capabilities
of these metrics to predict visual quality for stereoscopic images
have been tested by You et al. [21]. Their significant disadvan-
tage is the absolute neglecting of the binocular perception features
[22]. However, nowadays it is clear that a simple extension of 2D
QA cannot be enough to consider all the complexity of binocu-
lar vision. Moreover, 2D evaluation does not take into account
the particularities of the fusion process [23]. The next wave of 3D
QA metrics attempted to solve the drawbacks of algorithms purely
based on 2D QM. Designed algorithms accounted for depth infor-

mation and highlighted its importance for the perceived quality
[24, 25, 26, 27, 28]. Nevertheless, it is doubting that only dis-
parity/depth information is enough to model the binocular per-
ception. Hence, it is getting clear that simple adjustment of 2D
metrics cannot satisfy all the complexity of 3D perception.

So far, few metrics have been developed exploring the stereo-
scopic perception features. For example, the model using the
binocular energy has been designed by Bensalma et al. [29].
Their algorithm estimates the difference of binocular energy be-
tween original and tested stereo couples. The binocular energy
is obtained as step-by-step processing of the reference and tested
images. The treatment includes the antagonist color transforma-
tion, and application of transforms linked to simple and complex
cells. Shao et al. created a metric that considers the binocular
fusion process [30]. Several image regions are defined by match-
ing left and right channels pixel by pixel. These areas are asso-
ciated to the binocular fusion region, binocular suppression and
non-corresponding locations. Local phase and amplitude maps
are calculated for the reference and distorted image. Using these
local features, quality of each region is calculated independently.
The final score of the metric is a weighting sum of these quality
coefficients per area. However, the strong disadvantage of this
metric is the requirement to train the coefficients every time the
database is changed.

Binocular suppression theory takes its foundation from the
rivalry concept. It states that one image can have the details of the
scene, while the other has just minimum necessary information
for disparity. For example, binocular fusion suppression has been
used by Wang et al. in order to design a quality assessment metric
[31]. The idea of Zhao et al. algorithm lies in the quality evalu-
ation for each view of stereo-pair, and than in their combination
according to binocular Just-Noticeable-Difference [32].

The idea of binocular dominance has been already consider-
ably explored in the studies dedicated to compression [33, 34, 35],
that motivates its application for a quality assessment [36]. The
ocular dominance is performed by prediction of separate quality
value for left and right views using JPEG Quality Scores [37]. The
final score is given by the addition of view’s scores and degree of
parallax. Author of the work [38] also mimicked the binocular
perception to combine the quality of left and right images. They
applied a model of binocular perception proposed in [39] to lu-
minance, contrast and structural similarity, and after combined all
channels. Authors reported better results in comparison to con-
ventional PSNR and SSIM metrics.

Since distortions are more visible at the edge boundaries,
several authors suggested quality metrics following this idea. For
instance, Akhter et al. created a no-reference perceptual metric
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using the feature local segmentation and disparity [40]. The al-
gorithm divides the stereo couple into blocks to characterize 3D
impairments. In a similar direction, a stereoscopic image quality
metric has been proposed by Sazzad et al. [41, 42]. Their metric
is oriented towards quality evaluation of JPEG distortions on the
images. Another model classifying differently the areas of im-
ages has been suggested in [43]. Authors applied Sobel filter on
the left and right views in order to subdivide the reference and
distorted images into edges, texture and smooth areas. Different
weights are set for each region during applying SSIM metric. The
final score of the metric is established as the combination of these
three estimations.

