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Abstract
During the development of a new printer product, units of

the product undergo extensive testing, during which thousands of
print quality test pages are printed. Compared with visual evalua-
tion of these pages by print quality experts, it is more efficient and
cost-effective to scan the pages, and then perform image analysis
to assess their quality. In this project, we develop an algorithm
for the detection of a specific type of print quality artifact: local
defects, and the prediction of the overall print quality that would
be assigned by an expert observer to prints that exhibit such de-
fects. Local defects are print defects in the form of spots and
patches. In the detection procedure, the local standard deviation
of the scanned pages is firstly computed to find the candidate re-
gions where local defects are likely to occur. Subsequently, an au-
tomatic thresholding algorithm, namely valley-emphasis thresh-
olding, is applied to find the local defects. Multiple features of
each local defect are further calculated. With a database of print
samples for which grades have been assigned by a print quality
expert, a print quality predictor is trained by the support vector
machine (SVM) method. For a new print sample, the detection
procedure firstly finds the local defects and their features, and
then the print quality is determined by the trained SVM model.

Introduction
Early in the product development cycle at major printer man-

ufacturers, a batch of printers goes into extensive testing during
which humidity, temperature, media type and job type are varied.
During the extensive testing that these units undergo, an abundant
number of test pages are printed. Assessing the print quality (PQ)
of the test images can reveal multiple printer design deficiencies.
Traditionally, the print quality of these test pages is assessed by
human experts through visual evaluation. Thus, the general PQ
rank and more detailed print defect information are both obtained
manually. Given the large number of test pages, the visual evalu-
ation procedure is very costly and time-consuming. Furthermore,
human observers are usually inconsistent in determining the print
quality. Therefore, an algorithm that can assess a scanned page,
find print defects in the page, and give appropriate rank is highly
desirable.

In this project, we develop such an algorithm to detect and
characterize one specific class of print defect: local defects. A
print quality predictor is further trained by the support vector ma-
chine (SVM) algorithm to give the PQ rank of test pages with the
obtained defect information. Local defects are print defects in the
form of a spot or patch of which the size and shape can vary dra-
matically. An example of large patch local defects is shown in
Fig. 1. The sample is printed on letter-size paper; and the local
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defects are easily visible. An example of small spot local defects
is shown in Fig. 2, where the local defects can only be seen after
zooming in.

Local defects could be the caused by numerous printer mal-
functions, such as foreign contamination on the intermediate
transfer belt and photoconductor drum defects. Therefore, they
play an important role in the print quality assessment.

Figure 1. Example of large patch local defects. The orange circles are not

part of the print sample.

Figure 2. Example of small spot local defects.

Some studies have been conducted in the area of print defect
detection. Jing et al. [1] uses image quality assessment meth-
ods such as the structural similarity index (SSIM) [2] to assess a
wide range of print defects. Zhang et al. [3][4] studied banding
detection with a histogram-based method. Nguyen et al. [5][6]
described a method based on local and global variance to detect
graininess and mottle. Yan et al. [7] and Ju et al. [8] gave novel
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algorithms for predicting the visibility of fading defects. How-
ever, even though the local defect is a very common type of print
defect, studies of local defect detection are relatively rare.

Our project pipeline can be separated into three stages. In the
first stage, local defects are detected and located. Then multiple
features of each defect are calculated. Finally, a print quality pre-
dictor is trained based on the local defect features. The following
sections describe the three stages in detail.

Local Defect Detection
In the stage of detecting the presence of local defects, we

first decide the candidate regions where the local defects are likely
to appear, then use automatic thresholding to separate the defect
pixels from properly printed pixels inside the candidate regions.
A diagram of the whole process is shown in Fig. 3.

Figure 3. Block diagram for local defect detection process.

Deciding Candidate Region
Candidate regions are the locations in the page where local

defects are likely to occur. All our future processing, such as
automatic thresholding, will only be conducted in the candidate
regions instead of the whole page.