A significant progress can be reported for the development
of metrics with low-level aspects of the HVS, like luminance, tex-
ture masking and contrast sensitivity function, etc. However, the
extension of objective metrics with the introduction of high-level
HVS properties, as visual attention, goes much slower. Only few
researchers have worked in this direction [44, 45, 46, 47, 48]. Two
ideas exist about the relation of visual attention and quality as-
sessment. The first hypothesis states that the artifacts inside the
region of interest are more disturbing than in any other parts of
the image. The second concept claims that people are more sen-
sitive to the impacted area and tent to see regions of poor quality.
So far, the overall quality assessment is heavily affected by such
areas. Following the first idea, the designed algorithms pool the
visual importance from eye-tracking results or attention models.
Consequently, authors reported the improvements of the metrics
performance after the introduction of saliency in this or another
way [46, 47, 48, 49]. However, no trials to evaluate the impact
of visual attention on the perceived image quality of 3D content
have been done yet. In the proposed approach, we suggest to take
benefit of the algorithm for saliency detection to design a quality
assessment metric for stereoscopic images.

Since compression is closely linked to QA, the features of
asymmetric compression have to be examined. Several studies
have shown that overall perception quality for a stereo couple can
be higher than the quality of the worst view of the pair [35]. Only
few stereoscopic quality metrics have been designed in this direc-
tion. Moreover, their observations relate mostly to the artifacts
induced by compression, although the combination of other types
of distortions has to be also investigated. So far, in this work
we propose a stereoscopic quality assessment metric for an asym-
metric and symmetric images. Designed metric does not require
either calculated, or provided disparity/depth information. More-
over, metric considers such high-level vision processes, as visual
attention.

This paper is organized as follows: section 2 presents the
visual attention detection approach, allowing to extract the salient
features from a single view of stereo-pair. Section 3 describes
the algorithm of the proposed stereoscopic metric, highlighting its
binocular and monocular perception features. The metric results
on publicly available database are described in section 4. This
paper ends with some concluding remarks and give ideas about
futures works.

Visual attention model for stereoscopic im-
ages

In the literature, most of the visual attention models for 3D
are based on stereo depth or disparity. Generally, this informa-

Figure 1: Flowchart of applied 3D saliency algorithm [50].

tion is accessible by having either two views or, texture and depth
representation. However, depth information can be extracted us-
ing simple 2D images following monocular cues. For our goals,
we select a visual attention model able to detect salient area for
stereoscopic pair using only one view [50]. The framework of
applied model is depicted on Figure 1.

At the first stage of saliency detection, spatial visual features
are extracted from a single view of stereo-pair (left one in our
case[35]). The spatial saliency is detected using the similarities
between interest and gaze points [51, 52, 53]. At next step, depth
features are detected using monocular cues [54, 55, 56]. The latter
does not require neither a priori information, nor learning process.
Procedures of down-sampling and up-sampling are optional and
allow to reduce complexity. Finally, a fusion of spatial and depth
saliency features is performed. Details of saliency detection is
briefly described below.

Spatial features
The similarity between interest points (Harris, SIFT and

SURF) and gaze points, for a given set of parameters, have been
demonstrated by Nauge et al. [53]. The spatial visual features are
extracted by relying on interest points, considering the influence
of central bias for still images.

SURF IP detectors have been selected due to their efficiency.
The latter is based on calculating approximate Hessian response
for image points in order to detect blob structures. For the scale-
space analysis a pyramid of filters is used to approximate the LoG
(Laplacian of Gaussian). In order to localize interest points in
the image through different scales, a non-maximum suppression
is applied. The descriptor extraction describes the distribution of
the intensity content within the interest point neighborhood and
its variation. The following parameters hessianThreshold = 800,
nOctaves=9, nOctaveLayers=1 have been set-up for SURF IP de-
tector to achieve our goals. Extracted interest points are character-
ized by their position (xi,yi) and size (Si). These information are
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exploited for the construction of the spatial saliency by applying
a kernel of Gaussian as described in equation 1.

SMP = IHessian ∗GSi (1)

where

GS(xi,yi) =
Si

2πσ2 exp−

(
(x− xi)

2 +(y− yi)
2

2σ2

)
(2)

Several researchers have shown the existence of the ”central
bias” during watching 2D still images [57, 58]. They stated that
gaze fixations are biased towards the center of the scene. There-
fore, the visual attention model accounts for the central bias. Its
effect is presented by adding one more feature map that is a cen-
tral Gaussian kernel.

Monocular depth
The process of monocular depth evaluation [54] contains two

main phases: building of hierarchical representation of the im-
age and choosing segments to compose final depth order partition.
The estimation of low level depth cues are integrated into the con-
struction of binary partition tree (BPT) [59]. At the first step of
segmentation, each pixel of image is considered to be a separate
region. Hence, computational cost is directly proportional to the
image resolution. This region is characterized by its color, shape,
area and depth, that influence on a similarity measure. The depth
ordering is based on BPT pruning, where leaves are represented
by regions. They are iteratively merged based on similarity mea-
sure. Since depth information from T-junctions and convexity can
be contradictory, a conflict resolution step is applied using a prob-
abilistic model. Finally, a depth map is obtained pruning BPT, as
described in equation 3.

Dmono = fBPT (M) (3)

The result of monocular depth estimation is a segmented im-
age according to its depth position, so number of depth levels are
limited. In order to obtain a depth saliency map, the weighting
procedure is applied. The first-plan objects are getting the high-
est importance. Few levels after are considered as main plan and
others as a background. Afterwards the depth saliency map is ob-
tained by applying a Gaussian filter G to Dmono in order to smooth
the segmentation results for a better integration in the fusion.

SMD = Dmono ∗G (4)

Fusion of visual features
For our goal we selected a combination approach given

the good fusion result of visual features [50] - Global Non-
Linear Normalization followed by Normalization (GNLNS) [60].
This combination process takes advantage from maps with few
saliency peaks and neglect the uniform distributed maps. It is de-
scribed by equation 5, where Mi stands for the maximum value of
i-map, and mi is the mean of other maximum values of this i-map.

SMout = ∑
i

[
(N (SMi)) · (Mi−mi)

2
]

(5)

Proposed quality assessment metric for S3D
images

The perceived quality of stereoscopic image depends
strongly on the quality of each view of the stereo-pair and their
possibility to be fused. The proposed approach seeks to present
and evaluate these features of stereo image. Moreover, the idea
behind the designed metric is to consider the characteristics of the
human visual system (HVS), specifically binocular perception.

The perceived image quality of stereoscopic content depends
considerably on the features of binocular perception. Such partic-
ularities as binocular rivalry and masking effect have been demon-
strated to impact the image quality evaluation [39, 61]. The left
and right views of stereo-pair can be coded (or compressed) sym-
metrically. In this case, the perceived quality depends on the type
of distortion and its mutual effect. Depending on the degree of
distortion, the conventional fusion is normally possible, since im-
ages remain pretty the same. In case of asymmetrical processing,
the quality of one view is lower than the other, due to compression
or down-sampling [35]. According to the binocular suppression
theory [62, 63], in such case the perceived quality is closer to the
higher value. Nevertheless, the difference in quality between left
and right cannot be unlimited, since after a certain threshold fu-
sion starts to be impossible or degradation becomes prevailing.
This threshold of tolerant asymmetry between view’s PSNR has
been shown to be dependent on the screen type, and it is equal to
21 dB for parallax barrier display and 33 dB for polarized pro-
jection screen [64, 65, 66]. Hence, the account for the coding
character of stereo pair is an important feature of the proposed 3D
quality metric.

The proposed quality metric for 3D images considers the
HVS features and characteristics of stereo content. The flowchart
of the proposed metric is depicted on Figure 2. It is a full-
reference metric, hence the couple of reference and test images
are required.

The algorithm of our quality metric starts from the detection
of the area of interest. For this goal, the saliency detection model,
described in previous section is used. Its significant advantage is
the possibility to detect the area of interest from a single view,
using the data obtained with a monocular depth cues and SURF
interest points (IP). It has been proved in the literature, that the
eye dominance does not affect the fusion process, so either left,
or right view of reference stereo-pair can be used for the saliency
detection. After saliency has been evaluated for one view of the
reference (left in our case), we propose to project the salient area
on the second original image. This projection can be performed
thanks to SURF detectors used for saliency evaluation algorithm.
Each interest point in the salient area of the left view corresponds
to an interest point on the right view. Since the salient neighbor-
hood of this IP is known, the right view is reconstructed, as given
on Figure 3. Such technique allows to perform saliency detection
only once, and takes the advantage of the detected interest point
for its projection on the second view.