The method we are using consists of two steps. Firstly a page
is separated into grid blocks, and the standard deviation of the
∆E difference values between original pixel values and the block
average is calculated. This standard deviation is referred as the
local standard deviation σl . Afterwards an autonomous method
is applied to choose the blocks that have relatively higher local
standard deviation, which are the candidate regions.

Local Standard Deviation Calculation
Currently, the test pages that we use are all letter-sized, with

uniform color, and have 4 fiducial marks at the four corners of
the pages. Test information such as the printer model is put at
approximately 1/3 height of the page from the top. The printed
test page is scanned in 600 dpi; and a Gaussian filter is applied to
the scanned image to remove the halftone pattern.

The scanned page is firstly transformed from sRGB into the
CIE L∗a∗b∗ color space. Subsequently, the page is separated into
a block grid. The size of each block is 150 pixels × 150 pix-
els, which is equal to 0.25 inch × 0.25 inch at 600-dpi resolution.
Within each block, the average values of the L∗, a∗ and b∗ chan-

nels are computed as

L∗avg =
1
N

N

∑
i=1

L∗i , (1)

a∗avg =
1
N

N

∑
i=1

a∗i , (2)

b∗avg =
1
N

N

∑
i=1

b∗i , (3)

where the subscript i is the pixel index, and N = 1502 is the num-
ber of pixels in the block. Then, the ∆E difference between each
pixel and the block average is calculated as

∆Ei =
√

(L∗i −L∗avg)
2 +(a∗i −a∗avg)

2 +(b∗i −b∗avg)
2. (4)

With all pixels’ ∆E values, the local standard deviation σl is de-
termined as

σl =

√√√√ 1
N

N

∑
i=1

(∆Ei−∆Eavg)2, (5)

where

∆Eavg =
1
N

N

∑
i=1

∆Ei. (6)

If local defects exist in a block, the ∆E values of defect pixels
and those of background pixels will be very different, which leads
to a relatively large standard deviation. On the other hand, if all
pixels inside a block appear uniform, those ∆E values should be
similar (all close to 0). Therefore, we are able to distinguish the
candidate regions from other blocks by comparing their σl’s. An
example of the calculated σl’s of a page is shown in Fig. 4. We
use a color coding that uses darker color to indicate a block for
which σl is larger. It can be easily observed that the σl values of
blocks where local defects exist are much greater than those of
their neighboring blocks.

Figure 4. Local standard deviation. The left image is the original scanned

image; and the right image is the result of the local standard deviation calcu-

lation.

Choosing candidate blocks
After obtaining the local standard deviation σl’s, we apply

an autonomous method to choose the blocks with relatively large
σl values as the candidate regions.
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We first calculate a histogram of all blocks based on
their σl values. The bin edges of this histogram are
[0,0.5,1,1.5,2,2.5,3,5, in f ]; and the histogram is thus an 8-bin
histogram. The peak of this histogram is further located. Since
this peak represents the most “common” print quality in the page,
the blocks falling into this bin are unlikely to have local defects.
Here we assume most blocks do not contain local defects. In addi-
tion, all blocks within bins that are on the left side of the peak have
better quality than peak blocks, and thus are also not regarded as
candidate regions, either. For the bins on the right side of the
peak, we set a fixed threshold to decide if the blocks within them
are candidate regions. In our experiment, a threshold that is set to
be 5% of the total number of blocks in the test page gave a sat-
isfactory result. Therefore, if a histogram bin located at the right
side of the peak contains fewer than 5% of the total number of
blocks, blocks within this bin are classified as candidate regions.
Finally, we combine the neighboring candidate region blocks to
one single candidate region.

Automatic Thresholding
In this section, we describe the automatic thresholding

method applied to the pixels inside candidate regions.