At the next step, from the obtained saliency maps the bi-
nary masks are created. By this, we mean that only pixels with
saliency values higher than a threshold are kept. This procedure
is performed equally for the left and right views of reference and
test images. The example of the obtained maps are presented on
Figure 4. The threshold value was fixed at the level of 0.3.

In order to obtain the quality score of stereoscopic pair (Qs),
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Figure 2: Flowchart of the proposed quality metric for 3D images.

Figure 3: Explanation of the saliency map projection. Only few
interest points are detected for visibility.

we evaluate the quality difference between left and right masked
test views (IQAle f t−right ). For this goal, in our model stereoscopic
metric MSSIM [9] has been chosen. Depending on what is value
of IQAle f t−right , the stereoscopic metric follows different algo-
rithms. So far, if the obtained IQAle f t−right is higher or equal
to 0.9, it means that the left and right images are characterized
by identical or similar quality, hence the evaluation of one view
is enough to predict the image quality of the stereo pair. If the
difference between left and right view quality is significant, the
IQAle f t−right is lower than 0.9, thus the stereo pair is asymmetri-
cally coded. Consequently, we propose to estimate this asymme-
try, and check whenever it is possible to fuse this stereo pair or
no. To do so, we set up the second threshold value for the quality
difference between left and right views: IQAle f t−right should be
higher than 0.6. We claim that stereo images having asymmetry
level within this threshold can be fused according to the binoc-
ular suppression theory, and overall quality is closer to higher
value. To obtain the score of the perceived image quality, we

apply a mathematical model of binocular perception suggested in
[39] and described with equation 6. The parameters for this case
are w = 0.4 and n = 2.

Qs = [w(IQlow)
n +(1−w)(IQhigh)

n]1/n (6)

Afterwards, if the quality difference between left and right
images is considerable, and IQAle f t−right is less than 0.6, the low
quality starts to be dominant decreasing thus the overall quality
score. To model this process, the parameters in equation 6 are
fixed at w = 0.8 and n = 2.

Qs =



qhigh ,if IQAle f t−right > 0.9

√
0.4 · (Qlow)2 +0.6 · (Qhigh)2 ,if 0.6 < IQAle f t−right ≤ 0.9

√
0.8 · (Qlow)2 +0.2 · (Qhigh)2 ,if IQAle f t−right ≤ 0.6

(7)

Results and Discussion
The proposed algorithm has been tested on the ”Live 3D”

II phase database, that consists of 8 reference and 360 impacted
images with registered human score. The examples of images
are given on Figure 5. The dataset includes 3 symmetrically and
6 asymmetrically distorted stereo couples. The stereo pairs are
impacted by five different distortions, like White Noise, JPEG,
JPEG2000, Gaussian Blur and Fast Fading.

The results computed on Live 3D database are presented on
Table 1. The outcome of the proposed metric is compared to
the average of 2D quality evaluation on the left and right views
(marked as QMavr). Such averaging is also performed for the
stereo-pair after masking, that are marked QMavr+mask. We ap-
plied Pearson linear correlation (PCC), Spearman correlation co-
efficient (SCC), root-mean-squared error (RMSE) and Kendall
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Reference stereo-pair

Masked reference stereo-pair

Masked test stereo-pair
Figure 4: Example of created mask for stereo-pair

Table 1: Performance of 3D IQA algorithms overall on the
database 3D LIVE IIphase . Perfect correlation case PCC→±1,
SCC→±1, KCC→ 1, RMSE→ 0.

Algorithm PCC SCC KCC RMSE
PSNRavr 0.687 0.679 0.503 13.671
V SNRavr 0.652 0.625 0.453 8.874
SSIMavr 0.748 0.738 0.550 7.488
MSSIMavr 0.618 0.731 0.558 11.462
PSNRavr+mask 0.571 0.683 0.506 18.541
V SNRavr+mask 0.660 0.749 0.558 8.479
SSIMavr+mask 0.768 0.758 0.562 7.226
MSSIMavr+mask 0.795 0.776 0.599 6.836
Proposed metric 0.823 0.815 0.620 6.401

correlation (KCC) to evaluate the performance of the proposed
metric. Linear correlation coefficient and root-mean-square-error
have been calculated after a non-linear logistic regression.

It can be noticed from the results in Table 1, that the pro-
posed metric presents the best results. We would like to highlight
that no separation for symmetric and asymmetric distortion before
applying the metrics has been done. It can be observed accord-
ingly that applying masking on stereo pairs brings considerable
improvement for 2D stereo metrics.

Since several distortions are applied to the images in the
tested database, the investigation of the metric is performed on
different artifacts. Hence, Table 2 reflects the metric’s efficiency
on the distortion of JPEG type. The results of KCC and SCC are
noticeably lower than for overall performance. JPEG compres-
sion creates the local artifacts, linked to DCT transformation with
segmentation block of 8×8 pixels. These localized impairments
of block type can impact depth perception. Since 2D metrics do
not account for any depth information, the drop in performance is
important. Although, the proposed model shows the best perfor-
mance due to its stage of left versus right evaluation. This proce-
dure helps to incorporate the possibility of image fusion.

Figure 5: Example of stereo-images from database ”Live 3D” II
phase

The JPEG2000 degradation presents the blur caused by the
quantification of the wavelet coefficient. JPEG2000 artifact can
smooth edges, that impacts depth perception. It can be observed
from Table 3 that 2D algorithms perform better on images with
distortion JPEG2000 than JPEG.

From the all tested distortions, Blur and White Noise are
global distortions, thus their effect on depth perception is less im-
portant. The results on the metric’s performance are presented for
white noise distortion in Table 4 and in Table 5 for blur respec-
tively. The best performance for all experimented metrics can be
noticed from the Tables.
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Table 2: Performance of 3D IQA algorithms on on images with
the JPEG distortion. Perfect correlation case PCC→±1, SCC→
±1, KCC→ 1, RMSE→ 0.

Algorithm PCC SCC KCC RMSE
PSNRavr 0.231 0.492 0.343 10.548
V SNRavr 0.338 0.371 0.245 5.965
SSIMavr 0.557 0.551 0.391 6.085
MSSIMavr 0.672 0.678 0.471 5.426
PSNRavr+mask 0.459 0.504 0.348 6.965
V SNRavr+mask 0.415 0.622 0.452 6.667
SSIMavr+mask 0.672 0.672 0.474 5.422
MSSIMavr+mask 0.693 0.680 0.485 5.282
Proposed metric 0.792 0.827 0.621 4.472

Table 3: Performance of 3D IQA algorithms on images with
the JPEG2000 distortion. Perfect correlation case PCC → ±1,
SCC→±1, KCC→ 1, RMSE→ 0.

Algorithm PCC SCC KCC RMSE
PSNRavr 0.491 0.633 0.458 12.545
V SNRavr 0.611 0.612 0.458 5.909
SSIMavr 0.664 0.696 0.503 7.334
MSSIMavr 0.810 0.807 0.608 5.745
PSNRavr+mask 0.551 0.628 0.446 9.132
V SNRavr+mask 0.668 0.756 0.563 7.301
SSIMavr+mask 0.725 0.710 0.529 6.755
MSSIMavr+mask 0.825 0.815 0.629 5.537
Proposed metric 0.840 0.817 0.636 5.313

Table 4: Performance of 3D IQA algorithms on images with
the white noise distortion. Perfect correlation case PCC→ ±1,
SCC→±1, KCC→ 1, RMSE→ 0.