Difference Image Calculation
Our automatic thresholding algorithm will be applied to a

∆E difference image. However, this ∆E difference image is not
the same as the previous within-block ∆E. Here, the ∆E is be-
tween the scanned test page and the digital master page, which
is a defect-free version of the test page. The computation can be
expressed as

∆E(i, j) =
((

L∗t (i, j)−L∗m(i, j)
)2

+
(
a∗t (i, j)−a∗m(i, j)

)2

+(b∗t (i, j)−b∗m(i, j))2
)1/2

, (7)

where (i, j) is the pixel index in the page, and subscripts t and
m indicate test and master images, respectively. Before the com-
putation of ∆E, color calibration is needed to eliminate the color
difference between the test page and master page. An example of
the difference image calculation is shown in Fig. 5. It can be seen
that the defect pixels have greater ∆E values than properly printed
pixels.

Figure 5. Calculation of difference image.

Valley-emphasis Thresholding Algorithm
After getting this ∆E difference image, we simply map the

candidate regions we obtained from the previous steps to this dif-
ference image at the same position. An example can be seen from
Fig. 6. As expected, the defect pixels are located inside candidate
regions.

Figure 6. Mapping candidate regions to the difference image.

The next step is to apply an automatic thresholding algo-
rithm inside each candidate region. Among numerous automatic
thresholding strategies, Otsu’s algorithm is one of the most widely
used [9]. Based on the deduction of Liao et al. [10], the preferred
threshold t∗ in the Otsu’s algorithm of a gray level image is chosen
automatically by maximizing the between class variance, which
can be written as

t∗ = argmax
0≤t<L

{ω1(t)µ1(t)2 +ω2(t)µ2(t)2}, (8)

where t is a gray level value and L is the number of distinct gray
levels; ω1 and ω2 are the percentages of pixels falling into the
background and foreground, respectively; and µ1 and µ2 are the
average gray level of background and foreground pixels.

Despite the wide acceptance of the Otsu’s algorithm, Ng et
al. [11] proposed to add a new term in the maximization to em-
phasize the “valley” in the image histogram. This modification is
based on the intuitive assumption that the correct threshold should
be located at a histogram “valley”; so the foreground and back-
ground can be properly separated. The refined expression is

t∗ = argmax
0≤t<L

{(1− p(t))(ω1(t)µ1(t)2 +ω2(t)µ2(t)2)}, (9)

where p(t) is the percentage of pixels at gray level t. As shown
in the equation, a gray level that corresponds to a smaller number
of image pixels, i.e. a valley in the histogram, is favored in the
argmax calculation.

To apply this to our defect detection pipeline, we feed pixels
inside each candidate region into the valley-emphasis algorithm.
After getting the optimized threshold, any pixels with gray level
value greater than the threshold are set to be 1; and other pixels
are set to be 0. All pixels outside the candidate regions are set to
be 0. By doing this, we obtain a binary output mask where white
pixels indicate defects pixels and black pixels indicate properly
printed pixels. In our experiment, valley-emphasis thresholding
achieves robust performance, as an example shows in Fig. 7.
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Figure 7. Result of valley-emphasis thresholding.

Defect Pixel Clustering and False Detection Re-
moval

In the thresholding step, we separate the defect pixels from
the properly printed pixels. To make the output easier to interpret,
we cluster those pixels into distinct defects.

The clustering strategy we use is a generalized connected
component method. In a traditional 8-neighborhood connected
component procedure, a 3× 3 neighborhood of the current fore-
ground pixel is searched to find whether there exist any other fore-
ground pixels. In our generalized connected component method,
we instead use a 161×161 neighborhood. All defect pixels within
this neighborhood will be labeled as belonging to the same dis-
tinct defect. We use this much bigger window size because defect
pixels produced by a single printer deficiency are usually close to,
but not necessarily connected to each other. But it makes more
sense to label them as one single defect. As shown in Fig. 8, each
distinct defect is given an ID number. If we used a traditional
connected component algorithm, the defect with ID 4 would be
marked as four distinct defects.

Figure 8. Example of defect pixel clustering.