Algorithm PCC SCC KCC RMSE
PSNRavr 0.470 0.627 0.492 11.154
V SNRavr 0.554 0.658 0.506 8.915
SSIMavr 0.881 0.875 0.692 5.059
MSSIMavr 0.818 0.805 0.621 6.157
PSNRavr+mask 0.789 0.615 0.478 8.564
V SNRavr+mask 0.768 0.770 0.564 6.856
SSIMavr+mask 0.862 0.856 0.669 5.414
MSSIMavr+mask 0.918 0.915 0.744 4.242
Proposed metric 0.938 0.934 0.780 3.690

Table 5: Performance of 3D IQA algorithms on images with the
blur distortion. Perfect correlation case PCC→±1, SCC→±1,
KCC→ 1, RMSE→ 0.

Algorithm PCC SCC KCC RMSE
PSNRavr 0.551 0.815 0.658 9.984
V SNRavr 0.785 0.820 0.607 7.124
SSIMavr 0.827 0.796 0.615 7.825
MSSIMavr 0.774 0.778 0.593 8.810
PSNRavr+mask 0.799 0.846 0.650 11.564
V SNRavr+mask 0.870 0.885 0.699 6.846
SSIMavr+mask 0.846 0.832 0.633 7.420
MSSIMavr+mask 0.803 0.807 0.625 8.296
Proposed metric 0.933 0.902 0.723 4.990

Fast-fading (FF) artifact appears during transmission of
JPEG2000 compressed image over a Rayleigh fading channel.
Hence it is a mixture of two impairment sources. As depicted
on Table 6, the proposed metric performs relatively good on FF
type of distortions also.
Table 6: Performance of 3D IQA algorithms on images with the
fast fading distortion. Perfect correlation case PCC→±1, SCC→
±1, KCC→ 1, RMSE→ 0.

Algorithm PCC SCC KCC RMSE
PSNRavr 0.567 0.711 0.537 14.547
V SNRavr 0.774 0.786 0.608 7.684
SSIMavr 0.837 0.824 0.649 6.292
MSSIMavr 0.848 0.809 0.637 6.081
PSNRavr+mask 0.735 0.721 0.545 9.125
V SNRavr+mask 0.769 0.834 0.668 7.350
SSIMavr+mask 0.867 0.840 0.661 5.732
MSSIMavr+mask 0.874 0.832 0.659 5.589
Proposed metric 0.880 0.896 0.714 5.223

Conclusion
In this work, we have presented a full-reference quality as-

sessment metric for stereoscopic images. The proposed metric
benefits from visual attention information and simulates the fea-
tures of binocular perception. The saliency is extracted from a
single of stereo pair. The innovative procedure of quality com-
parison between two views allows to evaluate the possibility of
fusion, so depth perception. Depending on the similarity between
left and right views, the algorithm applies different evaluation pro-
cedures. This assessment approach imitates the visual perception
quality. A significant contribution of this work is the evidence
that visual attention can improve the performance of quality as-
sessment. The quality evaluation is performed only on the area
of interest. This approach demonstrates the gain in efficiency in
comparison to quality assessment of the full images.

The proposed quality assessment algorithm has been tested
on the publicly available dataset with several different types of
distortion. Obtained results demonstrated high correlation with
subjective scores by using the state-of-the-art techniques. The
best efficiency on stereo pairs distorted by white noise and blur,
while the less performance have been obtained for stereo couples
with JPEG compression artifact. Overall, the suggested model
shows the best performance in comparison to the tested quality
assessment.

As a perspective, the investigation of the distortion impact
on 3D image quality is lacking. This information can improve
significantly the performance of 3D IQA. Although, there is no
accepted theory about the impact of artifacts on the perception of
depth, thus overall image quality. Consequently, the modeling of
3D image quality binocular perception is a great challenge on the
way to comprehensive evaluation of quality of experience.
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