After getting distinct defects, we calculate two features of
them, which are the area size in pixels and the contrast to the
background. While the defect area size is straightforwardly de-
fined, we define the defect contrast as the ratio between the av-
erage pixel value of the defect and the average pixel value of the
background in the ∆E difference image. We only use background
pixels inside a certain sized neighborhood around the defect to
make the contrast a localized value, which is more consistent with
the human observation. This neighborhood is defined as a rectan-
gle concentric with the bounding box of the defect but 40% bigger
in both dimensions. Furthermore, we define a area size threshold
of 25 pixels and a contrast threshold of 2. Any detections with
area size smaller than 25 pixels or contrast lower than 2 will be
removed. In our experiment, those detections are hard to observe
by human viewers.

Three Categories of Local Defects
After removing the false alarms, we further divide the local

defects into three categories: small-area local defect, large-area
local defect, and repeating defects. These categories are useful to
engineers for determining the printer malfunction. We first sep-
arate small-area local defects and large-area local defects with a
threshold of the area size of the defect bounding box. We use the
area size of the defect bounding box rather than the defect itself,
because if a defect consists of “sparse” spots dispersed in a large
area, it appears to be large even if its own area size is limited.
We set the threshold on the defect bounding box area to be 25000
pixels. Any defect with bounding box area greater than 25000
pixels is categorized as large-area local defect. Among other de-
fects that have smaller area sizes, if more than three of them align
along either vertical or horizontal directions, they are categorized
as repeating defects. We further use a method similar to the one
described in [3] to calculate the repeating intervals of the repeat-
ing defects. Defects which are not categorized as large-area or
repeating defects are small-area local defects. A final result of lo-
cal defect detection is shown in Fig. 9. Defects marked with ID 8
are a set of repeating defects. For each test page, an RGB output
image and a binary output image are produced, where the defects,
defects bounding boxes, and ID’s are marked.

Figure 9. Final result of local defect detection.

Local Defect Feature Calculation
With the distinct defects, we calculate multiple features for

each defect. These features are helpful to printer development en-
gineers for analyzing those defects and further deciding the cause
of those defects. In addition, some of them will also be used
in training the print quality predictor. The calculated features
include area size, centroid position, contrast to the background
(in the ∆E difference image), average RGB value, bounding box
information (position and dimension), edge strength, darker or
lighter than the background, perimeter, and repeating interval
(only for repeating defects). Most features are straightforward to
calculate. For edge strength, since the edge pixels can be extracted
from the defect detection stage, we simply compute the Differ-
ence of Gaussian (DoG) filter response of these edge pixels and
use the absolute summation as the defect’s edge strength. These
features are listed in a comma-separated values (CSV) spread-
sheet, and can give useful feedback to the printer design engi-
neers.

Print Quality Predictor
Traditionally, human experts assess and give print quality

ranks to test pages printed by the test units. In order to au-
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tonomously evaluate the print quality of test pages, we train a print
quality predictor by the support vector machine (SVM) method
[12]. With a trained SVM model, the PQ rank of a new test page
can be autonomously given after going through the local defect
detection and feature calculation stages.

Training Database
We use 80 scanned pages as the training data. They have

been assessed by human print quality experts in the Hewlett-
Packard Company. In our project, each test page can be assigned
to one of the four ranks: A (good, PQ-Pass), B (fairly good, PQ-
Pass), C (bad, PQ-Fail), and D (very bad, PQ-Fail). The numbers
of pages with different ranks are: 13 rank A, 19 rank B, 23 rank C,
and 25 rank D, respectively. Examples of rank B, C and D pages
can be seen in Figs. 10, 11, and 1. We are not showing rank A
examples because these pages are usually just defect-free.

Figure 10. Example of rank B page.

Figure 11. Example of rank C page.

Training Features
The first step of the machine learning pipeline is to produce a

feature vector for each test page. Unfortunately, we cannot simply
use the features we calculated in the defect feature calculation
stage. This is due to the fact that different pages have different
numbers of defects, and thus using the defect features directly will
lead to a feature vector whose length depends on the number of
defects on the page. SVM cannot accept variable length feature
vector as the prediction input, so we need to modify the defect
feature representation.

For this purpose, we first define a new feature for a single
defect, namely defect volume Vd :

Vd = Ad ·Cd , (10)

where Ad is the area size of the defect in mm2 and Cd is the con-
trast of the defect. They are both calculated in the previous feature
calculation step. We name this feature “volume” because if the
defect area is regarded as the base area of a cylinder and contrast
as the height, this feature is comparable to the cylinder’s volume.
We then define two features for each test page: the maximum de-
fect volume and the sum of all defects’ volumes. Consequently,
with these two features we take into account both the most notice-
able single defect and the overall appearance of all defects on the
page, which makes this feature vector representative.

Training Strategy
Support vector classification is a two-class classification

method. Our problem is a four-class classification problem, so
we need a strategy to apply SVM in our project.

Different from general multi-class classification problems,
our four classes can be divided into two super-classes, i.e. PQ-
pass pages (ranks A and B) and PQ-fail pages (ranks C and D).
Therefore, we use a binary decision tree as shown in Fig. 12 to
deal with this problem. The first level of the decision tree sepa-
rates the test page into PQ-pass pages (ranks A and B) and PQ-
fail pages (ranks C and D) with an SVM classifier. Afterwards,
if the page is PQ-pass, we use a second SVM classifier to decide
whether it belongs to rank A or rank B. Otherwise, a third SVM
classifier is applied to decide whether it is rank C or rank D. In
practice, the first level (PQ-pass or PQ-fail decision) is the most
important classifier, since it decides whether the printer’s perfor-
mance is still acceptable. This classifier is trained with all 80 of
our training images (32 PQ-pass images and 48 PQ-fail images).
The rank A/B classifier is trained with 13 rank A and 19 rank B
images. The rank C/D classifier is trained with 23 rank C and 25
rank D images.

Figure 12. Binary decision tree for multi-class classification.

Accuracy Analysis
We adopt 10-fold cross-validation to measure the accuracy of

each SVM classifier [13]. In addition, to make the result more rep-
resentative, the cross-validation is repeated five times with differ-
ent random partitions. The first classifier is the pass/fail decision
as shown in the first decision tree level in Fig.12. The mean 10-
fold cross-validation accuracies obtained from the 5 repetitions
are 86.25%, 85.00%, 85.00%, 86.25%, and 83.75%, respectively.
Each mean accuracy is the average of 10 accuracies that are calcu-
lated from the 10 folds of one repetition. The mean accuracies for
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Figure 13. Discriminant of PQ-pass or PQ-fail decision. Note that this figure

is not showing all training data since many rank C and rank D data are out of

this figure’s range.

Figure 14. Discriminant of rank A/B decision. Note many rank A data with

no defects overlap at the coordinate origin.

the 5 repetitions (50 accuracies in total) is 85.25% and the stan-
dard deviation of the 50 accuracies is 12.55%. The discriminant
trained with all training data (instead of part of them as in cross
validation) is shown in Fig. 13.

For the rank A/B decision, the same cross-validation strategy
is adopted. The mean accuracies of the 10-fold cross-validations
are 85.83%, 84.17%, 83.33%, 85.00%, and 85.00%, respectively.
The mean accuracies for the 5 repetitions (50 accuracies in total)
is 84.67% and the standard deviation is 18.55%. The discriminant
trained with all training data is shown in Fig. 14.

Similarly, the same cross-validation strategy is adopted for
the rank C/D decision. The mean accuracies of the 10-fold cross-
validations are 84.00%, 85.50%, 84.50%, 85.50%, and 83.00%,
respectively. The mean accuracies for the 5 repetitions (50 ac-
curacies in total) is 84.50% and the standard deviation of the 50
accuracies is 14.58%. The discriminant trained with all training
data is shown in Fig. 15.

Conclusion
In this project, we developed a method to automatically de-

tect the local defects on a scanned print sample. After finding the
defects, we are able to cluster and label them and then divide them
into 3 categories (small-area local defect, large-area local defect
and repeating defects). Then multiple features are calculated for
each defect. Finally, a print quality predictor is trained with the
support vector machine method. Satisfactory accuracy is achieved
for this predictor.

Figure 15. Discriminant of rank C/D decision.
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